Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;94(6):515–518. doi: 10.1111/j.1349-7006.2003.tb01475.x

Amplification, up‐regulation and over‐expression of DVL‐1, the human counterpart of the Drosophila disheveled gene, in primary breast cancers

Takemitsu Nagahata 1, Takashi Shimada 1,4, Akima Harada 1, Hisaki Nagai 1, Masamitsu Onda 1, Shiro Yokoyama 3, Tadayoshi Shiba 4, Enjing Jin 2, Oichi Kawanami 2, Mitsuru Emi 1,
PMCID: PMC11160156  PMID: 12824876

Abstract

Wnt proteins form a family of highly conserved, secreted signaling molecules that regulate cell‐to‐cell interactions during embryogenesis. Wnt genes and Wnt signaling are also implicated in cancer. It has been shown that Wnt proteins bind to receptors of the frizzled family on the cell surface. Through several cytoplasmic relay components including DVL‐1, the human counterpart of the Drosophila disheveled gene, the signal is transduced to β‐catenin, which then enters the nucleus and forms a complex with T‐cell factor (TCP) to activate transcription of Wnt target genes. We describe here the amplification of DVL‐1 in 13 of 24 primary breast cancers examined, and increased expression of this gene in 11 of those tumors in comparison to corresponding non‐cancerous breast tissues. Immunohistochemical staining demonstrated that DVL‐1 protein was prominent in the cytoplasm of cancer cells, but not in normal epithelial cells of the mammary duct or in myoepithelial cells. These data indicate that amplification and increased expression of the DVL‐1 gene may play some role in human breast carcinogenesis through derangement of the Wnt signaling pathway.

References

  • 1. Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, Kuhl M, Wedlich D, Birchmeier W. Functional interaction of an axin homolog, conductin, with beta‐catenin, APC, and GSK3beta. Science 1998; 280: 596–9. [DOI] [PubMed] [Google Scholar]
  • 2. Itoh K, Krupnik VE, Sokol SY. Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and beta‐catenin. Curr Biol 1998; 8: 591–4. [DOI] [PubMed] [Google Scholar]
  • 3. Hamada F, Tomoyasu Y, Takatsu Y, Nakamura M, Nagai S, Suzuki A, Fujita F, Shibuya H, Toyoshima K, Ueno N, Akiyama T. Negative regulation of Wingless signaling by D‐axin, a Drosophila homolog of axin. Science 1999; 283: 1739–42. [DOI] [PubMed] [Google Scholar]
  • 4. Li L, Yuan H, Weaver CD, Mao J, Farr GH 3rd, Sussman DJ, Jonkers J, Kimelman D, Wu D. Axin and Fratl interact with dvl and GSK, bridging Dvl to GSK in Wnt‐mediated regulation of LEF‐l. EMBO J 1999; 18: 4233–40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Salic A, Lee E, Mayer L, Kirschner MW. Control of beta‐catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol Cell 2000; 5: 523–32. [DOI] [PubMed] [Google Scholar]
  • 6. Farr GH 3rd, Ferkey DM, Yost C, Pierce SB, Weaver C, Kimelman D. Interaction among GSK‐3, GBP, axin, and APC in Xenopus axis specification. J Cell Biol 2000; 148: 691–702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Hsu W, Zeng L, Costantini F. Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self‐binding domain. J Biol Chem. 1999; 274: 3439–45. [DOI] [PubMed] [Google Scholar]
  • 8. Peters JM, McKay RM, McKay JP, Graff JM. Casein kinase I transduces Wnt signals. Nature 1999; 401: 345–50. [DOI] [PubMed] [Google Scholar]
  • 9. Willert K, Brink M, Wodarz A, Varmus H, Nusse R. Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J 1997; 16: 3089–96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Pizzuti A, Novelli G, Mari A, Ratti A, Colosimo A, Amati F, Penso D, Sangiuolo F, Calarese G, Palka G, Silani V, Gennarelli M, Mingarelli R, Scarlato G, Scambler P, Dallapiccola B. Human homologue sequences to the Drosophila dishevelled segment‐polarity gene are deleted in the DiGeorge syndrome. Am J Hum Genet 1996; 58: 722–9. [PMC free article] [PubMed] [Google Scholar]
  • 11. Pizzuti A, Amati F, Calabrese G, Mari A, Colosimo A, Silani V, Giardino L, Ratti A, Penso D, Calza L, Palka G, Scarlato G, Novelli G, Dallapiccola B. cDNA characterization and chromosomal mapping of two human homologues of the Drosophila dishevelled polarity gene. Hum Mol Genet 1996; 5: 953–8. [DOI] [PubMed] [Google Scholar]
  • 12. Sato T, Tanigami A, Yamakawa K, Akiyama F, Kasumi F, Sakamoto G, Nakamura, Y. Allelotype of breast cancer: cumulative allele losses promote tumor progression in primary breast cancer. Cancer Res 1990; 50: 7184–9. [PubMed] [Google Scholar]
  • 13. di Giovine FS, Takhsh E, Blakemore AI, Duff GW. Single base polymorphism at —511 in the human interleukin‐1 beta gene (IL1 beta). Hum. Mol Genet 1992; 1: 450. [DOI] [PubMed] [Google Scholar]
  • 14. Fujiwara Y, Monden M, Mori T, Nakamura Y, Emi M. Frequent multiplication of the long arm of chromosome 8 in hepatocellular carcinoma. Cancer Res 1993; 53: 857–60. [PubMed] [Google Scholar]
  • 15. Yokota T, Yoshimoto M, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y, Emi M. Frequent multiplication of chromosomal region 8q24.1 associated with aggressive histologic types of breast cancers. Cancer Lett 1999; 139: 7–13. [DOI] [PubMed] [Google Scholar]
  • 16. Bui TD, Beier DR, Jonssen M, Smith K, Dorrington SM, Kaklamanis L, Kearney L, Regan R, Sussman DJ, Harris AL. cDNA cloning of a human dishevelled DVL‐3 gene, mapping to 3q27, and expression in human breast and colon carcinomas. Biochem. Biophys Res Commun 1997; 239: 510–6. [DOI] [PubMed] [Google Scholar]
  • 17. Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R, Logtenberg T, Clevers H. Synergy between tumor suppressor APC and the beta‐catenin‐Tcf4 target Tcf1. Science 1999; 285: 1923–6. [DOI] [PubMed] [Google Scholar]
  • 18. Tetsu O, McCormick F. Beta‐catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398: 422–6. [DOI] [PubMed] [Google Scholar]
  • 19. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben‐Ze'ev, A. The cyclin D1 gene is a target of the beta‐catenin/LEF‐1 pathway. Proc Natl Acad Sci USA 1999; 96: 5522–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. Identification of c‐MYC as a target of the APC pathway. Science 1998; 281: 1509–12. [DOI] [PubMed] [Google Scholar]
  • 21. He TC, Chan TA, Vogelstein B, Kinzler KW. PPARdelta is an APC‐regulated target of nonsteroidal anti‐inflammatory drugs. Cell 1999; 99: 335–45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Shimizu H, Julius MA, Giarre M, Zheng Z, Brown AM, Kitajewski J. Transformation by Wnt family proteins correlates with regulation of beta‐catenin. Cell Growth Differ 1997; 8: 1349–58. [PubMed] [Google Scholar]
  • 23. Imbert A, Eelkema R, Jordan S, Feiner H, Cowin P. Delta N89 beta‐catenin induces precocious development, differentiation, and neoplasia in mammary gland. J Cell Biol 2001; 153: 555–68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Michaelson JS, Leder P. Beta‐catenin is a downstream effector of Wnt‐mediated tumor genesis in the mammary gland. Oncogene 2001; 20: 5093–9. [DOI] [PubMed] [Google Scholar]
  • 25. Miyoshi K, Shillingford JM, Provost Le F, Gounari F, Bronson R, von Boehmer H, Taketo MM, Cardiff RD, Hennighausen L, Khazaie K. Activation of beta‐catenin signaling in differentiated mammary secretory cells induces trans differentiation into epidermis and squamous metaplasias. Proc Natl Acad Sci USA 2002; 99: 219–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Gavin BJ, McMahon AP. Differential regulation of the Wnt gene family during pregnancy and lactation suggests a role in postnatal development of the mammary gland. Mol Cell Biol 1992; 12: 2418–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Wong GT, Gavin BJ, McMahon AP. Differential transformation of mammary epithelial cells by Wnt genes. Mol Cell Biol 1994; 14: 6278–86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Huguet EL, McMahon JA, McMahon AP, Bicknell R, Harris AL. Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res 1994; 54: 2615–21. [PubMed] [Google Scholar]
  • 29. Lejeune S, Huguet EL, Hamby A, Poulsom R, Harris AL. Wnt5a cloning, expression, and up‐regulation in human primary breast cancers. Clin Cancer Res 1995; 1: 215–22. [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES