Abstract
Malignant rhabdoid tumor (MRT) has been considered to have multiphenotypic diversity characteristics. Some MRTs exhibit a neural phenotype. However, it is still unclear whether MRT cells can display a skeletal muscle, smooth muscle or smooth muscle‐like cell phenotype, like those of pericytes and mesangial cells. To determine if MRTs exhibit skeletal muscle cell or smooth muscle‐like cell phenotypes, six MRT cell lines (TM87‐16, STM91‐01, TTC549, TTC642, YAM‐RTK1 and TTC1240) were examined for markers of skeletal muscle (MyoD, myogenin, myf‐5, myf‐6, acetylcholine receptor‐α, ‐β and ‐γ), smooth muscle (α‐smooth muscle actin, SM‐1 and SM22), and smooth muscle‐like cells, such as pericytes (angiopoietin‐1 and ‐2) and mesangial cells (megsin), using conventional RT‐PCR, semi‐quantitative PCR, western blotting and immunocytochemistry before and after differentiation‐induction with 5‐azacytidine. α‐Smooth muscle actin and SM22 were detected in all six MRT cell lines, while MyoD and myf‐5, crucial markers for skeletal myogenic determination, were not. The TM87‐16 cell line expressed SM‐1 and angiopoietin‐1. TTC1240 also expressed angiopoietin‐1. Interestingly, STM91‐01 expressed megsin, a novel marker for mesangial cells, in addition to angiopoietin‐1. Our results indicated that some MRTs exhibited smooth muscle and/or smooth muscle‐like cell phenotypes and some renal MRTs might be of mesangial origin. Recently, smooth muscle and also smooth muscle‐like cells have been considered to be of neuroectodermal origin. MRT can thus considered to belong to the category of primitive neuroectodermal tumors (PNETs) in the broad sense.
References
- 1. Wick MR, Ritter JH, Dehner LP. Malignant rhabdoid tumors: a clinicopathologic review and conceptual discussion. Semin Diagn Pathol 1995; 12: 233–48. [PubMed] [Google Scholar]
- 2. Ogino S, Ro JY, Redline RW. Malignant rhabdoid tumor: a phenotype? An entity?—a controversy revisited. Adv Anat Pathol 2000; 7: 181–90. [DOI] [PubMed] [Google Scholar]
- 3. Ota S, Crabbe DCG, Tran TN, Triche TJ, Shimada H. Malignant rhabdoid tumor: a study with two established cell lines. Cancer 1993; 71: 2862–72. [DOI] [PubMed] [Google Scholar]
- 4. Garcia‐Bustinduy M, Alvarez‐Arguelles H, Guimera F, Garcia‐Castro C, Sanchez‐Gonzalez R, Hernandez N, Diaz‐Flores L, Garcia‐Montelongo R. Malignant rhabdoid tumor beside benign skin mesenchymal neoplasm with myofibromatous features. J Cutan Pathol 1999; 26: 509–15. [DOI] [PubMed] [Google Scholar]
- 5. Bergmann M, Sppaar HJ, Ebhard G, Masini T, Edel G, Gullotta F, Meyer H. Primary malignant rhabdoid tumours of the central nervous system: an immunohistochemical and ultrastructural study. Acta Neurochir 1997; 139: 961–9. [DOI] [PubMed] [Google Scholar]
- 6. Parham DM, Weeks DA, Beckwith JB. The clinicopathologic spectrum of putative extrarenal rhabdoid tumor. An analysis of 42 cases studied with immunohistochemistry or electron microscopy. Am J Surg Pathol 1994; 18: 1010–29. [DOI] [PubMed] [Google Scholar]
- 7. Tsokos M, Kouraklis G, Chandra RS, Bhagavan BS, Triche TJ. Malignant rhabdoid tumor of the kidney and soft tissues. Evidence for a diverse morphological and immunocytochemical phenotype. Arch Pathol Lab Med 1989; 113: 115–20. [PubMed] [Google Scholar]
- 8. Fung CH, Gonzalez‐Crussi F, Yonan TN, Martinez N. 'Rhabdoid' Wilms' tumor: an ultrastructural study. Arch Pathol Lab Med 1981; 105: 521–3. [PubMed] [Google Scholar]
- 9. Haas JE, Palmer NF, Weinberg AG, Beckwith JB. Ultrastructure of malignant rhabdoid tumor of the kidney. A distinctive renal tumor of children. Hum Pathol 1981; 12: 646–57. [DOI] [PubMed] [Google Scholar]
- 10. Suzuki A, Ota S, Shimada M. Gene expression of malignant rhabdoid tumor cell lines by reverse transcriptase‐polymerase chain reaction. Diagn Mol Pathol 1998; 6: 326–32. [DOI] [PubMed] [Google Scholar]
- 11. Biegel JA, Allen CS, Kawasaki K, Shimizu N, Budarf ML, Bell CJ. Narrowing the critical region for a rhabdoid tumor locus in 22q11. Genes Chromosom Cancer 1996; 16: 94–105. [DOI] [PubMed] [Google Scholar]
- 12. Schofield DE, Beckwith JB, Sklar J. Loss of heterozygosity at chromosome regions 22q11–12 and 11p15.5 in renal rhabdoid tumors. Genes Chromosom Cancer 1996; 15: 10–7. [DOI] [PubMed] [Google Scholar]
- 13. Versteege I, Sevenet N, Lange J, Rousseau‐Merck MF, Ambros P, Hand‐gretinger R, Aurias A, Delattre O. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 1998; 394: 203–6. [DOI] [PubMed] [Google Scholar]
- 14. Gonzalez‐Crussi F, Goldschmidt RA, Hsueh W, Trujillo YP. Infantile sarcoma with intracytoplasmic filamentous inclusions: distinctive tumor of possible histiocytic origin. Cancer 1982; 49: 2365–75. [DOI] [PubMed] [Google Scholar]
- 15. Bonnin JM, Rubinstein LJ, Palmer NF, Beckwith JB. The association of embryonal tumors originating in the kidney and in the brain. A report of seven cases. Cancer 1984; 54: 2137–46. [DOI] [PubMed] [Google Scholar]
- 16. Parham DM, Peiper SC, Robicheaux G, Ribeiro RC, Douglass EC. Malignant rhabdoid tumor of the liver. Evidence for epithelial differentiation. Arch Pathol Lab Med 1988; 112: 61–4. [PubMed] [Google Scholar]
- 17. Narita T, Taga T, Sugita K, Nakagawa S, Ohta S. The autocrine loop of epidermal growth factor receptor‐epidermal growth factor/transforming growth factor‐α in malignant rhabdoid tumor cell lines: heterogeneity of autocrine mechanism in TTC549. Jpn J Cancer Res 2001; 92: 269–78. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Higashino K, Narita T, Taga T, Ohta S, Takeuchi Y. Malignant rhabdoid tumor shows a unique neural differentiation as distinct from neuroblastoma. Cancer Sci 2003; 94: 37–42. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Yoshida S, Narita T, Taga T, Ohta S, Takeuchi Y. Malignant rhabdoid tumor shows incomplete neural characteristics as revealed by expression of SNARE complex. J Neurosci Res 2002; 69: 642–52. [DOI] [PubMed] [Google Scholar]
- 20. Koshida S, Narita T, Kato H, Yoshida S, Taga T, Ohta S, Takeuchi Y. Estrogen receptor expression and estrogen receptor‐independent cytotoxic effects of tamoxifen on malignant rhabdoid tumor cells in vitro . Jpn J Cancer Res 2002; 93: 1351–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Sugimoto T, Hosoi H, Horii Y, Ishida H, Mine H, Takahashi K, Abe T, Ota S, Sawada T. Malignant rhabdoid‐tumor cell line showing neural and smooth‐muscle‐cell phenotypes. Int J Cancer 1999; 82: 678–86. [DOI] [PubMed] [Google Scholar]
- 22. Uno K, Takita J, Yokomori K, Tanaka Y, Ohta S, Shimada H, Gilles FH, Sugita K, Abe S, Sako M, Hashizume K, Hayashi Y. Aberrations of the hSNF5/INI1 gene are restricted to malignant rhabdoid tumors or atypical teratoid/rhabdoid tumors in pediatric solid tumors. Genes Chromosom Cancer 2002; 34: 33–41. [DOI] [PubMed] [Google Scholar]
- 23. Lollini PL, De Giovanni C, Del Re B, Landuzzi L, Nicoletti G, Prodi G, Scotlandi K, Nanni P. Myogenic differentiation of human rhabdomyosarcoma cells induced in vitro by antineoplastic drugs. Cancer Res 1989; 49: 3631–6. [PubMed] [Google Scholar]
- 24. Horwitz M. Hypermethylated myoblasts specifically deficient in MyoD autoactivation as a consequence of instability of MyoD. Exp Cell Res 1996; 226: 170–82. [DOI] [PubMed] [Google Scholar]
- 25. Steahelin F, Bissig H, Hosli I, Betts DR, Schafer BW, Scholl FA, Holzgreve W, Kuhne T. Inv (11)(p13p15) and myf‐3 (MyoD1) in a malignant extrarenal rhabdoid tumor of a premature newborn. Pediatr Res 2000; 48: 463–7. [DOI] [PubMed] [Google Scholar]
- 26. Constantinides PG, Jones PA, Gevers W. Functional striated muscle cells from nonmyoblast precursors following 5‐azacytidine treatment. Nature 1977; 267: 364–6. [DOI] [PubMed] [Google Scholar]
- 27. Taylor SM, Jones PA. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5‐azacytidine. Cell 1979; 17: 771–9. [DOI] [PubMed] [Google Scholar]
- 28. Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5‐azacytidine. Muscle Nerve 1995; 18: 1417–26. [DOI] [PubMed] [Google Scholar]
- 29. Perry RL, Rudnickm MA. Molecular mechanisms regulating myogenic determination and differentiation. Front Biosci 2000; 5: D750–67. [DOI] [PubMed] [Google Scholar]
- 30. Sabourin LA, Rudnicki MA. The molecular regulation of myogenesis. Clin Genet 2000; 57: 16–25. [DOI] [PubMed] [Google Scholar]
- 31. Numberger M, Durr I, Kues W, Koenen M, Witzemann V. Different mechanisms regulate muscle‐specific AChR gamma‐ and epsilon‐subunit gene expression. EMBO J 1991; 10: 2957–64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Tapscott SJ, Weintraub H. MyoD and the regulation of myogenesis by helix‐loop‐helix proteins. J Clin Invest 1991; 87: 1133–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Mishina M, Takai T, Imoto K, Noda M, Takahashi T, Numa S, Methfessel C, Sakmann B. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 1986; 321: 406–11. [DOI] [PubMed] [Google Scholar]
- 34. Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 1995; 75: 487–517. [DOI] [PubMed] [Google Scholar]
- 35. Hirano M, Tanuma J, Shimoda T, Sugihara K, Tsuneyoshi M, Kitano M. Solitary fibrous tumor in the mental region. Pathol Int 2001; 51: 905–8. [DOI] [PubMed] [Google Scholar]
- 36. Noguchi T, Sato T, Takeno S, Uchida Y, Kashima K, Yokoyama S, Muller W. Biological analysis of gastrointestinal stromal tumors. Oncol Rep 2002; 9: 1277–82. [PubMed] [Google Scholar]
- 37. Ya J, Markman MW, Wagenaar GT, Blommaart PJ, Moorman AF, Lamers WH. Expression of the smooth‐muscle proteins alpha‐smooth‐muscle actin and calponin, and of the intermediate filament protein desmin are parameters of cardiomyocyte maturation in the prenatal rat heart. Anat Rec 1997; 249: 495–505. [DOI] [PubMed] [Google Scholar]
- 38. Sugimoto T, Mine H, Horii Y, Takahashi K, Nagai R, Morishita R, Komada M, Asada Y, Sawada T. Neuroblastoma cell lines showing smooth muscle cell phenotypes. Diagn Mol Pathol 2000; 9: 221–8. [DOI] [PubMed] [Google Scholar]
- 39. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 1999; 277: C1–9. [DOI] [PubMed] [Google Scholar]
- 40. Imabayashi T, Iehara N, Takeoka H, Uematsu‐Yanagita M, Kataoka H, Nishikawa S, Sano H, Yokode M, Fukatsu A, Kita T, Doi T. Expression of basic helix‐loop‐helix proteins in the glomeruli. Clin Nephrol 2001; 55: 53–8. [PubMed] [Google Scholar]
- 41. Schlondorff D. The glomerular mesangial cell: an expanding role for a specialized pericyte. FASEB J 1991; 5: 271–7. [DOI] [PubMed] [Google Scholar]
- 42. Sundberg C, Kowanetz M, Brown LF, Detmar M, Dvorak HF. Stable expression of angiopoietin‐1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo . Lab Invest 2002; 82: 387–401. [DOI] [PubMed] [Google Scholar]
- 43. Papetti M, Herman IM. Mechanisms of normal and tumor‐derived angiogenesis. Am J Physiol Cell Physiol 2002; 282: C947–70. [DOI] [PubMed] [Google Scholar]
- 44. Walker GA, Guerrero IA, Leinwand LA. Myofibroblasts: molecular cross‐dressers. Curr Top Dev Biol 2001; 51: 91–107. [DOI] [PubMed] [Google Scholar]
- 45. Miyata T, Nangaku M, Suzuki D, Inagi R, Uragami K, Sakai H, Okubo K, Kurokawa K. A mesangium‐predominant gene, megsin, is a new serpin up‐regulated in IgA nephropathy. J Clin Invest 1998; 102: 828–36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46. Bockman DE, Sohal GS. A new source of cells contributing to the developing gastrointestinal tract demonstrated in chick embryos. Gastroenterology 1998; 114: 878–82. [DOI] [PubMed] [Google Scholar]
- 47. Korn J, Christ B, Kurz H. Neuroectodermal origin of brain pericytes and vascular smooth muscle cells. J Comp Neurol 2002; 442: 78–88. [DOI] [PubMed] [Google Scholar]
- 48. Sato M, Suzuki S, Senoo H. Hepatic stellate cells: unique characteristics in cell biology and phenotype. Cell Struct Funct 2003; 28: 105–12. [DOI] [PubMed] [Google Scholar]