Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;94(9):782–790. doi: 10.1111/j.1349-7006.2003.tb01519.x

Induction of tube formation by angiopoietin‐1 in endothelial cell/fibroblast co‐culture is dependent on endogenous VEGF

Momomi Saito 1, Maho Hamasaki 1, Masabumi Shibuya 1,
PMCID: PMC11160228  PMID: 12967476

Abstract

The angiopoietin‐1 (Ang1)/Tie2 receptor system is known to be important for angiogenesis and vascular remodeling. However, its contribution to the survival and morphogenesis of endothelial cells is still not well elucidated. In this study, we analyzed the role of the Ang1/Tie2 pathway in cell survival and tube formation using a human umbilical vein endothelial (HUVE) cell and fibroblast co‐culture system. In this system, which mimics angiogenesis in vivo, fibroblasts secrete a basal level of vascular endothelial growth factor (VEGF), and Ang1 stimulated tube formation. However, anti‐VEGF or anti‐VEGF receptor‐2 neutralizing antibody blocked the Ang1‐induced tube formation. Furthermore, other angiogenic factors such as hepatic growth factor (HGF) and basic fibroblast growth factor (bFGF) showed the same pheno‐type as Ang1, i.e., a stimulatory effect only in the presence of endogenous VEGF. The Ang1‐promoted tube formation was mainly due to suppression of HUVE cell apoptosis in a PI3‐kinase‐dependent manner. These findings suggest that Ang1 stimulates tube formation in vivo via the PI3‐kinase/Akt pathway, but this effect takes place only in a VEGF‐dependent manner.

References

  • 1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–6. [DOI] [PubMed] [Google Scholar]
  • 2. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–64. [DOI] [PubMed] [Google Scholar]
  • 3. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor‐induced angiogenesis suppresses tumour growth in vivo. Nature 1993; 362: 841–4. [DOI] [PubMed] [Google Scholar]
  • 4. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. Glioblastoma growth inhibited in vivo by a dominant‐negative Flk‐1 mutant. Nature 1994; 367: 576–9. [DOI] [PubMed] [Google Scholar]
  • 5. Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671–4. [DOI] [PubMed] [Google Scholar]
  • 6. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD. Isolation of angiopoietin‐1, a ligand for the TIE2 receptor, by secretion‐trap expression cloning. Cell 1996; 87: 1161–9. [DOI] [PubMed] [Google Scholar]
  • 7. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD. Angiopoietin‐2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277: 55–60. [DOI] [PubMed] [Google Scholar]
  • 8. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD. Requisite role of angiopoietin‐1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87: 1171–80. [DOI] [PubMed] [Google Scholar]
  • 9. Shyu KG, Manor O, Magner M, Yancopoulos GD, Isner JM. Direct intramuscular injection of plasmid DNA encoding angiopoietin‐1 but not angiopoietin‐2 augments revascularization in the rabbit ischemic hindlimb. Circulation 1998; 98: 2081–7. [DOI] [PubMed] [Google Scholar]
  • 10. Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD. Increased vascularization in mice overexpressing angiopoietin‐1. Science 1998; 282: 468–71. [DOI] [PubMed] [Google Scholar]
  • 11. Kim I, Moon SO, Koh KN, Kim H, Uhm CS, Kwak HJ, Kim NG, Koh GY. Molecular cloning, expression, and characterization of angiopoietin‐related protein. Angiopoietin‐related protein induces endothelial cell sprouting. J Biol Chem 1999; 274: 26523–8. [DOI] [PubMed] [Google Scholar]
  • 12. Kim I, Kim HG, Moon SO, Chae SW, So JN, Koh KN, Ahn BC, Koh GY. Angiopoietin‐1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circ Res 2000; 86: 952–9. [DOI] [PubMed] [Google Scholar]
  • 13. Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W. Angiopoietin‐1 induces sprouting angiogenesis in vitro . Curr Biol 1998; 8: 529–32. [DOI] [PubMed] [Google Scholar]
  • 14. Papapetropoulos A, Garcia‐Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC. Direct actions of angiopoietin‐1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 1999; 79: 213–23. [PubMed] [Google Scholar]
  • 15. Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM. Chemotactic properties of angiopoietin‐1 and ‐2, ligands for the endothelialspecific receptor tyrosine kinase Tie2. J Biol Chem 1998; 273: 18514–21. [DOI] [PubMed] [Google Scholar]
  • 16. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284: 1994–8. [DOI] [PubMed] [Google Scholar]
  • 17. Kwak HJ, So JN, Lee SJ, Kim I, Koh GY. Angiopoietin‐1 is an apoptosis survival factor for endothelial cells. FEBS Lett 1999; 448: 249–53. [DOI] [PubMed] [Google Scholar]
  • 18. Kwak HJ, Lee SJ, Lee YH, Ryu CH, Koh KN, Choi HY, Koh GY. Angiopoietin‐1 inhibits irradiation‐ and mannitol‐induced apoptosis in endothelial cells. Circulation 2000; 101: 2317–24. [DOI] [PubMed] [Google Scholar]
  • 19. Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res 1998; 82: 1111–29. [DOI] [PubMed] [Google Scholar]
  • 20. Cohen T, Gitay‐Goren H, Neufeld G, Levi BZ. High levels of biologically active vascular endothelial growth factor (VEGF) are produced by the baculovirus expression system. Growth Factors 1992; 7: 131–8. [DOI] [PubMed] [Google Scholar]
  • 21. Ogawa S, Oku A, Sawano A, Yamaguchi S, Yazaki Y, Shibuya M. A novel type of vascular endothelial growth factor, VEGF‐E (NZ‐7 VEGF), preferentially utilizes KDR/Flk‐1 receptor and carries a potent mitotic activity without heparin‐binding domain. J Biol Chem 1998; 273: 31273–82. [DOI] [PubMed] [Google Scholar]
  • 22. Takahashi T, Yamaguchi S, Chida K, Shibuya M. A single autophosphorylation site on KDR/Flk‐1 is essential for VEGF‐A‐dependent activation of PLC‐gamma and DNA synthesis in vascular endothelial cells. EMBO J 2001; 20: 2768–78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Sawano A, Iwai S, Sakurai Y, Ito M, Shitara K, Nakahata T, Shibuya M. Flt‐1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte‐macrophages in humans. Blood 2001; 97: 785–91. [DOI] [PubMed] [Google Scholar]
  • 24. Takahashi T, Ueno H, Shibuya M. VEGF activates protein kinase C‐dependent, but Ras‐independent Raf‐MEK‐MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 1999; 18: 2221–30. [DOI] [PubMed] [Google Scholar]
  • 25. Tanaka K, Yamaguchi S, Sawano A, Shibuya M. Characterization of the extracellular domain in vascular endothelial growth factor receptor‐1 (Flt‐1 tyrosine kinase). Jpn J Cancer Res 1997; 88: 867–76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Downward J. Lipid‐regulated kinases: some common themes at last. Science 1998; 279: 673–4. [DOI] [PubMed] [Google Scholar]
  • 27. Risau W. Differentiation of endothelium. FASEB J 1995; 9: 926–33. [PubMed] [Google Scholar]
  • 28. Donovan D, Brown NJ, Bishop ET, Lewis CE. Comparison of three in vitro human ‘angiogenesis’ assays with capillaries formed in vivo . Angiogenesis 2001; 4: 113–21. [DOI] [PubMed] [Google Scholar]
  • 29. Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM. Tie2 receptor ligands, angiopoietin‐1 and angiopoietin‐2, modulate VEGF‐induced postnatal neovascularization. Circ Res 1998; 83: 233–40. [DOI] [PubMed] [Google Scholar]
  • 30. Lang R, Lustig M, Francois F, Sellinger M, Plesken H. Apoptosis during macrophage‐dependent ocular tissue remodelling. Development 1994; 120: 3395–403. [DOI] [PubMed] [Google Scholar]
  • 31. Pollman MJ, Naumovski L, Gibbons GH. Endothelial cell apoptosis in capillary network remodeling. J Cell Physiol 1999; 178: 359–70. [DOI] [PubMed] [Google Scholar]
  • 32. Suzuma K, Naruse K, Suzuma I, Takahara N, Ueki K, Aiello LP, King GL. Vascular endothelial growth factor induces expression of connective tissue growth factor via KDR, Flt1, and phosphatidylinositol 3‐kinase‐akt‐dependent pathways in retinal vascular cells. J Biol Chem 2000; 275: 40725–31. [DOI] [PubMed] [Google Scholar]
  • 33. Mesri M, Morales‐Ruiz M, Ackermann EJ, Bennett CF, Pober JS, Sessa WC, Altieri DC. Suppression of vascular endothelial growth factor‐mediated endothelial cell protection by survivin targeting. Am J Pathol 2001; 158: 1757–65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O'Connor DS, Li F, Altieri DC, Sessa WC. Angiopoietin‐1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 2000; 275: 9102–5. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES