Abstract
To determine the specific gene expression in B‐cell lymphoma subtypes, we compared expression profiles of cell lines from transformed follicular lymphoma (tFL), Epstein‐Barr virus‐negative (EBV(‐)) Burkitt's lymphoma (BL) and EBV(+)BL. Complementary DNAs were synthesized from these cell lines and hybridized with the Atlas Human 1.2 Array membrane. Hierarchical clustering analysis based upon the levels of 43 genes highlighted characteristic expression patterns of the 3 lymphoma subtypes. Genes expressed at higher levels in tFL than EBV(‐)BL and EBV(+)BL included calcium/calmodulin‐dependent protein kinase I (CAMK1) and mitogen‐activated protein kinase 10 (MAPK10). EBV(‐)BL was characterized by high‐level expression of amyloid β precursor protein (APP), heat shock 27 kD protein 1 (HSPB1) and mothers against decapentaplegic homolog 1 (MADH1). Gardner‐Rasheed feline sarcoma viral oncogene homolog (FGR) was the most significant gene to delineate EBV(+)BL. A subtype prediction algorithm using 34 genes correctly classified 22 (92%) of 24 lymphomas into FL/tFL, EBV(‐)BL or EBV(+)BL. By comparison with normal reference B‐cell materials, the expression patterns of the selected genes were characteristic of lymphomas. We extended the clustering analysis to cell lines from de novo diffuse large B‐cell lymphoma (DLBCL). The DLBCL cell lines were either separated from the former 3 lymphoma subtypes or segregated with EBV(+)BL, possibly reflecting variable genetic abnormalities. The associations of CAMK1 with tFL, APP and MADH1 with EBV(‐)BL, FGR with EBV(+)BL, and BCL2 with tFL and DLBCL were confirmed by real‐time quantitative reverse transcriptase‐medizted polymerase chain reaction assays. This study has provided new molecular markers, expressions of which are closely associated with B‐cell lymphoma subtypes.
References
- 1. Ong ST, Le Beau MM. Chromosomal abnormalities and molecular genetics of non‐Hodgkin's lymphoma. Semin Oncol 1998; 25: 447–60. [PubMed] [Google Scholar]
- 2. Akasaka T, Akasaka H, Ueda C, Yonetani N, Maesako Y, Shimizu A, Yamabe H, Fukuhara S, Uchiyama T, Ohno H. Molecular and clinical features of non‐Burkitt's, diffuse large‐cell lymphoma of B‐cell type associated with the c‐MYC/immunoglobulin heavy‐chain fusion gene. J Clin Oncol 2000; 18: 510–8. [DOI] [PubMed] [Google Scholar]
- 3. Wellmann A, Thieblemont C, Pittaluga S, Sakai A, Jaffe ES, Siebert P, Raffeld M. Detection of differentially expressed genes in lymphomas using cDNA arrays: identification of clusterin as a new diagnostic marker for anaplastic large‐cell lymphomas. Blood 2000; 96: 398–404. [PubMed] [Google Scholar]
- 4. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM. Distinct types of diffuse large B‐cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–11. [DOI] [PubMed] [Google Scholar]
- 5. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Gascoyne RD, Muller‐Hermelink HK, Smeland EB, Giltnane JM, Hurt EM, Zhao H, Averett L, Yang L, Wilson WH, Jaffe ES, Simon R, Klausner RD, Powell J, Duffey PL, Longo DL, Greiner TC, Weisenburger DD, Sanger WG, Dave BJ, Lynch JC, Vose J, Armitage JO, Montserrat E, Lopez‐Guillermo A, Grogan TM, Miller TP, LeBlanc M, Ott G, Kvaloy S, Delabie J, Holte H, Krajci P, Stokke T, Staudt LM. The use of molecular profiling to predict survival after chemotherapy for diffuse large‐B‐cell lymphoma. N Engl JMed 2002; 346: 1937–47. [DOI] [PubMed] [Google Scholar]
- 6. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister TA, Mesirov J, Neuberg DS, Lander ES, Aster JC, Golub TR. Diffuse large B‐cell lymphoma outcome prediction by gene‐expression profiling and supervised machine learning. Nat Med 2002; 8: 68–74. [DOI] [PubMed] [Google Scholar]
- 7. Zhang W, Laborde PM, Coombes KR, Berry DA, Hamilton SR. Cancer genomics: promises and complexities. Clin Cancer Res 2001; 7: 2159–67. [PubMed] [Google Scholar]
- 8. Akasaka T, Muramatsu M, Kadowaki N, Ohno H, Ishizaki K, Yamabe H, Fukuhara S, Okuma M. p53 mutation in B‐cell lymphoid neoplasms with reference to oncogene rearrangements associated with chromosomal translocations. Jpn J Cancer Res 1996; 87: 930–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Akasaka T, Akasaka H, Ohno H. Polymerase chain reaction amplification of long DNA targets: application to analysis of chromosomal translocations in human B‐cell tumors (Review). Int J Oncol 1998; 12: 113–21. [DOI] [PubMed] [Google Scholar]
- 10. Arpin C, Dechanet J, Van Kooten C, Merville P, Grouard G, Briere F, Banchereau J, Liu YJ. Generation of memory B cells and plasma cells in vitro . Science 1995; 268: 720–2. [DOI] [PubMed] [Google Scholar]
- 11. Akasaka H, Akasaka T, Kurata M, Ueda C, Shimizu A, Uchiyama T, Ohno H. Molecular anatomy of BCL6 translocations revealed by long‐distance polymerase chain reaction‐based assays. Cancer Res 2000; 60: 2335–41. [PubMed] [Google Scholar]
- 12. Doi S, Ohno H, Tatsumi E, Arita Y, Kamesaki H, Fukuhara S, Nishikori M, Miwa H, Kita K, Hatanaka M, Honjo T, Fujii H, Uchino H. Lymphoma cell line (FL‐18) and Epstein‐Barr virus‐carrying cell line (FL‐18‐EB) obtained from a patient with follicular lymphoma: monoclonal derivation and different properties. Blood 1987; 70: 1619–23. [PubMed] [Google Scholar]
- 13. Ueda C, Akasaka T, Kurata M, Maesako Y, Nishikori M, Ichinohasama R, Imada K, Uchiyama T, Ohno H. The gene for interleukin‐21 receptor is the partner of BCL6 in t(3;16)(q27;p11), which is recurrently observed in diffuse large B‐cell lymphoma. Oncogene 2002; 21: 368–76. [DOI] [PubMed] [Google Scholar]
- 14. Yonetani N, Ueda C, Akasaka T, Nishikori M, Uchiyama T, Ohno H. Heterogeneous breakpoints on the immunoglobulin genes are involved in fusion with the 5′ region of BCL2 in B‐cell tumors. Jpn J Cancer Res 2001; 92: 933–40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Morrison AM, Jager U, Chott A, Schebesta M, Haas OA, Busslinger M. Deregulated PAX‐5 transcription from a translocated IgH promoter in marginal zone lymphoma. Blood 1998; 92: 3865–78. [PubMed] [Google Scholar]
- 16. Nishikori M, Hansen H, Jhanwar S, Fried J, Sordillo P, Koziner B, Lloyd K, Clarkson B. Establishment of a near‐tetraploid B‐cell lymphoma line with duplication of the 8;14 translocation. Cancer Genet Cytogenet 1984; 12: 39–50. [DOI] [PubMed] [Google Scholar]
- 17. Cheah MS, Ley TJ, Tronick SR, Robbins KC. fgr proto‐oncogene mRNA induced in B lymphocytes by Epstein‐Barr virus infection. Nature 1986; 319: 238–40. [DOI] [PubMed] [Google Scholar]
- 18. Klein C, Busson P, Tursz T, Young LS, Raab‐Traub N. Expression of the c‐fgr related transcripts in Epstein‐Barr virus‐associated malignancies. Int J Cancer 1988; 42: 29–35. [DOI] [PubMed] [Google Scholar]
- 19. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller‐Hill B. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell‐surface receptor. Nature 1987; 325: 733–6. [DOI] [PubMed] [Google Scholar]
- 20. Li QX, Fuller SJ, Beyreuther K, Masters CL. The amyloid precursor protein of Alzheimer disease in human brain and blood. J Leukoc Biol 1999; 66: 567–74. [DOI] [PubMed] [Google Scholar]
- 21. Ledoux S, Rebai N, Dagenais A, Shaw IT, Nalbantoglu J, Sekaly RP, Cashman NR. Amyloid precursor protein in peripheral mononuclear cells is up‐regulated with cell activation. J Immunol 1993; 150: 5566–75. [PubMed] [Google Scholar]
- 22. Monning U, Konig G, Banati RB, Mechler H, Czech C, Gehrmann J, Schreiter‐Gasser U, Masters CL, Beyreuther K. Alzheimer βA4‐amyloid protein precursor in immunocompetent cells. J Biol Chem 1992; 267: 23950–6. [PubMed] [Google Scholar]
- 23. Bullido MJ, Munoz‐Fernandez MA, Recuero M, Fresno M, Valdivieso E Alzheimer's amyloid precursor protein is expressed on the surface of hematopoietic cells upon activation. Biochim Biophys Acta 1996; 1313: 54–62. [DOI] [PubMed] [Google Scholar]
- 24. Monning U, Konig G, Prior R, Mechler H, Schreiter‐Gasser U, Masters CL, Beyreuther K. Synthesis and secretion of Alzheimer amyloid βA4 precursor protein by stimulated human peripheral blood leucocytes. FEBS Lett 1990; 277: 261–6. [DOI] [PubMed] [Google Scholar]
- 25. Schubert D, Jin LW, Saitoh T, Cole G. The regulation of amyloid beta protein precursor secretion and its modulatory role in cell adhesion. Neuron 1989; 3: 689–94. [DOI] [PubMed] [Google Scholar]
- 26. Miyazaki K, Hasegawa M, Funahashi K, Umeda M. A metalloproteinase inhibitor domain in Alzheimer amyloid protein precursor. Nature 1993; 362: 839–41. [DOI] [PubMed] [Google Scholar]
- 27. Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF‐β responses. Cell 1998; 95: 737–40. [DOI] [PubMed] [Google Scholar]
- 28. Saltzman A, Munro R, Searfoss G, Franks C, Jaye M, Ivashchenko Y. Transforming growth factor‐β‐mediated apoptosis in the Ramos B‐lymphoma cell line is accompanied by caspase activation and Bcl‐XL downregulation. Exp Cell Res 1998; 242: 244–54. [DOI] [PubMed] [Google Scholar]
- 29. Inman GJ, Allday MJ. Resistance to TGF‐β1 correlates with a reduction of TGF‐β type II receptor expression in Burkitt's lymphoma and Epstein‐Barr virus‐transformed B lymphoblastoid cell lines. J Gen Virol 2000; 81: 1567–78. [DOI] [PubMed] [Google Scholar]
- 30. Means AR. Regulatory cascades involving calmodulin‐dependent protein kinases. Mol Endocrinol 2000; 14: 4–13. [DOI] [PubMed] [Google Scholar]
- 31. Nghiem P, Ollick T, Gardner P, Schulman H. Interleukin‐2 transcriptional block by multifunctional Ca2+/calmodulin kinase. Nature 1994; 371: 347–50. [DOI] [PubMed] [Google Scholar]
- 32. Corcoran EE, Means AR. Defining Ca2+/calmodulin‐dependent protein kinase cascades in transcriptional regulation. J Biol Chem 2001; 276: 2975–8. [DOI] [PubMed] [Google Scholar]
- 33. Cleary ML. Oncogenic conversion of transcription factors by chromosomal translocations. Cell 1991; 66: 619–22. [DOI] [PubMed] [Google Scholar]