Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;94(11):960–964. doi: 10.1111/j.1349-7006.2003.tb01385.x

Dose‐dependent suppression of hyperlipidemia and intestinal polyp formation in Min mice by pioglitazone, a PPARγ ligand

Naoko Niho 1,, Mami Takahashi 1, Yutaka Shoji 1, Yoshito Takeuchi 1, Satoshi Matsubara 1, Takashi Sugimura 1, Keiji Wakabayashi 1
PMCID: PMC11160263  PMID: 14611672

Abstract

In our previous study, a peroxisome proliferator‐activated receptor γ (PPARγ) agonist, pioglitazone, suppressed both hyperlipidemia and intestinal polyp formation in Apc 1309 mice at doses of 100 and 200 ppm in the diet. In contrast, it has been reported that doses of 1500 or 2000 ppm of another PPARγ agonist, troglitazone, enhanced colon polyp development in Min mice. In the present study, we therefore investigated the effects of a wide range of pioglitazone doses on both hyperlipidemia and intestinal polyp formation in Min mice. Serum triglycerides and very low density lipoprotein (VLDL) cholesterol in the basal diet group were elevated to levels 13–15 times higher than those in the wild‐type counterparts at 20 weeks of age. They were reduced dose‐dependently by treatment with 100, 200, 400 and 1600 ppm pioglitazone from 6–20 weeks of age with suppression to almost the wild‐type level at the highest dose. Moreover, up‐regulation of the liver mRNA levels for lipoprotein lipase (LPL) was evident in the pioglitazone‐treated animals. Dose‐dependent reduction of intestinal polyps was observed in Min mice given 100–1600 ppm for 14 weeks, total numbers being decreased to 63–9% of the control value. A suppressive effect of pioglitazone on colon polyp formation was also found. The PPARγ agonist, pioglitazone, may thus be a promising candidate chemopreventive agent for colon cancer.

References

  • 1. Bruce WR, Wolever TM, Giacca A. Mechanisms linking diet and colorectal cancer: the possible role of insulin resistance. Nutr Cancer 2000; 37: 19–26. [DOI] [PubMed] [Google Scholar]
  • 2. McKeown‐Eyssen G. Epidemiology of colorectal cancer revisited: are serum triglycerides and/or plasma glucose associated with risk Cancer Epidemiol Biomarkers Prev 1994; 3: 687–95. [PubMed] [Google Scholar]
  • 3. Yamada K, Araki S, Tamura M, Sakai I, Takahashi Y, Kashihara H, Kono S. Relation of serum total cholesterol, serum triglycerides and fasting plasma glucose to colorectal carcinoma in situ . Int J Epidemiol 1998; 27: 794–8. [DOI] [PubMed] [Google Scholar]
  • 4. Niho N, Takahashi M, Kitamura T, Shoji Y, Itoh M, Noda T, Sugimura T, Wakabayashi K. Concomitant suppression of hyperlipidemia and intestinal polyp formation in Apc‐deficient mice by peroxisome proliferator‐activated receptor ligands. Cancer Res 2003; 63: 6090–5. [PubMed] [Google Scholar]
  • 5. Quesada CF, Kimata H, Mori M, Nishimura M, Tsuneyoshi T, Baba S. Piroxicam and acarbose as chemopreventive agents for spontaneous intestinal adenomas in APC gene 1309 knockout mice. Jpn J Cancer Res 1998; 89: 392–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 1990; 247: 322–4. [DOI] [PubMed] [Google Scholar]
  • 7. Schoonjans K, Staels B, Auwerx J. The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1996; 1302: 93–109. [DOI] [PubMed] [Google Scholar]
  • 8. Rosen ED, Spiegelman BM. PPARγ: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 2001; 276: 37731–4. [DOI] [PubMed] [Google Scholar]
  • 9. Sakamoto J, Kimura H, Moriyama S, Odaka H, Momose Y, Sugiyama Y, Sawada H. Activation of human peroxisome proliferator‐activated receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Commun 2000; 278: 704–11. [DOI] [PubMed] [Google Scholar]
  • 10. Sohda T, Momose Y, Meguro K, Kawamatsu Y, Sugiyama Y, Ikeda H. Studies on antidiabetic agents. Synthesis of hypoglycemic activity of 5‐[4‐(pyridylalkoxy)benzyl]‐2,4‐thiazolidinediones. Arzneimittelforschung 1990; 40: 37–42. [PubMed] [Google Scholar]
  • 11. Ikeda H, Taketomi S, Sugiyama Y, Shimura Y, Sohda T, Meguro K, Fujita T. Effects of pioglitazone on glucose and lipid metabolism in normal and insulin resistant animals. Arzneimittelforschung 1990; 40: 156–62. [PubMed] [Google Scholar]
  • 12. Rumi MA, Sato H, Ishihara S, Kawashima K, Hamamoto S, Kazumori H, Okuyama T, Fukuda R, Nagasue N, Kinoshita Y. Peroxisome proliferator‐activated receptor γ ligand‐induced growth inhibition of human hepatocellular carcinoma. Br J Cancer 2001; 84: 1640–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Rumi MA, Sato H, Ishihara S, Ortega C, Kadowaki Y, Kinoshita Y. Growth inhibition of esophageal squamous carcinoma cells by peroxisome proliferator‐activated receptor γ ligands. J Lab Clin Med 2002; 140: 17–26. [DOI] [PubMed] [Google Scholar]
  • 14. Itami A, Watanabe G, Shimada‐Itami A, Watanabe G, Shimada Y, Hashimoto Y, Kawamura J, Kato M, Hosotani R, Imamura M. Ligands for peroxisome proliferator‐activated receptor γ inhibit growth of pancreatic cancers both in vitro and in vivo . Int J Cancer 2001; 94: 370–6. [DOI] [PubMed] [Google Scholar]
  • 15. Takahashi N, Okumura T, Motomura W, Fujimoto Y, Kawabata I, Kohgo Y. Activation of PPARγ inhibits cell growth and induces apoptosis in human gastric cancer cells. FEBS Lett 1999; 455: 135–9. [DOI] [PubMed] [Google Scholar]
  • 16. Tanaka T, Kohno H, Yoshitani S, Takashima S, Okumura A, Murakami A, Hosokawa M. Ligands for peroxisome proliferator‐activated receptors α and γ inhibit chemically induced colitis and formation of aberrant crypt foci in rats. Cancer Res 2001; 61: 2424–8. [PubMed] [Google Scholar]
  • 17. Lefebvre AM, Chen I, Desreumaux P, Najib J, Fruchart JC, Geboes K, Briggs M, Heyman R, Auwerx J. Activation of the peroxisome proliferator‐activated receptor γ promotes the development of colon tumors in C57BL/6J‐APC Min /+ mice. Nat Med 1998; 4: 1053–7. [DOI] [PubMed] [Google Scholar]
  • 18. Saez E, Tontonoz P, Nelson MC, Alvarez JG, Ming UT, Baird SM, Thomazy VA, Evans RM. Activators of the nuclear receptor PPARγ enhance colon polyp formation. Nat Med 1998; 4: 1058–61. [DOI] [PubMed] [Google Scholar]
  • 19. Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C, Gould KA, Dove WF. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 1992; 256: 668–70. [DOI] [PubMed] [Google Scholar]
  • 20. Usui S, Nakamura M, Jitsukata K, Preisinger AC, Nara M, Luongo C, Hosaki S, Okazaki M. Assessment of between‐instrument variations in a HPLC method for serum lipoproteins and its traceability to reference methods for total cholesterol and HDL‐cholesterol. Clin Chem 2000; 46: 63–72. [PubMed] [Google Scholar]
  • 21. Watanabe K, Kawamori T, Nakatsugi S, Ohta T, Ohuchida S, Yamamoto H, Maruyama T, Kondo K, Ushikubi F, Narumiya S, Sugimura T, Wakabayashi K. Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res 1999: 59: 5093–6. [PubMed] [Google Scholar]
  • 22. Shimano H, Horton JD, Hammer RE, Shimomura I, Brown MS, Goldstein JL. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP‐1a. J Clin Invest 1996; 98: 1575–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Chen C. Troglitazone: an antidiabetic agent. Am J Health Syst Pharm 1998; 55: 905–25. [DOI] [PubMed] [Google Scholar]
  • 24. Petersen KU. From toxic precursors to safe drugs. Mechanisms and relevance of idiosyncratic drug reactions. Arzneimittelforschung 2002; 52: 423–9. [DOI] [PubMed] [Google Scholar]
  • 25. Tettey JN, Maggs JL, Rapeport WG, Pirmohamed M, Park BK. Enzyme‐induction dependent bioactivation of troglitazone and troglitazone quinone in vivo . Chem Res Toxicol 2001; 14: 965–74. [DOI] [PubMed] [Google Scholar]
  • 26. Gillies PS, Dunn CJ. Pioglitazone. Drugs 2000; 60: 333–43. [DOI] [PubMed] [Google Scholar]
  • 27. Bayerdorffer E, Mannes GA, Richter WO, Ochsenkuhn T, Seeholzer G, Kopcke W, Wiebecke B, Paumgartner G. Decreased high‐density lipoprotein cholesterol and increased low‐density cholesterol levels in patients with colorectal adenomas. Ann Intern Med 1993; 118: 481–7. [DOI] [PubMed] [Google Scholar]
  • 28. Chawla A, Lee CH, Barak Y, He W, Rosenfeld J, Liao D, Han J, Kang H, Evans RM. PPARδ is a very low‐density lipoprotein sensor in macrophages. Proc Natl Acad Sci USA 2003; 100: 1268–73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Gupta RA, Tan J, Krause WF, Geraci MW, Willson TM, Dey SK, DuBois RN. Prostacyclin‐mediated activation of peroxisome proliferator‐activated receptor δ in colorectal cancer. Proc Natl Acad Sci USA 2000; 97: 13275–80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA. Inhibition of adipogenesis by Wnt signaling. Science 2000; 289: 950–3. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES