Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;94(8):655–667. doi: 10.1111/j.1349-7006.2003.tb01499.x

Nectins and nectin‐like molecules: Roles in cell adhesion, migration, and polarization

Yoshimi Takai 1,, Kenji Irie 1, Kazuya Shimizu 1, Toshiaki Sakisaka 1, Wataru Ikeda 1
PMCID: PMC11160195  PMID: 12901789

Abstract

Nectins are a family of Ca2+‐independent immunoglobulin‐like cell‐cell adhesion molecules consisting of four members, which homophilically and heterophilically trans‐interact and cause cell‐cell adhesion. Nectin‐based cell‐cell adhesion is involved in the formation of cadherin‐based adherens junctions in epithelial cells and fibroblasts. The nectin‐based cell‐cell adhesion induces activation of Cdc42 and Rac small G proteins, which eventually regulate the formation of adherens junctions through reorganization of the actin cytoskeleton, gene expression through activation of a mitogen‐activated protein kinase cascade, and cell polarization through cell polarity proteins. Five nectin‐like molecules (necls), which have domain structures similar to those of nectins, have recently been identified and appear to play different roles from those of nectins. One of them, named necl‐5, which does not homophilically trans‐interact, but heterophilically trans‐interacts with nectin‐3, regulates cell migration and adhesion. In this article, the roles and modes of action of nectins and necls in cell adhesion, migration, and polarization are reviewed.

References

  • 1. Takeichi M. Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 1995; 7: 619–27. [DOI] [PubMed] [Google Scholar]
  • 2. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996; 84: 345–57. [DOI] [PubMed] [Google Scholar]
  • 3. Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell 1996; 84: 359–69. [DOI] [PubMed] [Google Scholar]
  • 4. Gumbiner BM. Regulation of cadherin adhesive activity. J Cell Biol 2000; 148: 399–403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Thiery JP. Epithelial‐mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442–54. [DOI] [PubMed] [Google Scholar]
  • 6. Abercrombie M. Contact inhibition and malignancy. Nature 1979; 281: 259–62. 551275 [Google Scholar]
  • 7. Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol 1963; 17: 375–412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Yap AS, Brieher WM, Gumbiner BM. Molecular and functional analysis of cadherin‐based adherens junctions. Annu Rev Cell Dev Biol 1997; 13: 119–46. [DOI] [PubMed] [Google Scholar]
  • 9. Takeichi M. Cadherin cell adhesion receptor as a morphogenetic regulator. Science 1991; 251: 1451–5. [DOI] [PubMed] [Google Scholar]
  • 10. Tepass U, Truong K, Godt D, Ikura M, Peifer M. Cadherins in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol 2000; 1: 91–100. [DOI] [PubMed] [Google Scholar]
  • 11. Yagi T, Takeichi M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev 2000; 14: 1169–80. [PubMed] [Google Scholar]
  • 12. Perez‐Moreno M, Jamora C, Fuchs E. Sticky business: orchestrating cellular signals at adherens junctions. Cell 2003; 112: 535–48. [DOI] [PubMed] [Google Scholar]
  • 13. Nagafuchi A. Molecular architecture of adherens junctions. Curr Opin Cell Biol 2001; 13: 600–3. [DOI] [PubMed] [Google Scholar]
  • 14. Tsukita S, Furuse M, Itoh M. Structural and signalling molecules come to gether at tight junctions. Curr Opin Cell Biol 1999; 11: 628–33. [DOI] [PubMed] [Google Scholar]
  • 15. Tsukita S, Furuse M, Itoh M. Miltifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2001; 4: 285–93. [DOI] [PubMed] [Google Scholar]
  • 16. Tsukita S, Tsukita S, Nagafuchi A, Tonemura S. Molecular linkagae between cadherins and actin filaments in cell‐cell adherens junctions. Curr Opin Cell Biol 1992; 4: 834–9. [DOI] [PubMed] [Google Scholar]
  • 17. Van Aelst L, Symons M. Role of Rho family GTPases in epithelial morphogenesis. Genes Dev 2002; 16: 1032–54. [DOI] [PubMed] [Google Scholar]
  • 18. Ohno S. Intercellular junctions and cellular polarity: the PAR‐aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr Opin Cell Biol 2001; 13: 641–8. [DOI] [PubMed] [Google Scholar]
  • 19. Knoblich JA. Asymmetric cell division during animal development. Nat Rev Mol Cell Biol 2001; 2: 11–20. [DOI] [PubMed] [Google Scholar]
  • 20. Hirohashi S. Inactivation of the E‐cadherin‐mediated cell adhesion system in human cancers. Am J Pathol 1999; 153: 333–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Takai Y, Nakanishi H. Nectin and afadin: novel organizers of intercellular junctions. J Cell Sci 2003; 116: 17–27. [DOI] [PubMed] [Google Scholar]
  • 22. Honda T, Shimizu K, Kawakatsu T, Yasumi M, Shingai T, Fukuhara A, Ozaki‐Kuroda K, Me K, Nakanishi H, Takai Y. Antagonistic and agonistic effects of an extracellular fragment of nectin of formation of E‐cadherin‐based cell‐cell adhesion. Genes Cells 2003; 8: 51–63. [DOI] [PubMed] [Google Scholar]
  • 23. Fukuhara A, Irie K, Nakanishi H, Takekuni K, Kawakatsu T, Ikeda W, Yamada A, Katata T, Honda T, Sato T, Shimizu K, Ozaki H, Horiuchi H, Kita T, Takai Y. Involvement of nectin in the localization of junctional adhesion molecule at tight junctions. Oncogene 2002; 21: 7642–55. [DOI] [PubMed] [Google Scholar]
  • 24. Fukuhara A, Irie K, Yamada A, Katata T, Honda T, Shimizu K, Nakanishi H, Takai Y. Role of nectin in organization of tight junctions in epithelial cells. Genes Cells 2002; 7: 1059–72. [DOI] [PubMed] [Google Scholar]
  • 25. Honda T, Shimizu K, Fukuhara A, Irie K, Takai Y. Regulation by nectin of the velocity of the formation of adherens junctions and tight junctions. Bio-chem Biophys Res Commun 2003; 306: 104–9. [DOI] [PubMed] [Google Scholar]
  • 26. Tanaka Y, Nakanishi H, Kakunaga S, Okabe N, Kawakatsu T, Shimizu K, Takai Y. Role of nectin in formation of E‐cadherin‐based adherens junctions in keratinocytes: analysis with the N‐cadherin dominant negative mutant. Mol Biol Cell 2003; 14: 1597–609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Honda T, Shimizu K, Kawakatsu T, Fukuhara A, Irie K, Nakamura T, Matsuda M, Takai Y. Cdc42 and Rac small G proteins activated by trans‐in‐ teractions of nectins are involved in activation of c‐Jun N‐terminal kinase, but not in association of nectins and cadherin to form adherens junctions, in fibroblasts. Genes Cells 2003; 8: 481–91. [DOI] [PubMed] [Google Scholar]
  • 28. Kawakatsu T, Shimizu K, Honda T, Fukuhara T, Hoshino T, Takai Y. trans‐ Interactions of nectins induce formation of filopodia and lamellipodia through the respective activation of Cdc42 and Rac small G proteins. J Biol Chem 2002; 277: 50749–55. [DOI] [PubMed] [Google Scholar]
  • 29. Takekuni K, Ikeda W, Fujito T, Morimoto K, Takeuchi M, Monden M, Takai Y. Direct binding of cell polarity protein PAR‐3 to cell‐cell adhesion molecule nectin at neuroepithelial cells of developing mouse. J Biol Chem 2003; 278: 5497–500. [DOI] [PubMed] [Google Scholar]
  • 30. Irie K, Shimizu K, Sakisaka T, Ikeda W, Takai Y. Roles of nectins in cell adhesion, signaling and polarization. In: Behrens J, Nelson J, editors. Handbook of experimental pharmacology on “cell adhesion.” Berlin‐Heidelberg : Springer‐Verlag GmbH & Co KG; 2003. in press. [DOI] [PubMed] [Google Scholar]
  • 31. Fukuhara H, Kuramochi M, Nobukuni T, Fukami T, Saino M, Maruyama T, Nomura S, Sekiya T, Murakami Y. Isolation of the TSLL1 and TSLL2 genes, members of the tumor suppressor TSLC1 gene family encoding transmembrane proteins. Oncogene 2001; 20: 5401–7. [DOI] [PubMed] [Google Scholar]
  • 32. Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Sudhof, TC . SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 2002; 297: 1525–31. [DOI] [PubMed] [Google Scholar]
  • 33. Urase K, Soyama A, Fujita E, Momoi T. Expression of RAI75 mRNA, a new member of the immunoglobulin superfamily, in developing mouse brain. Neuroreport 2001; 12: 3217–21. [DOI] [PubMed] [Google Scholar]
  • 34. Gomyo H, Arai Y, Tanigami A, Murakami Y, Hattori M, Hosoda F, Arai K, Aikawa Y, Tsuda H, Hirohashi S, Asakawa S, Shimizu N, Soeda E, Sakaki Y, Ohki M. A 2‐Mb sequence‐ready contig map and a novel immunoglobulin superfamily gene IGSF4 in the LOH region of chromosome 11q23.2. Genomics 1999; 62: 139–46. [DOI] [PubMed] [Google Scholar]
  • 35. Wakayama T, Ohashi K, Mizuno K, Iseki S. Cloning and characterization of a novel mouse immunoglobulin superfamily gene expressed in early spermatogenic cells. Mol Reprod Dev 2001; 60: 158–64. [DOI] [PubMed] [Google Scholar]
  • 36. Kuramochi M, Fukuhara H, Nobukuni T, Kanbe T, Maruyama T, Ghosh HP, Pletcher M, Isomura M, Onizuka M, Kitamura T, Sekiya T, Reeves RH, Murakami Y. TSLC1 is a tumor‐suppressor gene in human non‐small‐cell lung cancer. Nat Genet 2001; 27: 427–30. [DOI] [PubMed] [Google Scholar]
  • 37. Fukami T, Satoh H, Fujita E, Maruyama T, Fukuhara H, Kuramochi M, Takamoto S, Momoi T, Murakami Y. Identification of the Tslc1 gene, a mouse orthologue of the human tumor suppressor TSLC1 gene. Gene 2002; 295: 7–12. [DOI] [PubMed] [Google Scholar]
  • 38. Chadeneau C, LeMoullac B, Denis MG. A novel member of the immunoglobulin gene superfamily expressed in rat carcinoma cell lines. J Biol Chem 1994; 269: 15601–5. [PubMed] [Google Scholar]
  • 39. Chadeneau C, LeCabellec M, LeMoullac B, Meflah K, Denis MG. Over‐expression of a novel member of the immunoglobulin superfamily in Min mouse intestinal adenomas. Int J Cancer 1996; 68: 817–21. [DOI] [PubMed] [Google Scholar]
  • 40. Mendelsohn CL, Wimmer E, Racaniello VR. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 1989; 56: 855–65. [DOI] [PubMed] [Google Scholar]
  • 41. Koike S, Horie H, Ise I, Okitsu A, Yoshida M, Iizuka N, Takeuchi K, Takegami T, Nomoto A. The poliovirus receptor protein is produced both as membrane‐bound and secreted forms. EMBO J 1990; 9: 3217–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Ikeda W, Kakunaga S, Itoh S, Shingai T, Takekuni K, Satoh K, Inoue Y, Hamaguchi A, Morimoto K, Takeuchi M, Imai T, Takai Y. Tage4/nectin‐like molecule‐5 heterophilically trans‐interacts with cell adhesion molecule nectin‐3 and enhances cell migration. J Biol Chem 2003; in press. [DOI] [PubMed]
  • 43. Yasumi M, Shimizu K, Honda T, Takeuchi M, Takai Y. Role of each immunoglobulin‐like loop of nectin for its cell‐cell adhesion activity. Biochem Biophys Res Commun 2003; 302: 61–6. [DOI] [PubMed] [Google Scholar]
  • 44. Asada M, Me K, Morimoto K, Yamada A, Ikeda W, Takeuchi M, Takai Y. AD IP: a novel afadin‐ and α‐actinin‐binding protein localized at cell‐cell adherens junctions. J Biol Chem 2003; 278: 4103–11. [DOI] [PubMed] [Google Scholar]
  • 45. Yap AS, Kovacs EM. Direct cadherin‐activated cell signaling: a view from the plasma membrane. J Cell Biol 2003; 160: 11–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Takai Y, Sasaki T, Matozaki T. Small GTP‐binding proteins. Physiol Rev 2001; 81: 153–208. [DOI] [PubMed] [Google Scholar]
  • 47. Ehrlich JS, Hansen MDH, Nelson WJ. Spatio‐temporal regulation of Rac1 localization and lamellipodia dynamics during epithelial cell‐cell adhesion. Dev Cell 2002; 3: 259–70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Takenawa T, Miki H. WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J Cell Sci 2001; 114: 1801–9. [DOI] [PubMed] [Google Scholar]
  • 49. Vojtek AB, Cooper JA. Rho family members: activators of MAP kinase cascades. Cell 1995; 82: 527–9. [DOI] [PubMed] [Google Scholar]
  • 50. Johnson GL, Lapadat R. Mitogen‐activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002; 298: 1911–2. [DOI] [PubMed] [Google Scholar]
  • 51. Lin A. Activation of the JNK signaling pathway: breaking the brake on apoptosis. Bioessays 2003; 25: 17–24. [DOI] [PubMed] [Google Scholar]
  • 52. Guo S, Kemphues KJ. Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo. Curr Opin Genet Dev 1996; 6: 408–15. [DOI] [PubMed] [Google Scholar]
  • 53. Muller HA. Genetic control of epithelial cell polarity: lessons from Drosophila . Dev Dyn 2000; 218: 52–67. [DOI] [PubMed] [Google Scholar]
  • 54. Tepass U, Tanentzapf G, Ward R, Fehon R. Epithelial cell polarity and cell junctions in Drosophila . Annu Rev Genet 2001; 35: 747–84. [DOI] [PubMed] [Google Scholar]
  • 55. Hurd TW, Gao L, Roh MH, Macara IG, Margolis B. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nat Cell Biol 2003; 5: 137–42. [DOI] [PubMed] [Google Scholar]
  • 56. Matter K, Balda MS. Signalling to and from tight junctions. Nat Rev Mol Cell Biol 2003; 4: 225–36. [DOI] [PubMed] [Google Scholar]
  • 57. Musch A, Cohen D, Yeaman C, Nelson WJ, Rodriguez‐Boulan E, Brennwald PJ. Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin‐Darby canine kidney cells. Mol Biol Cell 2002; 13: 158–68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Plant PJ, Fawcett JP, Lin DC, Holdorf AD, Binns K, Kulkarni S, Pawson T. A polarity complex of mPar‐6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat Cell Biol 2003; 5: 301–8. [DOI] [PubMed] [Google Scholar]
  • 59. Yamanaka T, Horikoshi Y, Sugiyama Y, Ishiyama C, Suzuki A, Hirose T, Iwamatsu A, Shinohara A, Ohno S. Mammalian Lgl forms a protein complex with PAR‐6 and aPKC independently of PAR‐3 to regulate epithelial cell polarity. Curr Biol 2003; in press. [DOI] [PubMed]
  • 60. Kim DY, MacKenzie Ingano LA, Kovacs DM. Nectin‐1α, an immunoglobulin‐like receptor involved in the formation of synapses, is a substrate for presenilin/?‐secretase‐like cleavage. J Biol Chem 2002; 277: 49976–81. [DOI] [PubMed] [Google Scholar]
  • 61. Tanaka Y, Irie K, Hirota T, Sakisaka T, Nakanishi H, Takai Y. Ectodomain shedding of nectin‐1alpha by SF/HGF and TPA in MDCK cells. Biochem Biophys Res Commun 2002; 299: 472–8. [DOI] [PubMed] [Google Scholar]
  • 62. Arribas J, Borroto A. Protein ectodomain shedding. Chem Rev 2002; 102: 4627–38. [DOI] [PubMed] [Google Scholar]
  • 63. Baury B, Geraghty RJ, Masson D, Lustenberger P, Spear PG, Denis MG. Organization of the rat Tage4 gene and herpesvirus entry activity of the encoded protein. Gene 2001; 265: 185–94. [DOI] [PubMed] [Google Scholar]
  • 64. Shingai T, Ikeda W, Kakunaga S, Morimoto K, Takekuni K, Itoh S, Satoh K, Takeuchi M, Imai T, Monden M, Takai Y. Implications of nectin‐like molecule 2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 in cell‐cell adhesion and transmembrane protein localization in epithelial cells. J Biol Chem 2003; in press. [DOI] [PubMed]
  • 65. Masuda M, Yageta M, Fukuhara H, Kuramochi M, Maruyama T, Nomoto A, Murakami Y. The tumor suppressor protein TSLC1 is involved in cell‐cell adhesion. JBiol Chem 2002; 277: 31014–9. [DOI] [PubMed] [Google Scholar]
  • 66. Yageta M, Kuramochi M, Masuda M, Fukami T, Fukuhara H, Maruyama T, Shibuya M, Murakami, Y . Direct association of TSLC1 and DAL‐1, two distinct tumor suppressor proteins in lung cancer. Cancer Res 2002; 62: 5129–33. [PubMed] [Google Scholar]
  • 67. Kamberov E, Makarova O, Roh M, Liu A, Karnak D, Straight S, Margolis B. Molecular cloning and characterization of Pals, proteins associated with mLin‐7. J Biol Chem 2000; 275: 11425–31. [DOI] [PubMed] [Google Scholar]
  • 68. Masson D, Jarry A, Baury B, Blanchardie P, Laboisse C, Lustenberger P, Denis MG. Overexpression of the CD155 gene in human colorectal carcinoma. Gut 2001; 49: 236–40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Aoki J, Koike S, Asou H, Ise I, Suwa H, Tanaka T, Miyasaka M, Nomoto A. Mouse homolog of poliovirus receptor‐related gene 2 product, mPRR2, mediates homophilic cell aggregation. Exp Cell Res 1997; 235: 374–84. [DOI] [PubMed] [Google Scholar]
  • 70. Mueller S, Wimmer E. Recruitment of Nectin‐3 to cell‐cell junctions through trans‐heterophilic interaction with CD155, a vitronectin and poliovirus receptor that localizes to αvβ3 integrin containing membrane microdomains. J Biol Chem 2003; in press. [DOI] [PubMed]
  • 71. Freistadt MS, Eberle, KE . Physical association between CD155 and CD44 inhuman monocytes. Mol Immunol 1997; 34: 1247–57. [DOI] [PubMed] [Google Scholar]
  • 72. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003; 4: 33–45. [DOI] [PubMed] [Google Scholar]
  • 73. Lange R, Peng X, Wimmer E, Lipp M, Bernhardt G. The poliovirus receptor CD 155 mediates cell‐to‐matrix contacts by specifically binding to vitronectin. Virology 2001; 285: 218–27. [DOI] [PubMed] [Google Scholar]
  • 74. Mueller S, Cao X, Welker R, Wimmer E. Interaction of the poliovirus receptor CD155 with the dynein light chain Tctex‐1 and its implication for poliovirus pathogenesis. J Biol Chem 2002; 277: 7897–904. [DOI] [PubMed] [Google Scholar]
  • 75. Kaverina I, Krylyshkina O, Small JV. Regulation of substrate adhesion dynamics during cell motility. Int J Biochem Cell Biol 2002; 34: 746–61. [DOI] [PubMed] [Google Scholar]
  • 76. Comer FI, Parent CA. PI 3‐kinases and PTEN: how opposites chemoattract. Cell 2002; 109: 541–4. [DOI] [PubMed] [Google Scholar]
  • 77. Weiner OD. Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr Opin Cell Biol 2002; 14: 196–202. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES