Skip to main content
IUCrData logoLink to IUCrData
. 2024 Jun 28;9(Pt 6):x240612. doi: 10.1107/S2414314624006126

Benzene-1,2,4,5-tetrol

Benjamin L Weare a,*, Sean Hoggett b, William J Cull b, Stephen P Argent b, Andrei N Khlobystov b, Paul D Brown c
Editor: I Britod
PMCID: PMC11223686  PMID: 38974847

Determination of the structure of benzene-1,2,4,5-tetrol

Keywords: benzene-1,2,4,5-tetrol; crystal structure; hydrogen bonds; covalent organic framework; hydrox­yl

Abstract

The crystal structure of the title compound was determined at 120 K. It crystallizes in the triclinic space group PInline graphic with four independent mol­ecules in the asymmetric unit. In the crystal, each symmetry-unique mol­ecule forms π–π stacks on itself, giving four unique π–π stacking inter­actions. Inter­molecular hydrogen bonding is observed between each pair of independent mol­ecules, where each hy­droxy group can act as a hydrogen-bond donor and acceptor.graphic file with name x-09-x240612-scheme1-3D1.jpg

Structure description

Benzene-1,2,4,5-tetrol, a derivative of 2,5-dihy­droxy-1,4-benzo­quinone, has seen extensive use as a precursor to functionalized benzenes as well as more complex mol­ecules and ligands. It has been used to access a number of more complex organic structures, such as phospho­rous-containing ligands for transition-metal complexes (Pandey et al., 2019) or to bridge metal centres in complexes (Wellala et al., 2018). In recent years benzene-1,2,4,5-tetrol has found a niche as a monomer for the synthesis of polymers, coordination polymers, covalent organic frameworks, and a variety of other supra­molecular structures. It has seen extensive use in the synthesis of framework polymers where it acts as a linear monomer linking other structural units. Recent examples include combining benzene-1,2,4,5-tetrol with a boronic acid-containing porphyrin, a two-dimensional square-pored boronate ester covalent organic framework (COF), creating a thin film that could be integrated into a field-effect transistor (Park et al., 2020), as well as the creation of hafnium- and zirconium-containing coordination polymers with water sorption properties, using benzene-1,2,4,5-tetrol as a linker (Poschmann et al., 2021). Benzene-1,2,4,5-tetrol has also been used in the synthesis of a variety of other COFs (Rondelli et al., 2023; Dalapati et al., 2015; Ma et al., 2013; Lanni et al., 2011), coordination polymers (Abrahams et al., 2016), supra­molecular structures (Jia et al., 2015; Niu et al., 2006; Nakabayashi & Ohkoshi, 2009; Yuan et al., 2012), and polymers (Christinat et al., 2007; Rambo & Lavigne, 2007; Nishiyabu et al., 2012).

Despite of the ongoing inter­est in benzene-1,2,4,5-tetrol as a reagent, which stretches back at least a century (Mukerji, 1922), the crystal structure has only been solved as a water solvate and a co-crystal with 2,5-dihy­droxy-1,4-benzo­quinone (Jene et al., 2001). A search of the Cambridge Structure Database (WebCSD, December 2023) for the mol­ecular structure of 1,2,4,5-benzene­tetrol gave three results: 1,2,4,5-tetra­hydroxy­benzene monohydrate (QOGMAA; Jene et al., 2001); and 1,2,4,5-tetra­hydroxy­benzene 2,5-dihy­droxy-1,4-benzo­quinone (QOGMII, QOGMII01; Jene et al., 2001). Here we present the crystal structure of benzene-1,2,4,5-tetrol for the first time, which we anti­cipate will be of use for the synthetic chemical community in future endeavours.

At 120 K the structure was found to crystallize in the triclinic space group PInline graphic with the asymmetric unit containing four independent mol­ecules of benzene-1,2,4,5-tetrol labelled A, B, C and D (Figs. 1, 2a). Each symmetry unique mol­ecule forms π–π stacks on itself, i.e. mol­ecule A forms a stack consisting entirely of mol­ecule A (Fig. 2b). This gives four unique π–π stacking inter­actions with centroid-to-distances of 3.7474 (11) Å, while the perpendicular centroid-to-plane distances are 3.4457 (7) Å (mol­ecule A), 3.5166 (8) Å (mol­ecule B), 3.5653 (8) Å (mol­ecule C), and 3.5653 (8) Å (mol­ecule D). Inter­molecular hydrogen bonding is observed between each pair of mol­ecules, where each hy­droxy group can act as a hydrogen-bond donor and acceptor (Table 1). This creates an extended hydrogen-bond network, which can be described as a series of rings consisting of three mol­ecules – the edges of two mol­ecules make up the perimeter of the ring, and a single hy­droxy group of a third mol­ecule links the first two mol­ecules into a continuous ring. There are two unique rings comprised of mol­ecules A, B, and C, and of mol­ecules C, B, and D, both of which exhibit an Inline graphic(14) graph-set motif, and the remaining hydrogen-bonded rings are symmetry-related. All of the hydrogen bonds in the structure can thus be accounted for.

Figure 1.

Figure 1

The asymmetric unit of the title compound showing the atom labelling with 50% probability displacement ellipsoids. Unlabelled atoms are related to labelled atoms by the symmetry operations −x, −y + 2, −z for mol­ecule A, −x + 1, −y + 1, −z for mol­ecule B, −x + 1, −y, −z + 1 for mol­ecule C and −x + 2, −y + 1, −z + 1 for mol­ecule D.

Figure 2.

Figure 2

(a) View of unit cell along the crystallographic a-axis. Dashed lines represent hydrogen bonding between mol­ecules. Inline graphic(14) rings are indicated with purple and green polygons; hydrogen bonds not lying on the indicated rings form the same class of ring with mol­ecules not rendered in this diagram. (b) View approximately along the (001) axis, showing how mol­ecules form π–π stacks. Some mol­ecules have been removed for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4A—H4A⋯O4Ci 0.85 (2) 1.89 (2) 2.715 (2) 163 (2)
O4B—H4B⋯O4Dii 0.86 (2) 1.88 (2) 2.708 (2) 163 (3)
O4B—H4B⋯O5B 0.86 (2) 2.45 (2) 2.764 (2) 102 (2)
O4C—H4C⋯O4B 0.86 (2) 1.85 (2) 2.702 (2) 167 (2)
O4D—H4D⋯O5B 0.86 (2) 1.85 (2) 2.6425 (19) 154 (2)
O4D—H4D⋯O5D 0.86 (2) 2.34 (2) 2.789 (2) 113 (2)
O5A—H5A⋯O4A 0.83 (2) 2.40 (2) 2.711 (2) 103 (2)
O5A—H5A⋯O5Dii 0.83 (2) 1.95 (2) 2.7562 (18) 162 (2)
O5B—H5B⋯O5A 0.84 (2) 1.80 (2) 2.633 (2) 169 (2)
O5C—H5C⋯O4Aiii 0.83 (2) 2.04 (2) 2.8376 (16) 161 (2)
O5C—H5C⋯O4C 0.83 (2) 2.38 (2) 2.734 (2) 107 (2)
O5D—H5D⋯O5Civ 0.85 (2) 2.03 (2) 2.8796 (19) 175 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Synthesis and crystallization

Following a literature procedure (Weider et al., 1985), 2,5-dihy­droxy-1,4-benzo­quinone (2.428 g, 17.3 mmol) was mixed with conc. hydro­chloric acid (54 ml) under an inert atmosphere and stirred for 30 min to form a gold-coloured suspension. Addition of tin metal powder (2.1885 g, 18.4 mmol) caused vigorous effervescence and a grey suspension. The mixture was stirred for 10 min until cessation of bubbling then heated to 100° C for 1 h, during which time the mixture became dark and bubbled vigorously. The mixture was allowed to cool briefly, then hot filtered under reduced pressure to give a yellow filtrate. The filtrate was cooled on ice for 30 min to give white crystals of benzene-1,2,4,5-tetrol (0.786 g, 5.54 mmol, 32%). The crude product was dissolved in a minimum of hot tetra­hydro­furan, filtered, then cooled on ice. The resulting white crystals were collected via filtration then washed with ice-cold THF and dried in a vacuum to give benzene-1,2,4,5-tetrol (0.735 g, 5.17 mmol, 30%). IR (ATR) νmax /cm−1: 3146.01 br (OH), 1551.54 s (Ar C—C), 1155.90 w (C—O) MS (ESI) m/z: 165.02 (M+Na). 1H NMR (400 MHz, DMSO-d6, p.p.m., δ): 9.66 (s, 4H, OH), 5.94 (s, 2H, Ar H); 13C NMR (400 MHz, DMSO-d6, p.p.m., δ): 138.46, 104.81. CNH analysis found: C, 50.6; H, 4.1; N, 0. Calculated for C6H6O4: C, 50.7; H, 4.3; N, 0%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C6H6O4
M r 142.11
Crystal system, space group Triclinic, PInline graphic
Temperature (K) 120
a, b, c (Å) 3.7474 (2), 11.6254 (6), 13.7771 (8)
α, β, γ (°) 68.407 (5), 85.779 (4), 89.843 (4)
V3) 556.37 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.27
Crystal size (mm) 0.07 × 0.05 × 0.02
 
Data collection
Diffractometer XtalLAB PRO MM007, PILATUS3 R 200K
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023)
Tmin, Tmax 0.927, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8096, 2185, 1842
R int 0.063
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.09
No. of reflections 2185
No. of parameters 205
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.34

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624006126/bx4030sup1.cif

x-09-x240612-sup1.cif (252.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624006126/bx4030Isup2.hkl

x-09-x240612-Isup2.hkl (175.2KB, hkl)
x-09-x240612-Isup3.cml (2.6KB, cml)

Supporting information file. DOI: 10.1107/S2414314624006126/bx4030Isup3.cml

CCDC reference: 2357698

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank T. Liu at the Analytical Services in the University of Nottingham School of Chemistry for performing thre CHN analysis. Author contributions are as follows: conceptualization, BLW; investigation, BLW, SH, WJC, SA; validation, BLW, SA; writing (original draft), BLW; writing (review and editing), BLW, SA, WJC, PDB, ANK; visualization, BLW; supervision, ANK, PDB; funding acquisition, ANK, PDB.

full crystallographic data

Benzene-1,2,4,5-tetrol. Crystal data

C6H6O4 Z = 4
Mr = 142.11 F(000) = 296
Triclinic, P1 Dx = 1.697 Mg m3
a = 3.7474 (2) Å Cu Kα radiation, λ = 1.54184 Å
b = 11.6254 (6) Å Cell parameters from 4683 reflections
c = 13.7771 (8) Å θ = 3.4–75.6°
α = 68.407 (5)° µ = 1.26 mm1
β = 85.779 (4)° T = 120 K
γ = 89.843 (4)° Block, colourless
V = 556.37 (6) Å3 0.07 × 0.05 × 0.02 mm

Benzene-1,2,4,5-tetrol. Data collection

XtalLAB PRO MM007, PILATUS3 R 200K diffractometer 2185 independent reflections
Radiation source: rotating anode, MicroMax 007 HF 1842 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.063
Detector resolution: 5.8140 pixels mm-1 θmax = 76.2°, θmin = 3.5°
ω scans h = −4→4
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2023) k = −14→14
Tmin = 0.927, Tmax = 1.000 l = −17→17
8096 measured reflections

Benzene-1,2,4,5-tetrol. Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: mixed
wR(F2) = 0.133 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0799P)2 + 0.1541P] where P = (Fo2 + 2Fc2)/3
2185 reflections (Δ/σ)max < 0.001
205 parameters Δρmax = 0.28 e Å3
8 restraints Δρmin = −0.33 e Å3

Benzene-1,2,4,5-tetrol. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All hydrogen atoms were observed in the electron difference map. All hydroxy hydrogen atoms were refined with their O-H distances restrained to a target distance of 0.84 %A (DFIX). All other hydrogen atoms were geometrically placed and refined with a riding model.

Benzene-1,2,4,5-tetrol. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A −0.1468 (5) 1.09568 (17) 0.02598 (13) 0.0161 (4)
H1A −0.249116 1.160936 0.043654 0.019*
C2A −0.0561 (4) 0.98695 (17) 0.10428 (13) 0.0161 (4)
C3A 0.0876 (5) 0.89114 (17) 0.07847 (13) 0.0159 (4)
O4A −0.1011 (3) 0.96812 (13) 0.20910 (9) 0.0204 (3)
H4A −0.224 (6) 1.024 (2) 0.2205 (19) 0.031*
O5A 0.1865 (4) 0.78369 (12) 0.15524 (10) 0.0223 (3)
H5A 0.055 (6) 0.767 (2) 0.2104 (15) 0.033*
C1B 0.3702 (5) 0.38074 (17) 0.02176 (14) 0.0176 (4)
H1B 0.280395 0.299234 0.036481 0.021*
C2B 0.3851 (5) 0.42502 (17) 0.10209 (13) 0.0164 (4)
C3B 0.5136 (5) 0.54465 (17) 0.08035 (14) 0.0167 (4)
O4B 0.2720 (4) 0.34746 (13) 0.20260 (10) 0.0231 (3)
H4B 0.192 (7) 0.388 (2) 0.2403 (18) 0.035*
O5B 0.5337 (4) 0.58394 (13) 0.16233 (10) 0.0225 (3)
H5B 0.434 (7) 0.6521 (18) 0.1517 (19) 0.034*
C1C 0.5825 (5) 0.12616 (17) 0.45145 (13) 0.0168 (4)
H1C 0.639580 0.212043 0.418210 0.020*
C2C 0.4847 (5) 0.05791 (17) 0.39276 (13) 0.0167 (4)
C3C 0.4038 (5) −0.06764 (17) 0.44063 (13) 0.0161 (4)
O4C 0.4713 (4) 0.10954 (12) 0.28510 (9) 0.0195 (3)
H4C 0.421 (6) 0.1868 (16) 0.2668 (18) 0.029*
O5C 0.3112 (3) −0.13754 (12) 0.38383 (9) 0.0185 (3)
H5C 0.226 (6) −0.093 (2) 0.3286 (14) 0.028*
C1D 1.0908 (4) 0.38787 (17) 0.49271 (13) 0.0159 (4)
H1D 1.153969 0.310947 0.487689 0.019*
C2D 0.9455 (4) 0.47869 (17) 0.40886 (13) 0.0149 (4)
C3D 0.8562 (4) 0.59139 (17) 0.41683 (13) 0.0151 (4)
O4D 0.8906 (4) 0.45066 (13) 0.32286 (9) 0.0202 (3)
H4D 0.773 (6) 0.509 (2) 0.2812 (17) 0.030*
O5D 0.7198 (3) 0.68082 (12) 0.33076 (9) 0.0180 (3)
H5D 0.611 (6) 0.7358 (19) 0.3477 (18) 0.027*

Benzene-1,2,4,5-tetrol. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0121 (8) 0.0164 (9) 0.0193 (9) 0.0051 (7) −0.0046 (7) −0.0052 (7)
C2A 0.0106 (8) 0.0201 (10) 0.0156 (8) 0.0037 (7) −0.0036 (6) −0.0039 (7)
C3A 0.0126 (8) 0.0159 (9) 0.0153 (8) 0.0037 (7) −0.0049 (6) −0.0003 (7)
O4A 0.0238 (7) 0.0217 (7) 0.0146 (6) 0.0096 (6) −0.0051 (5) −0.0046 (5)
O5A 0.0267 (7) 0.0185 (7) 0.0153 (6) 0.0120 (6) −0.0023 (5) 0.0012 (5)
C1B 0.0142 (8) 0.0154 (9) 0.0215 (9) 0.0067 (7) −0.0072 (7) −0.0036 (7)
C2B 0.0128 (8) 0.0166 (9) 0.0162 (8) 0.0056 (7) −0.0055 (7) −0.0009 (7)
C3B 0.0136 (8) 0.0191 (9) 0.0183 (8) 0.0092 (7) −0.0096 (7) −0.0065 (7)
O4B 0.0302 (8) 0.0182 (7) 0.0171 (6) 0.0073 (6) −0.0010 (5) −0.0022 (5)
O5B 0.0309 (8) 0.0196 (7) 0.0195 (7) 0.0136 (6) −0.0128 (6) −0.0083 (6)
C1C 0.0143 (8) 0.0162 (9) 0.0172 (8) 0.0063 (7) −0.0036 (7) −0.0024 (7)
C2C 0.0130 (8) 0.0194 (10) 0.0133 (8) 0.0072 (7) −0.0039 (6) −0.0005 (7)
C3C 0.0119 (8) 0.0176 (9) 0.0171 (8) 0.0058 (7) −0.0040 (6) −0.0041 (7)
O4C 0.0264 (7) 0.0157 (7) 0.0138 (6) 0.0074 (6) −0.0068 (5) −0.0013 (5)
O5C 0.0210 (7) 0.0175 (7) 0.0154 (6) 0.0051 (6) −0.0080 (5) −0.0032 (5)
C1D 0.0123 (8) 0.0145 (9) 0.0183 (8) 0.0043 (7) −0.0036 (7) −0.0026 (7)
C2D 0.0103 (8) 0.0180 (9) 0.0148 (8) 0.0026 (7) −0.0033 (6) −0.0037 (7)
C3D 0.0120 (8) 0.0144 (9) 0.0150 (8) 0.0041 (7) −0.0045 (6) 0.0000 (7)
O4D 0.0237 (7) 0.0210 (7) 0.0164 (6) 0.0107 (6) −0.0094 (5) −0.0062 (5)
O5D 0.0194 (6) 0.0171 (7) 0.0148 (6) 0.0092 (5) −0.0075 (5) −0.0015 (5)

Benzene-1,2,4,5-tetrol. Geometric parameters (Å, º)

C1A—H1A 0.9500 C1C—H1C 0.9500
C1A—C2A 1.388 (2) C1C—C2C 1.391 (3)
C1A—C3Ai 1.391 (2) C1C—C3Ciii 1.394 (2)
C2A—C3A 1.385 (3) C2C—C3C 1.386 (3)
C2A—O4A 1.376 (2) C2C—O4C 1.385 (2)
C3A—O5A 1.378 (2) C3C—O5C 1.379 (2)
O4A—H4A 0.852 (17) O4C—H4C 0.863 (17)
O5A—H5A 0.835 (17) O5C—H5C 0.832 (16)
C1B—H1B 0.9500 C1D—H1D 0.9500
C1B—C2B 1.386 (2) C1D—C2D 1.392 (2)
C1B—C3Bii 1.391 (3) C1D—C3Div 1.382 (2)
C2B—C3B 1.390 (3) C2D—C3D 1.392 (3)
C2B—O4B 1.381 (2) C2D—O4D 1.368 (2)
C3B—O5B 1.372 (2) C3D—O5D 1.3881 (19)
O4B—H4B 0.861 (16) O4D—H4D 0.858 (16)
O5B—H5B 0.843 (17) O5D—H5D 0.851 (16)
C2A—C1A—H1A 120.1 C2C—C1C—H1C 120.2
C2A—C1A—C3Ai 119.82 (17) C2C—C1C—C3Ciii 119.53 (18)
C3Ai—C1A—H1A 120.1 C3Ciii—C1C—H1C 120.2
C3A—C2A—C1A 120.03 (16) C3C—C2C—C1C 120.55 (16)
O4A—C2A—C1A 123.07 (16) O4C—C2C—C1C 122.61 (17)
O4A—C2A—C3A 116.90 (15) O4C—C2C—C3C 116.82 (16)
C2A—C3A—C1Ai 120.14 (16) C2C—C3C—C1Ciii 119.92 (17)
O5A—C3A—C1Ai 119.11 (16) O5C—C3C—C1Ciii 118.51 (17)
O5A—C3A—C2A 120.70 (15) O5C—C3C—C2C 121.57 (15)
C2A—O4A—H4A 112.3 (16) C2C—O4C—H4C 109.5 (15)
C3A—O5A—H5A 111.3 (17) C3C—O5C—H5C 110.6 (17)
C2B—C1B—H1B 119.9 C2D—C1D—H1D 119.7
C2B—C1B—C3Bii 120.17 (18) C3Div—C1D—H1D 119.7
C3Bii—C1B—H1B 119.9 C3Div—C1D—C2D 120.58 (17)
C1B—C2B—C3B 119.88 (17) C1D—C2D—C3D 119.20 (16)
O4B—C2B—C1B 118.40 (17) O4D—C2D—C1D 117.50 (16)
O4B—C2B—C3B 121.71 (16) O4D—C2D—C3D 123.28 (15)
C2B—C3B—C1Bii 119.95 (17) C1Div—C3D—C2D 120.22 (15)
O5B—C3B—C1Bii 121.84 (18) C1Div—C3D—O5D 122.17 (16)
O5B—C3B—C2B 118.17 (16) O5D—C3D—C2D 117.60 (15)
C2B—O4B—H4B 111.8 (18) C2D—O4D—H4D 108.3 (17)
C3B—O5B—H5B 112.5 (16) C3D—O5D—H5D 111.5 (16)
C1A—C2A—C3A—C1Ai 1.1 (3) C1C—C2C—C3C—C1Ciii 0.5 (3)
C1A—C2A—C3A—O5A 178.53 (16) C1C—C2C—C3C—O5C −179.04 (15)
C3Ai—C1A—C2A—C3A −1.0 (3) C3Ciii—C1C—C2C—C3C −0.5 (3)
C3Ai—C1A—C2A—O4A 178.86 (16) C3Ciii—C1C—C2C—O4C −178.89 (15)
O4A—C2A—C3A—C1Ai −178.86 (16) O4C—C2C—C3C—C1Ciii 178.98 (15)
O4A—C2A—C3A—O5A −1.4 (3) O4C—C2C—C3C—O5C −0.6 (2)
C1B—C2B—C3B—C1Bii −0.5 (3) C1D—C2D—C3D—C1Div −0.4 (3)
C1B—C2B—C3B—O5B −178.19 (14) C1D—C2D—C3D—O5D 178.51 (15)
C3Bii—C1B—C2B—C3B 0.5 (3) C3Div—C1D—C2D—C3D 0.4 (3)
C3Bii—C1B—C2B—O4B −179.07 (15) C3Div—C1D—C2D—O4D −178.16 (16)
O4B—C2B—C3B—C1Bii 179.06 (15) O4D—C2D—C3D—C1Div 178.07 (17)
O4B—C2B—C3B—O5B 1.4 (2) O4D—C2D—C3D—O5D −3.0 (3)

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y, −z+1; (iv) −x+2, −y+1, −z+1.

Benzene-1,2,4,5-tetrol. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4A—H4A···O4Cv 0.85 (2) 1.89 (2) 2.715 (2) 163 (2)
O4B—H4B···O4Dvi 0.86 (2) 1.88 (2) 2.708 (2) 163 (3)
O4B—H4B···O5B 0.86 (2) 2.45 (2) 2.764 (2) 102 (2)
O4C—H4C···O4B 0.86 (2) 1.85 (2) 2.702 (2) 167 (2)
O4D—H4D···O5B 0.86 (2) 1.85 (2) 2.6425 (19) 154 (2)
O4D—H4D···O5D 0.86 (2) 2.34 (2) 2.789 (2) 113 (2)
O5A—H5A···O4A 0.83 (2) 2.40 (2) 2.711 (2) 103 (2)
O5A—H5A···O5Dvi 0.83 (2) 1.95 (2) 2.7562 (18) 162 (2)
O5B—H5B···O5A 0.84 (2) 1.80 (2) 2.633 (2) 169 (2)
O5C—H5C···O4Avii 0.83 (2) 2.04 (2) 2.8376 (16) 161 (2)
O5C—H5C···O4C 0.83 (2) 2.38 (2) 2.734 (2) 107 (2)
O5D—H5D···O5Cviii 0.85 (2) 2.03 (2) 2.8796 (19) 175 (2)

Symmetry codes: (v) x−1, y+1, z; (vi) x−1, y, z; (vii) x, y−1, z; (viii) x, y+1, z.

References

  1. Abrahams, B. F., Dharma, A. D., Dyett, B., Hudson, T. A., Maynard-Casely, H., Kingsbury, C. J., McCormick, L. J., Robson, R., Sutton, A. L. & White, K. F. (2016). Dalton Trans.45, 1339–1344. [DOI] [PubMed]
  2. Christinat, N., Croisier, E., Scopelliti, R., Cascella, M., Röthlisberger, U. & Severin, K. (2007). Eur. J. Inorg. Chem. pp. 5177–5181.
  3. Dalapati, S., Addicoat, M., Jin, S., Sakurai, T., Gao, J., Xu, H., Irle, S., Seki, S. & Jiang, D. (2015). Nat. Commun.6, 7786. [DOI] [PMC free article] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  5. Jene, P. G., Pernin, C. G. & Ibers, J. A. (2001). Acta Cryst. C57, 730–734. [DOI] [PubMed]
  6. Jia, S.-H., Ding, X., Yu, H.-T. & Han, B.-H. (2015). RSC Adv.5, 71095–71101.
  7. Lanni, L. M., Tilford, R. W., Bharathy, M. & Lavigne, J. J. (2011). J. Am. Chem. Soc.133, 13975–13983. [DOI] [PubMed]
  8. Ma, H., Ren, H., Meng, S., Yan, Z., Zhao, H., Sun, F. & Zhu, G. (2013). Chem. Commun.49, 9773. [DOI] [PubMed]
  9. Mukerji, D. N. (1922). J. Chem. Soc. Trans.121, 545–552.
  10. Nakabayashi, K. & Ohkoshi, S. (2009). Inorg. Chem.48, 8647–8649. [DOI] [PubMed]
  11. Nishiyabu, R., Teraoka, S., Matsushima, Y. & Kubo, Y. (2012). ChemPlusChem77, 201–209.
  12. Niu, W., Smith, M. D. & Lavigne, J. J. (2006). Cryst. Growth Des.6, 1274–1277.
  13. Pandey, M. K., Kunchur, H. S., Ananthnag, G. S., Mague, J. T. & Balakrishna, M. S. (2019). Dalton Trans.48, 3610–3624. [DOI] [PubMed]
  14. Park, S. W., Liao, Z., Ibarlucea, B., Qi, H., Lin, H. H., Becker, D., Melidonie, J., Zhang, T., Sahabudeen, H., Baraban, L., Baek, C. K., Zheng, Z., Zschech, E., Fery, A., Heine, T., Kaiser, U., Cuniberti, G., Dong, R. & Feng, X. (2020). Angew. Chem. Int. Ed.59, 8218–8224. [DOI] [PMC free article] [PubMed]
  15. Poschmann, M. P. M., Reinsch, H. & Stock, N. (2021). Z. Anorg. Allg. Chem.647, 436–441.
  16. Rambo, B. M. & Lavigne, J. J. (2007). Chem. Mater.19, 3732–3739.
  17. Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  18. Rondelli, M., Daranas, A. H. & Martín, T. (2023). J. Org. Chem.88, 2113–2121. [DOI] [PMC free article] [PubMed]
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Weider, P. R., Hegedus, L. S. & Asada, H. (1985). J. Org. Chem.50, 4276–4281.
  22. Wellala, N. P. N., Dong, H. T., Krause, J. A. & Guan, H. (2018). Organometallics, 37, 4031–4039.
  23. Yuan, Y., Liu, J., Ren, H., Jing, X., Wang, W., Ma, H., Sun, F. & Zhao, H. (2012). J. Mater. Res.27, 1417–1420.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624006126/bx4030sup1.cif

x-09-x240612-sup1.cif (252.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624006126/bx4030Isup2.hkl

x-09-x240612-Isup2.hkl (175.2KB, hkl)
x-09-x240612-Isup3.cml (2.6KB, cml)

Supporting information file. DOI: 10.1107/S2414314624006126/bx4030Isup3.cml

CCDC reference: 2357698

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES