Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;94(11):937–943. doi: 10.1111/j.1349-7006.2003.tb01381.x

The roles of hepatitis C virus proteins in modulation of cellular functions: A novel action mechanism of the HCV core protein on gene regulation by nuclear hormone receptors

Koichi Watashi 1, Kunitada Shimotohno 1,
PMCID: PMC11160276  PMID: 14611668

Abstract

Hepatitis C virus (HCV) is one of the major causative agents inducing the development of hepatocellular carcinoma. The underlying mechanism of HCV pathogenesis, however, is largely unknown. Recent reports have implicated specific HCV proteins in persistent HCV infection, reduction of interferon sensitivity, and the modulation of cell proliferation, including alterations in apoptotic responses. However, the roles of these viral proteins remain controversial, because of conflicting results. Thus, it remains necessary to elucidate the precise molecular mechanisms through which the viral proteins influence cell growth and pathogenesis. In this review, after briefly describing what is known about the roles of the HCV proteins, in particular HCV core protein (core), in the modulation of cellular functions, we propose a novel molecular mechanism of the core in modulating gene expression via activation of nuclear hormone receptors.

References

  • 1. Rosa D, Campagnoli S, Moretto C, Guenzi E, Cousens L, Chin M, Dong C, Weiner AJ, Lau JY, Choo QL, Chien D, Pileri P, Houghton M, Abrignani S. A quantitative test to estimate neutralizing antibodies to the hepatitis C virus: cytofluorimetric assessment of envelope glycoprotein 2 binding to target cells. Proc Natl Acad Sci USA 1996; 93: 1759–63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Cerny A, Chisari FV. Pathogenesis of chronic hepatitis C: immunological features of hepatic injury and viral persistence. Hepatology 1999; 30: 595–601. [DOI] [PubMed] [Google Scholar]
  • 3. Hiasa Y, Horiike N, Akbar SM, Saito I, Miyamura T, Matsuura Y, Onji M. Low stimulatory capacity of lymphoid dendritic cells expressing hepatitis C virus genes. Biochem Biophys Res Commun 1998; 249: 90–5. [DOI] [PubMed] [Google Scholar]
  • 4. Kanto T, Hayashi N, Takehara T, Tatsumi T, Kuzushita N, Ito A, Sasaki Y, Kasahara A, Hori M. Impaired allostimulatory capacity of peripheral blood dendritic cells recovered from hepatitis C virus‐infected individuals. J Immunol 1999; 162: 5584–91. [PubMed] [Google Scholar]
  • 5. Large MK, Kittlesen DJ, Hahn YS. Suppression of host immune response by the core protein of hepatitis C virus: possible implications for hepatitis C virus persistence. J Immunol 1999; 162: 931–8. [PubMed] [Google Scholar]
  • 6. Fukuma T, Enomoto N, Marumo F, Sato C. Mutations in the interferon‐sensitivity determining region of hepatitis C virus and transcriptional activity of the nonstructural region 5A protein. Hepatology 1998; 28: 1147–53. [DOI] [PubMed] [Google Scholar]
  • 7. Tan SL, Katze MG. How hepatitis C virus counteracts the interferon response: the jury is still out on NS5A. Virology 2001; 284: 1–12. [DOI] [PubMed] [Google Scholar]
  • 8. Taylor DR, Shi ST, Romano PR, Barber GN, Lai MM. Inhibition of the interferon‐inducible protein kinase PKR by HCV E2 protein. Science 1999; 285: 107–10. [DOI] [PubMed] [Google Scholar]
  • 9. Walewski JL, Keller TR, Stump DD, Branch AD. Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame. RNA 2001; 7: 710–21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Pavlovic D, Neville DC, Argaud O, Blumberg B, Dwek RA, Fischer WB, Zitzmann N. The hepatitis C virus p7 protein forms an ion channel that is inhibited by long‐alkyl‐chain iminosugar derivatives. Proc Natl Acad Sci USA 2003; 100: 6104–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Lohmann V, Korner F, Koch J, Herian U, Theilmann L, Bartenschlager R. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 1999; 285: 110–3. [DOI] [PubMed] [Google Scholar]
  • 12. Egger D, Wolk B, Gosert R, Bianchi L, Blum HE, Moradpour D, Bienz K. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 2002; 76: 5974–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Tellinghuisen TL, Rice CM. Interaction between hepatitis C virus proteins and host cell factors. Curr Opin Microbiol 2002; 5: 419–27. [DOI] [PubMed] [Google Scholar]
  • 14. Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, Kimura S, Miyamura T, Koike K. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 1998; 4: 1065–7. [DOI] [PubMed] [Google Scholar]
  • 15. Okuda M, Li K, Beard MR, Showalter LA, Scholle F, Lemon SM, Weinman SA. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 2002; 122: 366–75. [DOI] [PubMed] [Google Scholar]
  • 16. Dubuisson J. The role of chaperone proteins in the assembly of envelope proteins of hepatitis C virus. Bull Mem Acad R Med Belg 1998; 153: 343–9. [PubMed] [Google Scholar]
  • 17. Sakamuro D, Furukawa T, Takegami T. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells. J Virol 1995; 69: 3893–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Ishido S, Hotta H. Complex formation of the nonstructural protein 3 of hepatitis C virus with the p53 tumor suppressor. FEBS Lett 1998; 438: 258–62. [DOI] [PubMed] [Google Scholar]
  • 19. Borowski P, Kuhl R, Laufs R, Schulze zur Wiesch J, Heiland M. Identification and characterization of a histone binding site of the non‐structural protein 3 of hepatitis C virus. J Clin Virol 1999; 13: 61–9. [DOI] [PubMed] [Google Scholar]
  • 20. Errington W, Wardell AD, McDonald S, Goldin RD, McGarvey MJ. Subcellular localisation of NS3 in HCV‐infected hepatocytes. J Med Virol 1999; 59: 456–62. [DOI] [PubMed] [Google Scholar]
  • 21. Polyak SJ, Khabar KSA, Paschal DM, Ezelle HJ, Duverlie G, Barber GN, Levy DE, Mukaida N, Gretch DR. Hepatitis C virus nonstructural 5A protein induces interleukin‐8, leading to partial inhibition of the interferon‐induced antiviral response. J Virol 2001; 75: 6095–106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Yasui K, Wakita T, Tsukiyama‐Kohara K, Funahashi SI, Ichikawa M, Kajita T, Moradpour D, Wands JR, Kohara M. The native form and maturation process of hepatitis C virus core protein. J Virol 1998; 72: 6048–55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. McLauchlan J. Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J Viral Hepat 2000; 7: 2–14. [DOI] [PubMed] [Google Scholar]
  • 24. Lo SY, Selby M, Tong M, Ou JH. Comparative studies of the core gene products of two different hepatitis C virus isolates: two alternative forms determined by a single amino acid substitution. Virology 1994; 199: 124–31. [DOI] [PubMed] [Google Scholar]
  • 25. Marusawa H, Hijikata M, Chiba T, Shimotohno K. Hepatitis C virus core protein inhibits Fas‐ and tumor necrosis factor alpha‐mediated apoptosis via NF‐kappaB activation. J Virol 1999; 73: 4713–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Watashi K, Hijikata M, Marusawa H, Doi T, Shimotohno K. Cytoplasmic localization is important for transcription factor nuclear factor‐kappa B activation by hepatitis C virus core protein through its amino terminal region. Virology 2001; 286: 391–402. [DOI] [PubMed] [Google Scholar]
  • 27. Chen CM, You LR, Hwang LH, Lee YH. Direct interaction of hepatitis C virus core protein with the cellular lymphotoxin‐beta receptor modulates the signal pathway of the lymphotoxin‐beta receptor. J Virol 1997; 71: 9417–26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Zhu N, Khoshnan A, Schneider R, Matsumoto M, Dennert G, Ware C, Lai MM. Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF) receptor 1 and enhances TNF‐induced apoptosis. J Virol 1998; 72: 3691–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Watashi K, Hijikata M, Tagawa A, Doi T, Shimotohno K. Modulation of retinoid signaling by a cytoplasmic viral protein via sequestration of Sp110b, a potent transcriptional corepressor of RAR, from the nucleus. Mol Cell Biol 2003; 23: 7498–509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Ray RB, Lagging LM, Meyer K, Ray R. Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype. J Virol 1996; 70: 4438–43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Chang J, Yang SH, Cho YG, Hwang SB, Hahn YS, Sung YC. Hepatitis C virus core from two different genotypes has an oncogenic potential but is not sufficient for transforming primary rat embryo fibroblasts in cooperation with the H‐ras oncogene. J Virol 1998; 72: 3060–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Yoshida T, Hanada T, Tokuhisa T, Kosai K, Sata M, Kohara M, Yoshimura A. Activation of STAT3 by the hepatitis C virus core protein leads to cellular transformation. J Exp Med 2002; 196: 641–53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Moriya K, Nakagawa K, Santa T, Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Miyazawa T, Ishibashi K, Horie T, Imai K, Todoroki T, Kimura S, Koike K. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus‐associated hepatocarcinogenesis. Cancer Res 2001; 61: 4365–70. [PubMed] [Google Scholar]
  • 34. Ishikawa T, Shibuya K, Yasui K, Mitamura K, Ueda S. Expression of hepatitis C virus core protein associated with malignant lymphoma in transgenic mice. Comp Immunol Microbiol Infect Dis 2003; 26: 115–24. [DOI] [PubMed] [Google Scholar]
  • 35. Moriya K, Yotsuyanagi H, Shintani Y, Fujie H, Ishibashi K, Matsuura Y, Miyamura T, Koike K. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol 1997; 78: 1527–31. [DOI] [PubMed] [Google Scholar]
  • 36. Barba G, Harper F, Harada T, Kohara M, Goulinet S, Matsuura Y, Eder G, Schaff Z, Chapman MJ, Miyamura T, Brechot C. Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc Natl Acad Sci USA 1997; 94: 1200–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Ray RB, Lagging LM, Meyer K, Steele R, Ray R. Transcriptional regulation of cellular and viral promoters by the hepatitis C virus core protein. Virus Res 1995; 37: 209–20. [DOI] [PubMed] [Google Scholar]
  • 38. Kittlesen DJ, Chianese‐Bullock KA, Yao ZQ, Braciale TJ, Hahn YS. Interaction between complement receptor gC1qR and hepatitis C virus core protein inhibits T‐lymphocyte proliferation. J Clin Invest 2000; 106: 1239–49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Bloch DB, Nakajima A, Gulick T, Chiche JD, Orth D, de La Monte SM, Bloch KD. Sp110 localizes to the PML‐Sp100 nuclear body and may function as a nuclear hormone receptor transcriptional coactivator. Mol Cell Biol 2000; 20: 6138–46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Baer HU, Friess H, Abou‐Shady M, Berberat P, Zimmermann A, Gold LI, Korc M, Buchler MW. Transforming growth factor betas and their receptors in human liver cirrhosis. Eur J Gastroenterol Hepatol 1998; 10: 1031–9. [DOI] [PubMed] [Google Scholar]
  • 41. Edamoto Y, Hara A, Biernat W, Terracciano L, Cathomas G, Riehle HM, Matsuda M, Fujii H, Scoazec JY, Ohgaki H. Alterations of RB1, p53 and Wnt pathways in hepatocellular carcinomas associated with hepatitis C, hepatitis B and alcoholic liver cirrhosis. Int J Cancer 2003; 106: 334–41. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES