Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;94(10):841–846. doi: 10.1111/j.1349-7006.2003.tb01364.x

Role of AML1/Runx1 in the pathogenesis of hematological malignancies

Mineo Kurokawa 1, Hisamaru Hirai 1,
PMCID: PMC11160144  PMID: 14556655

Abstract

AML1/Runx1, originally identified as a gene located at the breakpoint of the t(8;21) translocation, encodes one of the two subunits forming a heterodimeric transcription factor. AML1 contains a highly evolutionally conserved domain called the Runt domain, responsible for both DNA binding and heterodimerization with the partner protein, CBFβ. AML1 is widely expressed in all hematopoietic lineages, and regulates the expression of a variety of hematopoietic genes. Numerous studies have shown that AML is a critical regulator of hematopoietic development. In addition, AML1 and CBFβ are frequent targets for chromosomal translocation in human leukemia. Translocations lead to the generation of fusion proteins, which play a causative role for the development of leukemia, primarily by inhibiting AML1 function. Point mutations that impair AML1 function are also associated with familial and sporadic leukemias. Loss of AML1 function is thus implicated in a number of leukemias through multiple pathogenic mechanisms. However, AML1‐related translocations or haploinsufficiency of AML1 are not immediately leukemogenic in animal models, suggesting that additional genetic events are required for the development of full‐blown leukemia.

References

  • 1. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA 1991; 88: 10431–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae SC, Komori T, Ito Y, Littman DR. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 2002; 111: 621–33. [DOI] [PubMed] [Google Scholar]
  • 3. Tanaka T, Tanaka K, Ogawa S, Kurokawa M, Mitani K, Nishida J, Shibata Y, Yazaki Y, Hirai H. An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J 1995; 14: 341–50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Perry C, Eldor A, Soreq H. Runx1/AML1 in leukemia: disrupted association with diverse protein partners. Leuk Res 2002; 26: 221–8. [DOI] [PubMed] [Google Scholar]
  • 5. Kitabayashi I, Yokoyama A, Shimizu K, Ohki M. Interaction and functional cooperation of the leukemia‐associated factors AML1 and p300 in myeloid cell differentiation. EMBO J 1998; 17: 2994–3004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Imai Y, Kurokawa M, Tanaka K, Friedman AD, Ogawa S, Mitani K, Yazaki Y, Hirai H. TLE, the human homolog of groucho, interacts with AML1 and acts as a repressor of AML1‐induced transactivation. Biochem Biophys Res Commun 1998; 252: 582–9. [DOI] [PubMed] [Google Scholar]
  • 7. Lutterbach B, Westendorf JJ, Linggi B, Isaac S, Seto E, Hiebert SW. A mechanism of repression by acute myeloid leukemia‐1, the target of multiple chromosomal translocations in acute leukemia. J Biol Chem 2000; 275: 651–6. [DOI] [PubMed] [Google Scholar]
  • 8. Tanaka T, Kurokawa M, Ueki K, Tanaka K, Imai Y, Mitani K, Okazaki K, Sagata N, Yazaki Y, Shibata Y, Kadowaki T, Hirai H. The extracellular signal‐regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Mol Cell Biol 1996; 16: 3967–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing Jr. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84: 321–30. [DOI] [PubMed] [Google Scholar]
  • 10. Cai Z, de Bruijn M, Ma X, Dortland B, Luteijn T, Downing RJ, Dzierzak E. Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity 2000; 13: 423–31. [DOI] [PubMed] [Google Scholar]
  • 11. Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X, Bushweller JH, Bories JC, Alt FW, Ryan G, Liu PP, Wynshaw‐Boris A, Binder M, Marin‐Padilla M, Sharpe AH, Speck NA. The CBFb subunit is essential for CBFa2 (AML1) function in vivo . Cell 1996; 87: 697–708. [DOI] [PubMed] [Google Scholar]
  • 12. North TE, de Bruijn MF, Stacy T, Talebian L, Lind E, Robin C, Binder M, Dzierzak E, Speck NA. Runx1 expression marks long‐term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 2002; 16: 661–72. [DOI] [PubMed] [Google Scholar]
  • 13. Takakura N, Watanabe T, Suenobu S, Yamada Y, Noda T, Ito Y, Satake M, Suda T. A role for hematopoietic stem cells in promoting angiogenesis. Cell 2000; 102: 199–209. [DOI] [PubMed] [Google Scholar]
  • 14. Hayashi K, Natsume W, Watanabe T, Abe N, Iwai N, Okada H, Ito Y, Asano M, Iwakura Y, Habu S, Takahama Y, Satake M. Diminution of the AML1 transcription factor function causes differential effects on the fates of CD4 and CD8 single‐positive T cells. J Immunol 2000; 165: 6816–24. [DOI] [PubMed] [Google Scholar]
  • 15. Hayashi K, Abe N, Watanabe T, Obinata M, Ito M, Sato T, Habu S, Satake M. Overexpression of AML1 transcription factor drives thymocytes into the CD8 single‐positive lineage. J Immunol 2001; 167: 4957–65. [DOI] [PubMed] [Google Scholar]
  • 16. Komine O, Hayashi K, Natsume W, Watanabe T, Seki Y, Seki N, Yagi R, Suzuki W, Tamauchi H, Hozumi K, Habu S, Kubo M, Satake M. The Runx1 transcription factor inhibits the differentiation of naive CD4+ T cells into the Th2 lineage by repressing GATA3 expression. J Exp Med 2003; 198: 51–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Liu P, Tarle SA, Hajra A, Claxton DF, Marlton P, Freedman M, Siciliano MJ, Collins FS. Fusion between transcription factor CBFb/PEBP2b and a myosin heavy chain in acute myeloid leukemia. Science 1993; 261: 1041–4. [DOI] [PubMed] [Google Scholar]
  • 18. Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray‐Ward P, Morgan E, Raimondi SC, Rowley JD, Gilliland DG. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA 1995; 92: 4917–21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Mitani K, Ogawa S, Tanaka T, Miyoshi H, Kurokawa M, Mano H, Yazaki Y, Ohki M, Hirai H. Generation of the AML1‐EVI‐1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J 1994; 13: 504–10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Hiebert SW, Sun W, Davis JN, Golub T, Shurtleff S, Buijs A, Downing JR, Grosveld G, Roussell MF, Gilliland DG, Lenny N, Meyers S. The t(12;21) translocation converts AML‐1B from an activator to a repressor of transcription. Mol Cell Biol 1996; 16: 1349–55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Tanaka T, Mitani K, Kurokawa M, Ogawa S, Tanaka K, Nishida J, Yazaki Y, Shibata Y, Hirai H. Dual functions of the AML1/Evi‐1 chimeric protein in the mechanism of leukemogenesis in t(3;21) leukemias. Mol Cell Biol 1995; 15: 2383–92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Linggi B, Muller‐Tidow C, van de Locht L, Hu M, Nip J, Serve H, Berdel WE, van der Reijden B, Quelle DE, Rowley JD, Cleveland J, Jansen JH, Pandolfi PP, Hiebert SW. The t(8;21) fusion protein, AML1‐ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med 2002; 8: 743–50. [DOI] [PubMed] [Google Scholar]
  • 23. Okuda T, Cai Z, Yang S, Lenny N, Lyu CJ, van Deursen JM, Harada H, Downing Jr. Expression of a knocked‐in AML1‐ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 1998; 91: 3134–43. [PubMed] [Google Scholar]
  • 24. Castilla LH, Wijmenga C, Wang Q, Stacy T, Speck NA, Eckhaus M, Marin‐Padilla M, Collins FS, Wynshaw‐Boris A, Liu PP. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked‐in leukemia gene CBFB‐MYH11. Cell 1996; 87: 687–96. [DOI] [PubMed] [Google Scholar]
  • 25. Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y, Kamada N, Ohki M. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1‐MTG8 fusion transcript. EMBO J 1993; 12: 2715–21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA. Aberrant recruitment of the nuclear receptor corepressor‐histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 1998; 18: 7185–91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Tanaka K, Tanaka T, Kurokawa M, Imai Y, Ogawa S, Mitani K, Yazaki Y, Hirai H. The AML1/ETO(MTG8) and AML1/Evi‐1 leukemia‐associated chimeric oncoproteins accumulate PEBP2b(CBFb) in the nucleus more efficiently than wild‐type AML1. Blood 1998; 91: 1688–99. [PubMed] [Google Scholar]
  • 28. Michaud J, Scott HS, Escher R. AML1 interconnected pathways of leukemogenesis. Cancer Invest 2003; 21: 105–36. [DOI] [PubMed] [Google Scholar]
  • 29. Rhoades KL, Hetherington CJ, Harakawa N, Yergeau DA, Zhou L, Liu LQ, Little MT, Tenen DG, Zhang DE. Analysis of the role of AML1‐ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 2000; 96: 2108–15. [PubMed] [Google Scholar]
  • 30. Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ, Burel SA, Lagasse E, Weissman IL, Akashi K, Zhang DE. AML1‐ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001; 98: 10398–403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing Jr. Expression of a conditional AML1‐ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1: 63–74. [DOI] [PubMed] [Google Scholar]
  • 32. de Guzman CG, Warren AJ, Zhang Z, Gartland L, Erickson P, Drabkin H, Hiebert SW, Klug CA. Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1‐ETO translocation. Mol Cell Biol 2002; 22: 5506–17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Mulloy JC, Cammenga J, MacKenzie KL, Berguido FJ, Moore MA, Nimer SD. The AML1‐ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood 2002; 99: 15–23. [DOI] [PubMed] [Google Scholar]
  • 34. Adya N, Stacy T, Speck NA, Liu PP. The leukemic protein core binding factor b (CBFb)‐smooth‐muscle myosin heavy chain sequesters CBFa2 into cytoskeletal filaments and aggregates. Mol Cell Biol 1998; 18: 7432–43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Durst KL, Lutterbach B, Kummalue T, Friedman AD, Hiebert SW. The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy‐chain domain. Mol Cell Biol 2003; 23: 607–19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Castilla LH, Garrett L, Adya N, Orlic D, Dutra A, Anderson S, Owens J, Eckhaus M, Bodine D, Liu PP. The fusion gene Cbfb‐MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 1999; 23: 144–6. [DOI] [PubMed] [Google Scholar]
  • 37. Tanaka T, Nishida J, Mitani K, Ogawa S, Yazaki Y, Hirai H. Evi‐1 raises AP‐1 activity and stimulates c‐fos promoter transactivation with dependence on the second zinc finger domain. J Biol Chem 1994; 269: 24020–6. [PubMed] [Google Scholar]
  • 38. Kurokawa M, Ogawa S, Tanaka T, Mitani K, Yazaki Y, Witte ON, Hirai H. The AML1/Evi‐1 fusion protein in the t(3;21) translocation exhibits transforming activity on Rat1 fibroblasts with dependence on the Evi‐1 sequence. Oncogene 1995; 11: 833–40. [PubMed] [Google Scholar]
  • 39. Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S, Yazaki Y, Matsumoto K, Hirai H. The oncoprotein Evi‐1 represses TGF‐b signalling by inhibiting Smad3. Nature 1998; 394: 92–6. [DOI] [PubMed] [Google Scholar]
  • 40. Kurokawa M, Mitani K, Yamagata T, Takahashi T, Izutsu K, Ogawa S, Moriguchi T, Nishida E, Yazaki Y, Hirai H. The evi‐1 oncoprotein inhibits c‐Jun N‐terminal kinase and prevents stress‐induced cell death. EMBO J 2000; 19: 2958–68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Izutsu K, Kurokawa M, Imai Y, Ichikawa M, Asai T, Maki K, Mitani K, Hirai H. The t(3;21) fusion product, AML1/Evi‐1 blocks AML1‐induced transactivation by recruiting CtBP. Oncogene 2002; 21: 2695–703. [DOI] [PubMed] [Google Scholar]
  • 42. Kurokawa M, Mitani K, Imai Y, Ogawa S, Yazaki Y, Hirai H. The t(3;21) fusion product, AML1/Evi‐1, interacts with Smad3 and blocks transforming growth factor‐b‐mediated growth inhibition of myeloid cells. Blood 1998; 92: 4003–12. [PubMed] [Google Scholar]
  • 43. Stegmaier K, Takeuchi S, Golub TR, Bohlander SK, Bartram CR, Koeffler HP. Mutational analysis of the candidate tumor suppressor genes TEL and KIP1 in childhood acute lymphoblastic leukemia. Cancer Res 1996; 56: 1413–7. [PubMed] [Google Scholar]
  • 44. Maia AT, Ford AM, Jalali GR, Harrison CJ, Taylor GM, Eden OB, Greaves MF. Molecular tracking of leukemogenesis in a triplet pregnancy. Blood 2001; 98: 478–82. [DOI] [PubMed] [Google Scholar]
  • 45. Andreasson P, Schwaller J, Anastasiadou E, Aster J, Gilliland DG. The expression of ETV6/CBFA2 (TEL/AML1) is not sufficient for the transformation of hematopoietic cell lines in vitro or the induction of hematologic disease in vivo . Cancer Genet Cytogenet 2001; 130: 93–104. [DOI] [PubMed] [Google Scholar]
  • 46. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, Ratajczak J, Resende IC, Haworth C, Hock R, Loh M, Felix C, Roy DC, Busque L, Kurnit D, Willman C, Gewirtz AM, Speck NA, Bushweller JH, Li FP, Gardiner K, Poncz M, Maris JM, Gilliland DG. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999; 23: 166–75. [DOI] [PubMed] [Google Scholar]
  • 47. Roumier C, Fenaux P, Lafage M, Imbert M, Eclache V, Preudhomme C. New mechanisms of AML1 gene alteration in hematological malignancies. Leukemia 2003; 17: 9–16. [DOI] [PubMed] [Google Scholar]
  • 48. Imai Y, Kurokawa M, Izutsu K, Hangaishi A, Takeuchi K, Maki K, Ogawa S, Chiba S, Mitani K, Hirai H. Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. Blood 2000; 96: 3154–60. [PubMed] [Google Scholar]
  • 49. Kurokawa M, Tanaka T, Tanaka K, Ogawa S, Mitani K, Yazaki Y, Hirai H. Overexpression of the AML1 proto‐oncoprotein in NIH3T3 cells leads to neoplastic transformation depending on the DNA‐binding and transactivational potencies. Oncogene 1996; 12: 883–92. [PubMed] [Google Scholar]
  • 50. Cameron ER, Blyth K, Hanlon L, Kilbey A, Mackay N, Stewart M, Terry A, Vaillant F, Wotton S, Neil JC. The Runx genes as dominant oncogenes. Blood Cells Mol Dis 2003; 30: 194–200. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES