Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Jun 28;80(Pt 7):811–815. doi: 10.1107/S2056989024005796

Two chromium(II) acetate complexes with N-heterocyclic carbene (NHC) coligands

Christian Heiser a, Kurt Merzweiler a,*
Editor: V Jancikb
PMCID: PMC11223697  PMID: 38974153

The crystal structures of two chromium(II) acetate complexes with N-heterocyclic carbene coligands were determined.

Keywords: crystal structure, chromium, acetate, NHC, paddle-wheel

Abstract

Tetra­kis(μ-acetato-κ2O:O′)bis­{[1,3-bis­(2,6-diiso­propyl­phen­yl)imidazol-2-yl­idene-κC2]chromium(II)} tetra­hydro­furan disolvate, [Cr2(C2H3O2)4(C27H36N4)2]·2C4H8O or [Cr2(OAc)4(IDipp)2]·2C4H8O (1), and tetra­kis­(μ-acetato-κ2O:O′)bis­{[1,3-bis­(2,4,6-tri­methyl­phen­yl)imidazol-2-yl­idene-κC2]chromium(II)},{Cr2(C2H3O2)4(C21H24N2)2] or [Cr2(OAc)4(IMes)2] (2), were synthesized from anhydrous chromium(II) acetate [Cr2(OAc)4] and the corresponding NHC (NHC = N-heterocyclic carbene) in toluene as solvent. Both complexes crystallize in the triclinic system, space group PInline graphic. The mol­ecular structures consist of Cr2(OAc)4 paddle-wheels that carry two terminal NHC ligands. This leads to a square-pyramidal coordination of the chromium atoms.

1. Chemical context

Since its discovery in 1844 by Peligot (Peligot et al., 1844), chromium(II) acetate has frequently been used as the starting material for a large variety of chromium(II) compounds (Cotton et al., 2005). Treatment of chromium(II) acetate with donor ligands L gives dinuclear complexes [Cr2(OAc)4L2] that adopt paddle-wheel structures with the ligands L at axial positions. This structure pattern was first observed for the dihydrate [Cr2(OAc)4(H2O)2] (van Niekerk et al., 1953; Cotton et al., 1971) and later on for a large number of ligands comprising oxygen and, particularly, nitro­gen donor atoms (Cotton et al., 2005).

Recently, we reported on chromium(II) silyl­amide complexes that were generated from chromium(II) acetate as starting material. In the course of these investigations, the application of NHC coligands proved very successful. Typically, a suspension of chromium(II) acetate in THF was first treated with the NHC ligand to give deeply violet-coloured solutions. Treatment of the in situ generated chromium(II) acetate NHC complex with Li2Me2Si(NPh)2 led to [Cr{Me2Si(NPh)2(NHC)2}] (Heiser & Merzweiler, 2022). We were now inter­ested in the isolation and structural characterization of chromium(II) acetate NHC complexes.

Several X-ray crystal structures of chromium(II) NHC complexes are reported in the literature. The first references date back to the late 1990s when the crystal structures of [Mes2Cr(IPr)2] [IPr = 1,3-bis­(diisoprop­yl)imidazol-2-yl­idene; Danopoulos et al., 1997], [CpPhCr(IMes)] (Voges et al., 1999) and [Cp2Cr(IMes)] (IMes = 1,3-bis­(2,4,6-tri­methyl­phen­yl)limidazol-2-yl­idene; Abernethy et al., 1999) were published. Apart from organo chromium(II) compounds, some CrCl2 NHC complexes have been studied. Typical examples are [Cr2Cl4((IPrMe2))2(THF)2], [CrCl2(IPrMe2)2] (IPrMe2 = 1,3-diisopropyl-4,5-dimethyl-imidazol-2-yl­idene; Wang et al., 2010) and [CrCl2(IDipp)2] [IDipp = 1,3-bis­(2,6-diiso­propyl­phen­yl)imidazol-2-yl­idene; Jones et al., 2012]. Moreover, chelating bis­(NHC) ligands and NHC ligands with additional donor functionality have been applied in chromium(II) chemistry, e.g. CSD refcodes DERNUK (Kreisel et al., 2006), QIBKUI (Kreisel et al. 2007), BEKGAB (Conde-Guadano et al., 2012a), QUGFAB (Simler et al., 2015), SAVNOW (Ashida et al., 2022), SEDMEU (Pugh et al., 2006) and ZEKCEZ (Conde-Guadano et al., 2012b).1.

2. Structural commentary

The title compounds (Figs. 1 and 2) were obtained by reacting anyhdrous chromium(II) acetate with the corresponding NHC in toluene. After filtration, the solutions were cooled to obtain [Cr2(OAc)4(IDipp)2]·2THF (1) and [Cr2(OAc)4(IMes)2] (2) in the form of violet crystals. Single crystals suitable for X-ray diffraction were obtained by recrystallization from THF (compound 1) and toluene (compound 2).

Figure 1.

Figure 1

Mol­ecular structure of 1 in the crystal. Displacement ellipsoids are at the 50% probability level. There is a disorder over two orientations concerning the THF mol­ecule and three of the iPr groups. In each case, only the major orientation is displayed. H atoms not involved in C—H⋯O hydrogen bonds are omitted for clarity. Inter­molecular C—H⋯O hydrogen bonds shown as dashed lines. [Symmetry code: (i) −x + 1; −y + 1; −z + 1.

Figure 2.

Figure 2

Mol­ecular structure of 2 in the crystal. Displacement ellipsoids are at the 50% probability level. H atoms are omitted for clarity. [Symmetry code: (i) −x + 1; −y + 1; −z + 1.

[Cr2(OAc)4(IDipp)2]·2THF (1) and [Cr2(OAc)4(IMes)2] (2) crystallize in the triclinic system, space group PInline graphicwith Z = 1. The crystal structure of 1 consists of discrete [Cr2(OAc)4(IDipp)2] units and two mol­ecules of tetra­hydro­furan per formula unit. Compound 2 crystallizes without solvate mol­ecules. In both complexes, the Cr2(OAc)4 units exhibit classical paddle-wheel structures with crystallographically imposed Inline graphic symmetry. The coordination sphere of the chromium atoms consists of four acetate oxygen atoms at the base of a square pyramid and the NHC carbon atom at the apex.

The Cr—O distances in 1 range from 2.012 (2) to 2.025 (1) Å and in 2 from 2.024 (2) to 2.027 (2) Å (Tables 1 and 2). Similar distances have been reported for 15 chromium(II) acetate derivatives that are currently deposited in the CSD database (Groom et al., 2016). The shortest Cr—O(acetate) distance [1.988 (5) Å] was observed in [Cr2(OAc)4] and the largest one [2.034 (1) Å] was found in [Cr2(OAc)4(trans-bie)2] [trans-bie = 2,2′-ethene-1,2-diylbis(1-methyl-1H-imidazole); Fritsch et al., 2014].

Table 1. Selected geometric parameters (Å, °) for 1.

Cr—Cri 2.5308 (6) Cr—O3 2.0202 (13)
Cr—O1 2.0178 (14) Cr—O4i 2.0248 (13)
Cr—O2i 2.0118 (14) Cr—C5 2.3812 (16)
       
O1—Cr—O3 89.35 (6) O2i—Cr—O4i 89.33 (6)
O1—Cr—O4i 90.32 (6) O2i—Cr—C5 94.10 (6)
O1—Cr—C5 94.62 (6) O3—Cr—O4i 171.54 (5)
O2i—Cr—O1 171.29 (5) O3—Cr—C5 95.67 (5)
O2i—Cr—O3 89.72 (6) O4i—Cr—C5 92.78 (5)

Symmetry code: (i) Inline graphic.

Table 2. Selected geometric parameters (Å, °) for 2.

Cr—Cri 2.5284 (9) Cr—O3 2.0269 (18)
Cr—O1 2.0274 (18) Cr—O4i 2.0270 (18)
Cr—O2i 2.0238 (17) Cr—C5 2.365 (3)
       
O1—Cr—C5 93.88 (8) O3—Cr—O1 90.66 (8)
O2i—Cr—O1 171.65 (8) O3—Cr—C5 93.90 (8)
O2i—Cr—O3 88.82 (7) O4i—Cr—O1 88.28 (7)
O2i—Cr—O4i 91.03 (7) O4i—Cr—O3 171.63 (8)
O2i—Cr—C5 94.46 (8) O4i—Cr—C5 94.45 (8)

Symmetry code: (i) Inline graphic.

The Cr—C(NHC) distances in 1 and 2 are 2.381 (2) and 2.365 (3) Å, respectively. These values are roughly comparable to the Cr—O and Cr—N distances in chromium(II) acetate complexes with axial O and N donor ligands. In the case of O donor ligands, the Cr—O distances vary from 2.257 to 2.306 Å. For N donor ligands, the range is 2.274–2.415 Å. In square-planar [CrR2(NHC)2] complexes (R = organyl, halogen) the Cr—C bonds are markedly shorter compared to those in compounds 1 and 2, e.g. [CrCl2(IDipp)2] [Cr—C: 2.148 (2)–2.162 (2) Å; Jones et al., 2012] and [CrCl2(IPrMe)2] [Cr—C: 2.159 (3)–2.163 (2) Å; Jones et al., 2012]. The shortest Cr—C distance (2.0930 Å) was observed for a NHC pincer ligand (CSD code QUGFAB; Simler et al., 2015) and the largest (2.180 Å) for [CrPh2(IPrMe)2] (Wang et al., 2011).

The Cr—Cr distances in compounds 1 [2.5308 (6) Å] and 2 [2.5284 (9) Å] are significantly larger than in comparable [Cr2(OAc)4L2] complexes with N and O donor ligands. According to the CSD database, the Cr—Cr distances vary from 2.270 to 2.452 Å with a median of 2.348 Å. The larger Cr—Cr distances in 1 and 2 also become apparent in a slight pyramidalization of the CrO4 units. The distances of the chromium atoms from the mean plane through the four O atoms are 0.1516 (3) Å for compound 1 and 0.1476 (4) Å in the case of compound 2. Moreover, the C—Cr—O angles significantly exceed 90° [1: 92.78 (5)–95.67 (5)°, 2: 93.88 (8)–94.46 (8)°].

Overall, the geometric parameters of both compounds are very similar. However, it is worth mentioning that complexes 1 and 2 differ in the mutual orientation of the NHC ligands and the paddle-wheel core. In the case of compound 1, the imidazolidine ring adopts an eclipsed orientation with respect to the O1–Cr–O2 unit as indicated by the torsion angles N2—C5—Cr—O1 [1.2 (2)°] and N1—C5—Cr—O2i [−7.5 (2)°]. By contrast, a staggered conformation is found in compound 2 with torsion angles of 48.3 (3)° (N1—C5—Cr—O1) and 45.7 (3)° (N2—C5—Cr—O2i). It is obvious to assume that the steric repulsion between the iso-propyl groups of the NHC ligand and acetate methyl groups prevents a staggered orientation of the imidazoline ring in compound 1.

3. Supra­molecular features

Compound 1 displays a weak C—H⋯O hydrogen bridge [DA: 3.411 (6) Å; Table 3] between the C6—H6 group of the imidazolidine ring and the tetra­hydro­furan oxygen atom O5. In the case of compound 2, there is a weak C—H⋯O hydrogen bridge [DA: 3.527 (4) Å; Table 4, Fig. 3] between the acetate carbon atom C2 and the acetate oxygen atom O2ii of a neighbouring complex unit. Furthermore, there is a complementary hydrogen bridge between C2ii and O2. As a result, the chromium acetate complexes are catenated by Inline graphic(8) hydrogen-bond motifs along the direction of the crystallographic a axis. Moreover, the supra­molecular structure is supported by weak C—H⋯π hydrogen bonds (Fig. 4), which are formed between neighbouring mesityl groups. The distance between the methyl carbon atom C15 and the centroid of the aromatic ring C17iii–C22iii is 3.340 (4) Å.

Table 3. Hydrogen-bond geometry (Å, °) for 1.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O5 0.95 2.47 3.411 (6) 171

Table 4. Hydrogen-bond geometry (Å, °) for 2.

Cg is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O2ii 0.98 2.61 3.527 (4) 155
C15—H15ACgiii 0.98 2.62 3.340 (3) 125

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

Crystal structure of 2, inter­molecular C—H⋯O hydrogen bonds are shown as dashed lines.

Figure 4.

Figure 4

Crystal structure of 2, inter­molecular C—H⋯π hydrogen bonds shown as dashed lines.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.45, 2024; Groom et al., 2016) revealed 21 crystal structures of chromium(II) acetate complexes, CSD refcodes: ACETCR (Cotton & Rice, 1978), ACPCRA (Cotton & Felthouse, 1980), ACPCRB (Cotton & Felthouse, 1980), ACPCRB01 (Huang et al., 2018), CRAQAC (van Niekerk et al., 1953), CRAQAC03 (Benard et al., 1980), CRAQAC11 (Cotton et al., 1971), CRAQAC12 (Benard et al., 1980), CRAQAC13 (Herich et al., 2018), CUCSEA (Fritsch et al., 2014), CUYSEU (Cotton & Wang, 1984), CUYSIY (Cotton & Wang, 1984), KETXOZ (Huang et al., 2018), KETXOZ01 (Huang et al., 2018), KETYAM (Huang et al., 2018), KETYAM01 (Huang et al., 2018), KETYEQ (Huang et al., 2018), KETYEQ01 (Huang et al., 2018), LIRTAH (Cotton et al., 2000), PIPACR (Cotton & Rice, 1978, XIYCER (Heiser & Merzweiler, 2023). Most of them contain N- and O-donor ligands. No NHC adducts of chromium(II) acetate have been reported so far.

5. Synthesis and crystallization

All manipulations were carried out under an argon atmosphere using standard Schlenk techniques. Toluene and THF were dried over sodium/benzo­phenone and freshly distilled prior to use. Chromium(II) acetate (Brauer, 1981), 1,3-bis­(2,6-diiso­propyl­phen­yl)imidazolidine-2-yl­idene (IDipp) and 1,3-bis­(1,3,5-tri­methyl­phen­yl)imidazolidine-2-yl­idene (IMes) (Medici et al., 2018) were prepared according to literature methods.

Synthesis of [Cr2(OAc)4(IDipp)2] (1)

To a suspension of chromium(II) acetate (470 mg, 1.39 mmol) in toluene (12 ml) was added a solution of IDipp (1180 mg, 2.78 mmol) in toluene (8 ml). The solution was stirred at 300 K overnight. The chromium(II) acetate dissolved and a change of colour from dark red to violet was observed. Insoluble material was filtered off and the solution was concentrated slightly in vacuo. Upon standing at 248 K for two days, the product crystallized in the form of violet crystals, which were filtered off and dried in vacuo. Single crystals of the product were obtained upon cooling down a THF solution of 1 to 248 K. Yield: 660 mg (40%).

C70H100Cr2N4O10 (1261.53 g mol−1). C 66.8 (calc. 66.6); H 7.9 (calc. 7.6); N 5.0 (calc. 5.0) %.

IR (ATR): ν = 3135 w, 3075 w, 3021 w, 2963 m, 2929 m, 2870 m, 1608 s, 1574 s, 1537 s, 1496 m, 1435 s, 1389 s, 1330 m, 1304 m, 1259 m, 1209 m, 1182 m, 1150 m, 1103 m, 1060 m, 1042 m, 1030 m, 951 m, 937 m, 908 m, 868 m, 808 s, 801 s, 754 s, 735 m, 674 s, 621 s, 594 m, 540 s, 519 m, 466 s, 441 s, 416 s cm−1.

Synthesis of [Cr2(OAc)4(IMes)2] (2)

To a suspension of chromium(II) acetate (580 mg, 1.71 mmol) in toluene (10 ml) was added a solution of IMes (1050 mg, 3.41 mmol) in toluene (10 ml). The solution was stirred at room temperature for 30 minutes, and after that it was heated to 313 K for one h, during which time the chromium(II) acetate dissolved and the solution turned violet. The solution was filtered while hot and washed with hot toluene (2 × 5 ml). After reducing the volume to half the amount, the solution was heated to dissolve the precipitated product. Upon standing at 267 K for two days, the product crystallized in a form of violet single crystals, which were filtered off and dried in vacuo. Yield: 650 mg (40%).

C50H60Cr2N4O8 (949.02 g mol−1). C 63.3 (calc. 63.3); H 6.0 (6.4); N 5.9 (5.9) %.

IR (ATR): ν = 3128 w, 3005 w, 2976 w, 2915 m, 2858 w, 1606 s, 1539 m, 1485 m, 1424 s, 1390 m, 1337 m, 1287 m, 1254 m, 1230 m, 1210 m, 1157 m, 1085 m, 1065 m, 1036 m, 1022 m, 961 m, 926 m, 870 w, 841 m, 742 w, 733 m, 720 m, 673 s, 641 m, 619 m, 591 m, 574 m, 509 m, 497 m, 467 m, 448 w, 381 vs, 331 m, 307 m, 276 s, 253 m, 227 s, 209 s cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. All hydrogen atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2(CH and CH2) or 1.5(CH3) times Ueq(C).

Table 5. Experimental details.

  1 2
Crystal data
Chemical formula [Cr2(C2H3O2)4(C27H36N4)2]·2C4H8O {Cr2(C2H3O2)4(C21H24N2)2]
M r 1261.53 949.02
Crystal system, space group Triclinic, PInline graphic Triclinic, PInline graphic
Temperature (K) 170 170
a, b, c (Å) 10.6402 (7), 11.7730 (8), 15.1884 (9) 8.3679 (5), 11.6127 (8), 13.8355 (9)
α, β, γ (°) 82.353 (5), 86.526 (5), 69.248 (5) 68.949 (5), 83.891 (5), 71.508 (5)
V3) 1763.2 (2) 1189.90 (14)
Z 1 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.37 0.51
Crystal size (mm) 0.61 × 0.35 × 0.15 0.40 × 0.24 × 0.07
 
Data collection
Diffractometer Stoe IPDS 2T Stoe IPDS 2T
Absorption correction Integration (X-RED32; Stoe & Cie, 2015) Numerical (X-RED32; Stoe & Cie, 2015)
Tmin, Tmax 0.812, 0.947 0.844, 0.963
No. of measured, independent and observed [I > 2σ(I)] reflections 18724, 9444, 5824 8474, 4174, 2894
R int 0.070 0.071
(sin θ/λ)max−1) 0.687 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 0.94 0.042, 0.112, 0.91
No. of reflections 9444 4174
No. of parameters 534 297
No. of restraints 545 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.57 0.50, −0.51

Computer programs: X-AREA (Stoe & Cie, 2015), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 2019).

The THF mol­ecule in compound 1 is disordered over two positions with an occupation ratio of 0.795 (12)/0.205 (12)/. The isopropyl groups C17–C19, C26–C28 and C29–C31 are disordered over two positions with occupation ratios of 0.62 (4)/0.38 (4), 0.60 (4)/0.40 (4) and 0.81 (3)/0.19 (3), respectively.

Supplementary Material

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989024005796/jq2035sup1.cif

e-80-00811-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989024005796/jq20351sup2.hkl

e-80-00811-1sup2.hkl (749.4KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989024005796/jq20352sup3.hkl

e-80-00811-2sup3.hkl (332.5KB, hkl)

CCDC references: 2362906, 2362905

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the financial support of the Open Access Publication Fund of the Martin-Luther-University Halle-Wittenberg.

supplementary crystallographic information

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene-κC2]chromium(II)} tetrahydrofuran disolvate (1) . Crystal data

[Cr2(C2H3O2)4(C27H36N4)2]·2C4H8O Z = 1
Mr = 1261.53 F(000) = 676
Triclinic, P1 Dx = 1.188 Mg m3
a = 10.6402 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.7730 (8) Å Cell parameters from 10431 reflections
c = 15.1884 (9) Å θ = 1.9–29.5°
α = 82.353 (5)° µ = 0.37 mm1
β = 86.526 (5)° T = 170 K
γ = 69.248 (5)° Plate, clear violet
V = 1763.2 (2) Å3 0.61 × 0.35 × 0.15 mm

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene-κC2]chromium(II)} tetrahydrofuran disolvate (1) . Data collection

Stoe IPDS 2T diffractometer 5824 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Rint = 0.070
rotation method, ω scans θmax = 29.2°, θmin = 2.2°
Absorption correction: integration (X-RED32; Stoe & Cie, 2015) h = −14→12
Tmin = 0.812, Tmax = 0.947 k = −16→16
18724 measured reflections l = −19→20
9444 independent reflections

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene-κC2]chromium(II)} tetrahydrofuran disolvate (1) . Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.071P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94 (Δ/σ)max = 0.001
9444 reflections Δρmax = 0.47 e Å3
534 parameters Δρmin = −0.57 e Å3
545 restraints

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene-κC2]chromium(II)} tetrahydrofuran disolvate (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene-κC2]chromium(II)} tetrahydrofuran disolvate (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cr 0.51563 (3) 0.44550 (3) 0.57837 (2) 0.03006 (9)
O1 0.39582 (14) 0.60752 (13) 0.61610 (8) 0.0403 (3)
O2 0.36797 (14) 0.70259 (12) 0.47808 (8) 0.0403 (3)
O3 0.67559 (14) 0.49924 (13) 0.58164 (8) 0.0406 (3)
O4 0.64785 (14) 0.59629 (13) 0.44363 (8) 0.0399 (3)
N1 0.60181 (15) 0.21883 (14) 0.75056 (9) 0.0325 (3)
N2 0.48688 (15) 0.38398 (15) 0.80273 (9) 0.0329 (3)
C1 0.70675 (19) 0.56408 (18) 0.51710 (12) 0.0354 (4)
C2 0.8213 (2) 0.6063 (2) 0.52997 (15) 0.0506 (5)
H2A 0.791711 0.671987 0.568287 0.076*
H2B 0.850789 0.636891 0.472198 0.076*
H2C 0.896176 0.537674 0.557824 0.076*
C3 0.34728 (19) 0.70022 (18) 0.56080 (12) 0.0358 (4)
C4 0.2567 (3) 0.8160 (2) 0.59504 (15) 0.0542 (6)
H4A 0.294515 0.827236 0.649105 0.081*
H4B 0.167515 0.810767 0.608564 0.081*
H4C 0.248798 0.885719 0.549794 0.081*
C5 0.54178 (17) 0.34020 (17) 0.72500 (10) 0.0278 (4)
C6 0.5840 (2) 0.1883 (2) 0.84051 (13) 0.0505 (6)
H6 0.616773 0.108775 0.872523 0.061*
C7 0.5127 (2) 0.2907 (2) 0.87331 (13) 0.0499 (6)
H7 0.484593 0.299120 0.933398 0.060*
C8 0.67707 (19) 0.12560 (17) 0.69619 (12) 0.0344 (4)
C9 0.8118 (2) 0.1107 (2) 0.67531 (13) 0.0414 (5)
C17 0.8724 (12) 0.2037 (11) 0.6948 (7) 0.053 (2) 0.62 (4)
H17 0.796845 0.283453 0.697251 0.063* 0.62 (4)
C18 0.9722 (17) 0.2254 (17) 0.6252 (10) 0.087 (4) 0.62 (4)
H18A 0.998011 0.293219 0.638655 0.130* 0.62 (4)
H18B 0.930993 0.245723 0.566541 0.130* 0.62 (4)
H18C 1.052242 0.151178 0.625449 0.130* 0.62 (4)
C19 0.9351 (19) 0.1647 (16) 0.7874 (8) 0.086 (3) 0.62 (4)
H19A 1.007677 0.085133 0.787992 0.130* 0.62 (4)
H19B 0.866184 0.158430 0.831626 0.130* 0.62 (4)
H19C 0.971431 0.225750 0.801602 0.130* 0.62 (4)
C17A 0.8780 (19) 0.1943 (18) 0.7040 (11) 0.052 (4) 0.38 (4)
H17A 0.807541 0.266510 0.726863 0.063* 0.38 (4)
C18A 0.9500 (19) 0.2389 (19) 0.6223 (11) 0.049 (3) 0.38 (4)
H18D 1.015024 0.168102 0.597399 0.074* 0.38 (4)
H18E 0.996975 0.289880 0.640528 0.074* 0.38 (4)
H18F 0.883495 0.286990 0.577257 0.074* 0.38 (4)
C19A 0.984 (3) 0.130 (3) 0.7761 (13) 0.090 (5) 0.38 (4)
H19D 0.942427 0.097741 0.828075 0.135* 0.38 (4)
H19E 1.022201 0.187942 0.793422 0.135* 0.38 (4)
H19F 1.056381 0.061689 0.752591 0.135* 0.38 (4)
C10 0.8862 (2) 0.0104 (2) 0.63229 (16) 0.0546 (6)
H10 0.978136 −0.003250 0.618022 0.065*
C11 0.8284 (3) −0.0701 (2) 0.60989 (16) 0.0592 (6)
H11 0.881398 −0.139428 0.581869 0.071*
C12 0.6939 (3) −0.0501 (2) 0.62810 (16) 0.0542 (6)
H12 0.654747 −0.104574 0.610834 0.065*
C13 0.6155 (2) 0.04846 (19) 0.67118 (13) 0.0418 (5)
C14 0.4661 (2) 0.0731 (2) 0.68671 (17) 0.0553 (6)
H14 0.427192 0.150232 0.715257 0.066*
C15 0.3947 (3) 0.0925 (3) 0.59920 (19) 0.0694 (8)
H15A 0.427315 0.016458 0.571509 0.104*
H15B 0.413040 0.157596 0.559385 0.104*
H15C 0.297612 0.115795 0.610327 0.104*
C16 0.4421 (3) −0.0301 (3) 0.74994 (18) 0.0730 (8)
H16A 0.478971 −0.106792 0.723250 0.110*
H16B 0.345402 −0.010425 0.760669 0.110*
H16C 0.486728 −0.039199 0.806386 0.110*
C20 0.41683 (19) 0.50940 (18) 0.81624 (11) 0.0337 (4)
C21 0.4917 (2) 0.5764 (2) 0.83985 (12) 0.0396 (4)
C29 0.6447 (4) 0.5264 (7) 0.8436 (5) 0.0494 (14) 0.81 (3)
H29 0.676101 0.441254 0.826911 0.059* 0.81 (3)
C30 0.6974 (6) 0.5195 (11) 0.9357 (3) 0.0653 (17) 0.81 (3)
H30A 0.657407 0.471795 0.978742 0.098* 0.81 (3)
H30B 0.673263 0.602289 0.952331 0.098* 0.81 (3)
H30C 0.795382 0.479886 0.935514 0.098* 0.81 (3)
C31 0.7034 (9) 0.6025 (12) 0.7751 (6) 0.077 (3) 0.81 (3)
H31A 0.801758 0.568940 0.777457 0.115* 0.81 (3)
H31B 0.671341 0.687438 0.788361 0.115* 0.81 (3)
H31C 0.674649 0.599894 0.715505 0.115* 0.81 (3)
C29A 0.6444 (16) 0.521 (3) 0.8323 (18) 0.050 (5) 0.19 (3)
H29A 0.668222 0.454919 0.792796 0.060* 0.19 (3)
C30A 0.702 (2) 0.465 (4) 0.9241 (18) 0.065 (6) 0.19 (3)
H30D 0.681521 0.529102 0.963094 0.098* 0.19 (3)
H30E 0.799164 0.424276 0.919044 0.098* 0.19 (3)
H30F 0.660800 0.404589 0.949035 0.098* 0.19 (3)
C31A 0.702 (3) 0.618 (4) 0.791 (3) 0.059 (6) 0.19 (3)
H31D 0.798735 0.589120 0.802004 0.089* 0.19 (3)
H31E 0.657419 0.694141 0.817389 0.089* 0.19 (3)
H31F 0.686969 0.633217 0.726704 0.089* 0.19 (3)
C22 0.4213 (2) 0.6941 (2) 0.86010 (14) 0.0492 (5)
H22 0.469330 0.742251 0.876560 0.059*
C23 0.2827 (3) 0.7426 (2) 0.85676 (15) 0.0535 (6)
H23 0.235827 0.822664 0.872055 0.064*
C24 0.2127 (2) 0.6741 (2) 0.83113 (15) 0.0525 (6)
H24 0.117536 0.708661 0.827874 0.063*
C25 0.2774 (2) 0.5564 (2) 0.81002 (13) 0.0415 (5)
C26 0.2014 (13) 0.4846 (12) 0.7750 (10) 0.047 (2) 0.60 (4)
H26 0.266183 0.414906 0.746052 0.056* 0.60 (4)
C27 0.134 (2) 0.4341 (18) 0.8561 (11) 0.075 (4) 0.60 (4)
H27A 0.078191 0.501764 0.888165 0.112* 0.60 (4)
H27B 0.204055 0.376262 0.895663 0.112* 0.60 (4)
H27C 0.078602 0.392077 0.836074 0.112* 0.60 (4)
C28 0.0943 (17) 0.5648 (19) 0.7081 (10) 0.058 (3) 0.60 (4)
H28A 0.046268 0.515840 0.688085 0.087* 0.60 (4)
H28B 0.137570 0.596961 0.656950 0.087* 0.60 (4)
H28C 0.030568 0.633000 0.736433 0.087* 0.60 (4)
C26A 0.1949 (17) 0.4790 (18) 0.7944 (15) 0.052 (3) 0.40 (4)
H26A 0.260668 0.397623 0.781853 0.063* 0.40 (4)
C27A 0.106 (2) 0.453 (2) 0.8714 (16) 0.068 (4) 0.40 (4)
H27D 0.161822 0.409929 0.922812 0.103* 0.40 (4)
H27E 0.057904 0.402910 0.853662 0.103* 0.40 (4)
H27F 0.040754 0.530928 0.887135 0.103* 0.40 (4)
C28A 0.110 (3) 0.533 (3) 0.7104 (15) 0.059 (4) 0.40 (4)
H28D 0.067387 0.476743 0.696607 0.088* 0.40 (4)
H28E 0.168554 0.546182 0.660451 0.088* 0.40 (4)
H28F 0.041091 0.611738 0.720449 0.088* 0.40 (4)
O5 0.6804 (4) −0.1070 (5) 0.9384 (3) 0.0790 (11) 0.795 (12)
C32 0.6950 (7) −0.0781 (10) 1.0249 (6) 0.0881 (18) 0.795 (12)
H32A 0.708247 −0.149901 1.070183 0.106* 0.795 (12)
H32B 0.615284 −0.009512 1.041729 0.106* 0.795 (12)
C33 0.8176 (5) −0.0426 (5) 1.0150 (3) 0.0768 (14) 0.795 (12)
H33A 0.856158 −0.045779 1.073360 0.092* 0.795 (12)
H33B 0.798160 0.040072 0.982139 0.092* 0.795 (12)
C34 0.9097 (5) −0.1411 (6) 0.9618 (4) 0.0849 (18) 0.795 (12)
H34A 0.977508 −0.113312 0.927105 0.102* 0.795 (12)
H34B 0.956073 −0.217464 1.000710 0.102* 0.795 (12)
C35 0.8117 (5) −0.1581 (5) 0.9022 (3) 0.0747 (14) 0.795 (12)
H35A 0.817227 −0.116739 0.841648 0.090* 0.795 (12)
H35B 0.833126 −0.246289 0.898199 0.090* 0.795 (12)
O5A 0.6961 (19) −0.152 (2) 0.9615 (14) 0.091 (4) 0.205 (12)
C32A 0.686 (2) −0.067 (4) 1.022 (3) 0.088 (5) 0.205 (12)
H32C 0.638742 −0.083928 1.077817 0.106* 0.205 (12)
H32D 0.638579 0.018375 0.995494 0.106* 0.205 (12)
C33A 0.832 (2) −0.091 (2) 1.0371 (13) 0.092 (4) 0.205 (12)
H33C 0.872091 −0.166299 1.078330 0.110* 0.205 (12)
H33D 0.844468 −0.021169 1.060362 0.110* 0.205 (12)
C34A 0.889 (2) −0.105 (2) 0.9437 (15) 0.087 (4) 0.205 (12)
H34C 0.857479 −0.027788 0.903504 0.104* 0.205 (12)
H34D 0.988378 −0.139980 0.942702 0.104* 0.205 (12)
C35A 0.827 (2) −0.195 (2) 0.9227 (17) 0.086 (4) 0.205 (12)
H35C 0.822488 −0.195092 0.857796 0.103* 0.205 (12)
H35D 0.878724 −0.279412 0.949626 0.103* 0.205 (12)

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene-κC2]chromium(II)} tetrahydrofuran disolvate (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cr 0.02749 (16) 0.03361 (17) 0.02747 (15) −0.00935 (12) −0.00114 (10) −0.00153 (11)
O1 0.0433 (8) 0.0381 (8) 0.0316 (7) −0.0049 (6) 0.0010 (5) −0.0038 (5)
O2 0.0421 (8) 0.0373 (8) 0.0327 (7) −0.0040 (6) 0.0002 (5) −0.0019 (5)
O3 0.0367 (8) 0.0499 (9) 0.0379 (7) −0.0203 (7) −0.0063 (5) 0.0026 (6)
O4 0.0379 (8) 0.0501 (9) 0.0350 (7) −0.0217 (7) −0.0040 (5) 0.0029 (6)
N1 0.0304 (8) 0.0357 (9) 0.0281 (7) −0.0085 (7) 0.0002 (6) −0.0004 (6)
N2 0.0320 (8) 0.0387 (9) 0.0260 (7) −0.0101 (7) −0.0016 (6) −0.0026 (6)
C1 0.0285 (10) 0.0376 (11) 0.0395 (10) −0.0107 (8) 0.0001 (7) −0.0052 (8)
C2 0.0390 (12) 0.0618 (15) 0.0565 (12) −0.0261 (12) −0.0054 (9) −0.0007 (11)
C3 0.0308 (10) 0.0381 (11) 0.0380 (10) −0.0111 (9) 0.0014 (7) −0.0069 (8)
C4 0.0583 (15) 0.0422 (13) 0.0497 (12) −0.0016 (11) 0.0042 (10) −0.0104 (10)
C5 0.0236 (9) 0.0323 (9) 0.0270 (8) −0.0088 (7) −0.0006 (6) −0.0050 (7)
C6 0.0554 (14) 0.0460 (13) 0.0348 (10) −0.0033 (11) 0.0009 (9) 0.0069 (9)
C7 0.0609 (15) 0.0517 (14) 0.0251 (9) −0.0086 (12) 0.0021 (9) 0.0045 (8)
C8 0.0320 (10) 0.0308 (10) 0.0349 (9) −0.0057 (8) −0.0016 (7) 0.0006 (7)
C9 0.0344 (11) 0.0406 (11) 0.0422 (10) −0.0067 (9) −0.0029 (8) 0.0015 (8)
C17 0.039 (4) 0.055 (4) 0.064 (4) −0.014 (3) −0.008 (3) −0.011 (3)
C18 0.051 (6) 0.101 (9) 0.114 (7) −0.038 (6) 0.019 (5) −0.009 (6)
C19 0.089 (8) 0.105 (7) 0.087 (5) −0.061 (7) −0.032 (5) 0.002 (4)
C17A 0.035 (6) 0.065 (7) 0.058 (6) −0.024 (5) 0.010 (4) 0.005 (5)
C18A 0.026 (4) 0.054 (6) 0.065 (6) −0.017 (4) −0.002 (3) 0.010 (5)
C19A 0.086 (10) 0.138 (13) 0.060 (6) −0.063 (9) −0.025 (6) 0.017 (6)
C10 0.0359 (12) 0.0528 (14) 0.0653 (14) −0.0040 (11) 0.0051 (10) −0.0086 (11)
C11 0.0550 (15) 0.0468 (14) 0.0626 (14) 0.0005 (12) 0.0055 (11) −0.0154 (11)
C12 0.0535 (14) 0.0424 (13) 0.0657 (14) −0.0129 (11) −0.0036 (11) −0.0126 (11)
C13 0.0384 (11) 0.0363 (11) 0.0471 (11) −0.0100 (9) −0.0015 (8) −0.0001 (9)
C14 0.0412 (13) 0.0545 (15) 0.0772 (15) −0.0217 (11) 0.0028 (11) −0.0194 (12)
C15 0.0515 (15) 0.0661 (18) 0.092 (2) −0.0258 (14) −0.0218 (14) 0.0107 (15)
C16 0.0687 (19) 0.097 (2) 0.0678 (16) −0.0495 (18) 0.0039 (13) −0.0028 (15)
C20 0.0357 (10) 0.0404 (11) 0.0230 (8) −0.0111 (9) 0.0029 (7) −0.0047 (7)
C21 0.0404 (11) 0.0484 (12) 0.0333 (9) −0.0190 (10) 0.0068 (7) −0.0098 (8)
C29 0.037 (2) 0.066 (3) 0.052 (3) −0.022 (2) 0.0076 (18) −0.023 (2)
C30 0.049 (2) 0.100 (5) 0.049 (2) −0.031 (3) −0.0036 (15) −0.003 (2)
C31 0.061 (3) 0.144 (6) 0.048 (3) −0.063 (4) 0.014 (2) −0.017 (3)
C29A 0.042 (9) 0.077 (10) 0.042 (7) −0.025 (7) −0.014 (6) −0.023 (7)
C30A 0.045 (8) 0.091 (15) 0.061 (9) −0.026 (10) −0.005 (6) −0.003 (10)
C31A 0.043 (10) 0.088 (11) 0.050 (12) −0.026 (9) 0.002 (8) −0.014 (9)
C22 0.0551 (14) 0.0531 (14) 0.0475 (11) −0.0267 (12) 0.0113 (10) −0.0175 (10)
C23 0.0563 (15) 0.0455 (13) 0.0552 (13) −0.0111 (12) 0.0115 (11) −0.0186 (10)
C24 0.0381 (12) 0.0549 (14) 0.0566 (13) −0.0048 (11) 0.0026 (10) −0.0135 (11)
C25 0.0340 (11) 0.0506 (13) 0.0371 (10) −0.0092 (10) 0.0002 (8) −0.0112 (9)
C26 0.039 (3) 0.061 (4) 0.045 (4) −0.019 (3) −0.007 (3) −0.012 (3)
C27 0.079 (8) 0.094 (7) 0.070 (6) −0.057 (7) −0.025 (5) 0.009 (5)
C28 0.037 (4) 0.082 (8) 0.053 (4) −0.018 (4) −0.011 (3) −0.003 (4)
C26A 0.027 (4) 0.065 (6) 0.059 (7) −0.002 (4) −0.001 (4) −0.026 (5)
C27A 0.057 (6) 0.081 (7) 0.069 (7) −0.032 (6) 0.003 (5) 0.003 (6)
C28A 0.039 (7) 0.082 (11) 0.057 (6) −0.020 (7) 0.004 (4) −0.018 (6)
O5 0.0649 (19) 0.076 (3) 0.094 (2) −0.0215 (19) −0.0176 (16) −0.0061 (19)
C32 0.080 (3) 0.101 (4) 0.062 (3) −0.011 (3) 0.015 (2) 0.002 (3)
C33 0.080 (3) 0.076 (3) 0.067 (3) −0.012 (2) −0.026 (2) −0.013 (2)
C34 0.057 (3) 0.087 (4) 0.107 (4) −0.018 (3) 0.002 (2) −0.021 (3)
C35 0.082 (3) 0.063 (3) 0.072 (3) −0.013 (2) −0.004 (2) −0.017 (2)
O5A 0.070 (6) 0.095 (8) 0.103 (8) −0.025 (6) −0.006 (5) −0.006 (6)
C32A 0.076 (7) 0.092 (8) 0.078 (8) −0.008 (7) −0.009 (7) −0.002 (7)
C33A 0.083 (7) 0.087 (8) 0.091 (7) −0.006 (7) −0.024 (6) −0.021 (7)
C34A 0.071 (7) 0.073 (8) 0.110 (7) −0.017 (6) −0.001 (7) −0.011 (7)
C35A 0.081 (7) 0.073 (8) 0.096 (8) −0.017 (6) 0.000 (6) −0.017 (7)

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene-κC2]chromium(II)} tetrahydrofuran disolvate (1) . Geometric parameters (Å, º)

Cr—Cri 2.5308 (6) C29—H29 1.0000
Cr—O1 2.0178 (14) C29—C30 1.520 (6)
Cr—O2i 2.0118 (14) C29—C31 1.532 (6)
Cr—O3 2.0202 (13) C30—H30A 0.9800
Cr—O4i 2.0248 (13) C30—H30B 0.9800
Cr—C5 2.3812 (16) C30—H30C 0.9800
O1—C3 1.254 (2) C31—H31A 0.9800
O2—C3 1.261 (2) C31—H31B 0.9800
O3—C1 1.263 (2) C31—H31C 0.9800
O4—C1 1.259 (2) C29A—H29A 1.0000
N1—C5 1.355 (2) C29A—C30A 1.525 (15)
N1—C6 1.385 (2) C29A—C31A 1.526 (15)
N1—C8 1.437 (2) C30A—H30D 0.9800
N2—C5 1.366 (2) C30A—H30E 0.9800
N2—C7 1.393 (2) C30A—H30F 0.9800
N2—C20 1.435 (2) C31A—H31D 0.9800
C1—C2 1.502 (3) C31A—H31E 0.9800
C2—H2A 0.9800 C31A—H31F 0.9800
C2—H2B 0.9800 C22—H22 0.9500
C2—H2C 0.9800 C22—C23 1.382 (3)
C3—C4 1.502 (3) C23—H23 0.9500
C4—H4A 0.9800 C23—C24 1.379 (3)
C4—H4B 0.9800 C24—H24 0.9500
C4—H4C 0.9800 C24—C25 1.383 (3)
C6—H6 0.9500 C25—C26 1.519 (8)
C6—C7 1.320 (3) C25—C26A 1.519 (12)
C7—H7 0.9500 C26—H26 1.0000
C8—C9 1.403 (3) C26—C27 1.542 (8)
C8—C13 1.394 (3) C26—C28 1.531 (9)
C9—C17 1.521 (8) C27—H27A 0.9800
C9—C17A 1.516 (12) C27—H27B 0.9800
C9—C10 1.389 (3) C27—H27C 0.9800
C17—H17 1.0000 C28—H28A 0.9800
C17—C18 1.514 (9) C28—H28B 0.9800
C17—C19 1.535 (8) C28—H28C 0.9800
C18—H18A 0.9800 C26A—H26A 1.0000
C18—H18B 0.9800 C26A—C27A 1.527 (11)
C18—H18C 0.9800 C26A—C28A 1.536 (11)
C19—H19A 0.9800 C27A—H27D 0.9800
C19—H19B 0.9800 C27A—H27E 0.9800
C19—H19C 0.9800 C27A—H27F 0.9800
C17A—H17A 1.0000 C28A—H28D 0.9800
C17A—C18A 1.549 (11) C28A—H28E 0.9800
C17A—C19A 1.543 (12) C28A—H28F 0.9800
C18A—H18D 0.9800 O5—C32 1.430 (7)
C18A—H18E 0.9800 O5—C35 1.420 (5)
C18A—H18F 0.9800 C32—H32A 0.9900
C19A—H19D 0.9800 C32—H32B 0.9900
C19A—H19E 0.9800 C32—C33 1.499 (6)
C19A—H19F 0.9800 C33—H33A 0.9900
C10—H10 0.9500 C33—H33B 0.9900
C10—C11 1.384 (4) C33—C34 1.518 (5)
C11—H11 0.9500 C34—H34A 0.9900
C11—C12 1.382 (4) C34—H34B 0.9900
C12—H12 0.9500 C34—C35 1.503 (5)
C12—C13 1.386 (3) C35—H35A 0.9900
C13—C14 1.521 (3) C35—H35B 0.9900
C14—H14 1.0000 O5A—C32A 1.421 (15)
C14—C15 1.522 (3) O5A—C35A 1.423 (14)
C14—C16 1.531 (4) C32A—H32C 0.9900
C15—H15A 0.9800 C32A—H32D 0.9900
C15—H15B 0.9800 C32A—C33A 1.504 (8)
C15—H15C 0.9800 C33A—H33C 0.9900
C16—H16A 0.9800 C33A—H33D 0.9900
C16—H16B 0.9800 C33A—C34A 1.517 (8)
C16—H16C 0.9800 C34A—H34C 0.9900
C20—C21 1.394 (3) C34A—H34D 0.9900
C20—C25 1.392 (3) C34A—C35A 1.505 (8)
C21—C29 1.524 (5) C35A—H35C 0.9900
C21—C29A 1.525 (17) C35A—H35D 0.9900
C21—C22 1.387 (3)
O1—Cr—Cri 85.85 (4) C21—C29—C31 110.1 (5)
O1—Cr—O3 89.35 (6) C30—C29—C21 113.0 (4)
O1—Cr—O4i 90.32 (6) C30—C29—H29 107.6
O1—Cr—C5 94.62 (6) C30—C29—C31 110.7 (5)
O2i—Cr—Cri 85.44 (4) C31—C29—H29 107.6
O2i—Cr—O1 171.29 (5) C29—C30—H30A 109.5
O2i—Cr—O3 89.72 (6) C29—C30—H30B 109.5
O2i—Cr—O4i 89.33 (6) C29—C30—H30C 109.5
O2i—Cr—C5 94.10 (6) H30A—C30—H30B 109.5
O3—Cr—Cri 85.65 (4) H30A—C30—H30C 109.5
O3—Cr—O4i 171.54 (5) H30B—C30—H30C 109.5
O3—Cr—C5 95.67 (5) C29—C31—H31A 109.5
O4i—Cr—Cri 85.90 (4) C29—C31—H31B 109.5
O4i—Cr—C5 92.78 (5) C29—C31—H31C 109.5
C5—Cr—Cri 178.60 (5) H31A—C31—H31B 109.5
C3—O1—Cr 121.81 (12) H31A—C31—H31C 109.5
C3—O2—Cri 122.43 (13) H31B—C31—H31C 109.5
C1—O3—Cr 122.10 (12) C21—C29A—H29A 108.5
C1—O4—Cri 121.67 (12) C21—C29A—C30A 109.1 (16)
C5—N1—C6 112.15 (16) C21—C29A—C31A 110 (2)
C5—N1—C8 127.76 (14) C30A—C29A—H29A 108.5
C6—N1—C8 120.09 (16) C30A—C29A—C31A 112 (2)
C5—N2—C7 111.56 (16) C31A—C29A—H29A 108.5
C5—N2—C20 127.10 (14) C29A—C30A—H30D 109.5
C7—N2—C20 121.26 (15) C29A—C30A—H30E 109.5
O3—C1—C2 117.20 (17) C29A—C30A—H30F 109.5
O4—C1—O3 124.59 (17) H30D—C30A—H30E 109.5
O4—C1—C2 118.21 (17) H30D—C30A—H30F 109.5
C1—C2—H2A 109.5 H30E—C30A—H30F 109.5
C1—C2—H2B 109.5 C29A—C31A—H31D 109.5
C1—C2—H2C 109.5 C29A—C31A—H31E 109.5
H2A—C2—H2B 109.5 C29A—C31A—H31F 109.5
H2A—C2—H2C 109.5 H31D—C31A—H31E 109.5
H2B—C2—H2C 109.5 H31D—C31A—H31F 109.5
O1—C3—O2 124.46 (18) H31E—C31A—H31F 109.5
O1—C3—C4 117.95 (17) C21—C22—H22 119.4
O2—C3—C4 117.58 (18) C23—C22—C21 121.2 (2)
C3—C4—H4A 109.5 C23—C22—H22 119.4
C3—C4—H4B 109.5 C22—C23—H23 120.2
C3—C4—H4C 109.5 C24—C23—C22 119.6 (2)
H4A—C4—H4B 109.5 C24—C23—H23 120.2
H4A—C4—H4C 109.5 C23—C24—H24 119.1
H4B—C4—H4C 109.5 C23—C24—C25 121.8 (2)
N1—C5—Cr 128.25 (12) C25—C24—H24 119.1
N1—C5—N2 102.64 (14) C20—C25—C26 121.1 (6)
N2—C5—Cr 128.71 (13) C20—C25—C26A 122.9 (8)
N1—C6—H6 126.5 C24—C25—C20 117.0 (2)
C7—C6—N1 106.96 (18) C24—C25—C26 121.7 (6)
C7—C6—H6 126.5 C24—C25—C26A 119.5 (8)
N2—C7—H7 126.7 C25—C26—H26 109.4
C6—C7—N2 106.69 (17) C25—C26—C27 106.7 (8)
C6—C7—H7 126.7 C25—C26—C28 111.9 (9)
C9—C8—N1 118.88 (18) C27—C26—H26 109.4
C13—C8—N1 118.39 (17) C28—C26—H26 109.4
C13—C8—C9 122.60 (19) C28—C26—C27 110.0 (10)
C8—C9—C17 121.5 (5) C26—C27—H27A 109.5
C8—C9—C17A 122.0 (8) C26—C27—H27B 109.5
C10—C9—C8 117.3 (2) C26—C27—H27C 109.5
C10—C9—C17 121.2 (5) H27A—C27—H27B 109.5
C10—C9—C17A 120.6 (8) H27A—C27—H27C 109.5
C9—C17—H17 107.3 H27B—C27—H27C 109.5
C9—C17—C19 108.8 (8) C26—C28—H28A 109.5
C18—C17—C9 114.5 (9) C26—C28—H28B 109.5
C18—C17—H17 107.3 C26—C28—H28C 109.5
C18—C17—C19 111.4 (9) H28A—C28—H28B 109.5
C19—C17—H17 107.3 H28A—C28—H28C 109.5
C17—C18—H18A 109.5 H28B—C28—H28C 109.5
C17—C18—H18B 109.5 C25—C26A—H26A 106.4
C17—C18—H18C 109.5 C25—C26A—C27A 116.8 (14)
H18A—C18—H18B 109.5 C25—C26A—C28A 110.5 (13)
H18A—C18—H18C 109.5 C27A—C26A—H26A 106.4
H18B—C18—H18C 109.5 C27A—C26A—C28A 109.7 (14)
C17—C19—H19A 109.5 C28A—C26A—H26A 106.4
C17—C19—H19B 109.5 C26A—C27A—H27D 109.5
C17—C19—H19C 109.5 C26A—C27A—H27E 109.5
H19A—C19—H19B 109.5 C26A—C27A—H27F 109.5
H19A—C19—H19C 109.5 H27D—C27A—H27E 109.5
H19B—C19—H19C 109.5 H27D—C27A—H27F 109.5
C9—C17A—H17A 109.3 H27E—C27A—H27F 109.5
C9—C17A—C18A 108.6 (12) C26A—C28A—H28D 109.5
C9—C17A—C19A 112.7 (13) C26A—C28A—H28E 109.5
C18A—C17A—H17A 109.3 C26A—C28A—H28F 109.5
C19A—C17A—H17A 109.3 H28D—C28A—H28E 109.5
C19A—C17A—C18A 107.5 (12) H28D—C28A—H28F 109.5
C17A—C18A—H18D 109.5 H28E—C28A—H28F 109.5
C17A—C18A—H18E 109.5 C35—O5—C32 107.2 (4)
C17A—C18A—H18F 109.5 O5—C32—H32A 111.1
H18D—C18A—H18E 109.5 O5—C32—H32B 111.1
H18D—C18A—H18F 109.5 O5—C32—C33 103.4 (5)
H18E—C18A—H18F 109.5 H32A—C32—H32B 109.1
C17A—C19A—H19D 109.5 C33—C32—H32A 111.1
C17A—C19A—H19E 109.5 C33—C32—H32B 111.1
C17A—C19A—H19F 109.5 C32—C33—H33A 111.6
H19D—C19A—H19E 109.5 C32—C33—H33B 111.6
H19D—C19A—H19F 109.5 C32—C33—C34 100.9 (5)
H19E—C19A—H19F 109.5 H33A—C33—H33B 109.4
C9—C10—H10 119.5 C34—C33—H33A 111.6
C11—C10—C9 121.0 (2) C34—C33—H33B 111.6
C11—C10—H10 119.5 C33—C34—H34A 111.4
C10—C11—H11 119.9 C33—C34—H34B 111.4
C12—C11—C10 120.3 (2) H34A—C34—H34B 109.3
C12—C11—H11 119.9 C35—C34—C33 101.6 (4)
C11—C12—H12 119.5 C35—C34—H34A 111.4
C11—C12—C13 120.9 (2) C35—C34—H34B 111.4
C13—C12—H12 119.5 O5—C35—C34 108.3 (3)
C8—C13—C14 121.80 (19) O5—C35—H35A 110.0
C12—C13—C8 117.8 (2) O5—C35—H35B 110.0
C12—C13—C14 120.4 (2) C34—C35—H35A 110.0
C13—C14—H14 107.9 C34—C35—H35B 110.0
C13—C14—C15 110.9 (2) H35A—C35—H35B 108.4
C13—C14—C16 111.1 (2) C32A—O5A—C35A 111.9 (14)
C15—C14—H14 107.9 O5A—C32A—H32C 111.6
C15—C14—C16 110.9 (2) O5A—C32A—H32D 111.6
C16—C14—H14 107.9 O5A—C32A—C33A 100.7 (14)
C14—C15—H15A 109.5 H32C—C32A—H32D 109.4
C14—C15—H15B 109.5 C33A—C32A—H32C 111.6
C14—C15—H15C 109.5 C33A—C32A—H32D 111.6
H15A—C15—H15B 109.5 C32A—C33A—H33C 111.5
H15A—C15—H15C 109.5 C32A—C33A—H33D 111.5
H15B—C15—H15C 109.5 C32A—C33A—C34A 101.1 (15)
C14—C16—H16A 109.5 H33C—C33A—H33D 109.4
C14—C16—H16B 109.5 C34A—C33A—H33C 111.5
C14—C16—H16C 109.5 C34A—C33A—H33D 111.5
H16A—C16—H16B 109.5 C33A—C34A—H34C 112.3
H16A—C16—H16C 109.5 C33A—C34A—H34D 112.3
H16B—C16—H16C 109.5 H34C—C34A—H34D 109.9
C21—C20—N2 118.01 (17) C35A—C34A—C33A 97.4 (13)
C25—C20—N2 118.83 (18) C35A—C34A—H34C 112.3
C25—C20—C21 123.06 (19) C35A—C34A—H34D 112.3
C20—C21—C29 123.0 (4) O5A—C35A—C34A 103.3 (13)
C20—C21—C29A 118.0 (14) O5A—C35A—H35C 111.1
C22—C21—C20 117.27 (19) O5A—C35A—H35D 111.1
C22—C21—C29 119.7 (4) C34A—C35A—H35C 111.1
C22—C21—C29A 124.4 (14) C34A—C35A—H35D 111.1
C21—C29—H29 107.6 H35C—C35A—H35D 109.1
Cr—O1—C3—O2 −0.4 (3) C10—C9—C17A—C19A −65.1 (17)
Cr—O1—C3—C4 178.64 (15) C10—C11—C12—C13 −1.8 (4)
Cri—O2—C3—O1 0.1 (3) C11—C12—C13—C8 −0.6 (3)
Cri—O2—C3—C4 −179.01 (14) C11—C12—C13—C14 176.9 (2)
Cr—O3—C1—O4 −3.9 (3) C12—C13—C14—C15 −58.8 (3)
Cr—O3—C1—C2 175.42 (14) C12—C13—C14—C16 65.2 (3)
Cri—O4—C1—O3 3.5 (3) C13—C8—C9—C17 173.5 (5)
Cri—O4—C1—C2 −175.80 (14) C13—C8—C9—C17A −179.2 (8)
N1—C6—C7—N2 0.1 (3) C13—C8—C9—C10 −3.6 (3)
N1—C8—C9—C17 −10.8 (6) C20—N2—C5—Cr −10.6 (3)
N1—C8—C9—C17A −3.5 (8) C20—N2—C5—N1 176.26 (16)
N1—C8—C9—C10 172.11 (18) C20—N2—C7—C6 −176.71 (19)
N1—C8—C13—C12 −172.31 (18) C20—C21—C29—C30 −118.9 (6)
N1—C8—C13—C14 10.2 (3) C20—C21—C29—C31 116.7 (6)
N2—C20—C21—C29 5.7 (4) C20—C21—C29A—C30A −100 (3)
N2—C20—C21—C29A 11.7 (11) C20—C21—C29A—C31A 137 (2)
N2—C20—C21—C22 −174.60 (16) C20—C21—C22—C23 −0.1 (3)
N2—C20—C25—C24 174.45 (17) C20—C25—C26—C27 105.0 (10)
N2—C20—C25—C26 −10.0 (7) C20—C25—C26—C28 −134.6 (11)
N2—C20—C25—C26A 3.4 (10) C20—C25—C26A—C27A 111.0 (15)
C5—N1—C6—C7 −0.4 (3) C20—C25—C26A—C28A −122.7 (14)
C5—N1—C8—C9 80.8 (2) C21—C20—C25—C24 −1.9 (3)
C5—N1—C8—C13 −103.4 (2) C21—C20—C25—C26 173.7 (7)
C5—N2—C7—C6 0.1 (2) C21—C20—C25—C26A −173.0 (10)
C5—N2—C20—C21 −90.0 (2) C21—C22—C23—C24 −1.4 (3)
C5—N2—C20—C25 93.4 (2) C29—C21—C22—C23 179.6 (3)
C6—N1—C5—Cr −172.69 (14) C29A—C21—C22—C23 173.1 (12)
C6—N1—C5—N2 0.5 (2) C22—C21—C29—C30 61.5 (7)
C6—N1—C8—C9 −99.3 (2) C22—C21—C29—C31 −62.9 (8)
C6—N1—C8—C13 76.6 (2) C22—C21—C29A—C30A 87 (3)
C7—N2—C5—Cr 172.74 (14) C22—C21—C29A—C31A −37 (3)
C7—N2—C5—N1 −0.4 (2) C22—C23—C24—C25 1.2 (3)
C7—N2—C20—C21 86.3 (2) C23—C24—C25—C20 0.4 (3)
C7—N2—C20—C25 −90.2 (2) C23—C24—C25—C26 −175.2 (7)
C8—N1—C5—Cr 7.3 (3) C23—C24—C25—C26A 171.8 (10)
C8—N1—C5—N2 −179.56 (16) C24—C25—C26—C27 −79.6 (12)
C8—N1—C6—C7 179.62 (19) C24—C25—C26—C28 40.8 (15)
C8—C9—C17—C18 −143.1 (10) C24—C25—C26A—C27A −59.9 (18)
C8—C9—C17—C19 91.6 (11) C24—C25—C26A—C28A 66.4 (19)
C8—C9—C17A—C18A −130.6 (11) C25—C20—C21—C29 −177.9 (3)
C8—C9—C17A—C19A 110.4 (15) C25—C20—C21—C29A −171.9 (11)
C8—C9—C10—C11 1.0 (3) C25—C20—C21—C22 1.8 (3)
C8—C13—C14—C15 118.7 (2) O5—C32—C33—C34 −43.2 (11)
C8—C13—C14—C16 −117.4 (2) C32—O5—C35—C34 −9.6 (7)
C9—C8—C13—C12 3.4 (3) C32—C33—C34—C35 36.1 (10)
C9—C8—C13—C14 −174.10 (19) C33—C34—C35—O5 −17.4 (8)
C9—C10—C11—C12 1.6 (4) C35—O5—C32—C33 33.3 (9)
C17—C9—C10—C11 −176.1 (6) O5A—C32A—C33A—C34A 41 (4)
C17A—C9—C10—C11 176.7 (8) C32A—O5A—C35A—C34A −15 (3)
C10—C9—C17—C18 33.9 (13) C32A—C33A—C34A—C35A −50 (3)
C10—C9—C17—C19 −91.4 (12) C33A—C34A—C35A—O5A 39 (2)
C10—C9—C17A—C18A 54.0 (17) C35A—O5A—C32A—C33A −16 (4)

Symmetry code: (i) −x+1, −y+1, −z+1.

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene-κC2]chromium(II)} tetrahydrofuran disolvate (1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···O5 0.95 2.47 3.411 (6) 171

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene-κC2]chromium(II)}, (2) . Crystal data

{Cr2(C2H3O2)4(C21H24N2)2] Z = 1
Mr = 949.02 F(000) = 500
Triclinic, P1 Dx = 1.324 Mg m3
a = 8.3679 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.6127 (8) Å Cell parameters from 4925 reflections
c = 13.8355 (9) Å θ = 2.0–29.2°
α = 68.949 (5)° µ = 0.51 mm1
β = 83.891 (5)° T = 170 K
γ = 71.508 (5)° Plate, clear violet
V = 1189.90 (14) Å3 0.40 × 0.24 × 0.07 mm

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene-κC2]chromium(II)}, (2) . Data collection

Stoe IPDS 2T diffractometer 4174 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 2894 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.071
Detector resolution: 6.67 pixels mm-1 θmax = 25.0°, θmin = 2.1°
rotation method, ω scans h = −8→9
Absorption correction: numerical (X-RED32; Stoe & Cie, 2015) k = −13→13
Tmin = 0.844, Tmax = 0.963 l = −16→16
8474 measured reflections

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene-κC2]chromium(II)}, (2) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0639P)2] where P = (Fo2 + 2Fc2)/3
S = 0.91 (Δ/σ)max = 0.001
4174 reflections Δρmax = 0.50 e Å3
297 parameters Δρmin = −0.51 e Å3
0 restraints

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene-κC2]chromium(II)}, (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene-κC2]chromium(II)}, (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cr 0.54824 (5) 0.51154 (4) 0.40816 (3) 0.02630 (15)
O1 0.3003 (2) 0.59224 (19) 0.36961 (14) 0.0351 (5)
N1 0.5905 (3) 0.6422 (2) 0.14863 (17) 0.0343 (6)
C1 0.1879 (3) 0.6037 (3) 0.4367 (2) 0.0316 (6)
O2 0.2154 (2) 0.57212 (18) 0.53188 (15) 0.0340 (4)
N2 0.7496 (3) 0.4481 (2) 0.19833 (17) 0.0330 (5)
C2 0.0074 (3) 0.6573 (3) 0.4002 (3) 0.0445 (8)
H2A −0.061866 0.700386 0.446329 0.067*
H2B −0.033270 0.586646 0.400891 0.067*
H2C −0.000188 0.719885 0.329572 0.067*
O3 0.5662 (2) 0.68514 (17) 0.39901 (14) 0.0338 (4)
C3 0.5333 (3) 0.7243 (3) 0.4751 (2) 0.0309 (6)
O4 0.4828 (2) 0.66423 (18) 0.56159 (14) 0.0335 (4)
C4 0.5595 (4) 0.8516 (3) 0.4611 (3) 0.0454 (8)
H4A 0.482967 0.891917 0.506614 0.068*
H4B 0.536228 0.908816 0.388898 0.068*
H4C 0.676311 0.837131 0.478780 0.068*
C5 0.6360 (3) 0.5358 (3) 0.2356 (2) 0.0285 (6)
C6 0.6703 (4) 0.6201 (3) 0.0613 (2) 0.0478 (8)
H6 0.656021 0.679986 −0.007647 0.057*
C7 0.7702 (4) 0.4995 (3) 0.0922 (2) 0.0474 (8)
H7 0.842308 0.456314 0.049825 0.057*
C8 0.4637 (3) 0.7630 (3) 0.1422 (2) 0.0314 (6)
C9 0.5118 (3) 0.8645 (3) 0.1481 (2) 0.0327 (6)
C10 0.3881 (4) 0.9817 (3) 0.1331 (2) 0.0371 (7)
H10 0.418452 1.052446 0.136277 0.044*
C11 0.2212 (4) 0.9993 (3) 0.1135 (2) 0.0370 (7)
C12 0.1785 (4) 0.8955 (3) 0.1109 (2) 0.0382 (7)
H12 0.064049 0.906087 0.099248 0.046*
C13 0.2971 (3) 0.7752 (3) 0.1248 (2) 0.0354 (7)
C14 0.6915 (4) 0.8479 (3) 0.1710 (2) 0.0441 (8)
H14A 0.707584 0.820080 0.246043 0.066*
H14B 0.715899 0.930470 0.137280 0.066*
H14C 0.767964 0.782500 0.144690 0.066*
C15 0.0910 (4) 1.1303 (3) 0.0923 (2) 0.0505 (8)
H15A 0.110195 1.171200 0.138957 0.076*
H15B −0.021906 1.119692 0.103718 0.076*
H15C 0.100211 1.184860 0.020298 0.076*
C16 0.2480 (4) 0.6630 (3) 0.1227 (2) 0.0479 (8)
H16A 0.272811 0.593565 0.190257 0.072*
H16B 0.311952 0.631495 0.068962 0.072*
H16C 0.127199 0.690516 0.107617 0.072*
C17 0.8384 (3) 0.3160 (3) 0.2571 (2) 0.0317 (6)
C18 0.7640 (3) 0.2203 (3) 0.2707 (2) 0.0348 (7)
C19 0.8564 (4) 0.0938 (3) 0.3208 (2) 0.0391 (7)
H19 0.806511 0.027229 0.331513 0.047*
C20 1.0202 (4) 0.0600 (3) 0.3562 (2) 0.0387 (7)
C21 1.0873 (3) 0.1596 (3) 0.3422 (2) 0.0374 (7)
H21 1.198156 0.138463 0.367078 0.045*
C22 1.0007 (3) 0.2876 (3) 0.2938 (2) 0.0334 (6)
C23 0.5886 (4) 0.2541 (3) 0.2299 (3) 0.0494 (8)
H23A 0.511481 0.320742 0.254719 0.074*
H23B 0.550978 0.176680 0.254475 0.074*
H23C 0.589497 0.286814 0.153996 0.074*
C24 1.1213 (4) −0.0789 (3) 0.4055 (3) 0.0538 (9)
H24A 1.186112 −0.111074 0.352228 0.081*
H24B 1.045268 −0.130492 0.439253 0.081*
H24C 1.198730 −0.085845 0.457128 0.081*
C25 1.0787 (4) 0.3930 (3) 0.2774 (3) 0.0509 (8)
H25A 0.995447 0.465874 0.291890 0.076*
H25B 1.115855 0.422015 0.205433 0.076*
H25C 1.175804 0.359940 0.324063 0.076*

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene-κC2]chromium(II)}, (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cr 0.0215 (2) 0.0263 (2) 0.0304 (3) −0.00359 (17) −0.00045 (17) −0.01198 (19)
O1 0.0261 (10) 0.0418 (12) 0.0357 (11) −0.0044 (9) −0.0027 (8) −0.0156 (9)
N1 0.0347 (13) 0.0312 (14) 0.0326 (13) −0.0035 (10) −0.0001 (10) −0.0116 (11)
C1 0.0226 (14) 0.0258 (15) 0.0459 (18) −0.0048 (11) −0.0048 (13) −0.0124 (13)
O2 0.0230 (9) 0.0395 (12) 0.0385 (12) −0.0036 (8) 0.0003 (8) −0.0173 (9)
N2 0.0336 (13) 0.0306 (13) 0.0316 (13) −0.0026 (10) 0.0019 (10) −0.0135 (11)
C2 0.0255 (14) 0.049 (2) 0.057 (2) −0.0019 (13) −0.0101 (14) −0.0212 (16)
O3 0.0381 (11) 0.0285 (11) 0.0374 (11) −0.0104 (9) 0.0028 (9) −0.0149 (9)
C3 0.0202 (13) 0.0268 (15) 0.0461 (18) −0.0042 (11) −0.0021 (12) −0.0150 (14)
O4 0.0372 (11) 0.0300 (11) 0.0368 (11) −0.0108 (9) 0.0037 (9) −0.0160 (9)
C4 0.0453 (18) 0.0352 (18) 0.062 (2) −0.0136 (14) 0.0060 (15) −0.0245 (16)
C5 0.0257 (13) 0.0298 (16) 0.0298 (15) −0.0061 (12) −0.0016 (11) −0.0115 (12)
C6 0.061 (2) 0.047 (2) 0.0252 (16) −0.0061 (17) 0.0065 (14) −0.0101 (15)
C7 0.0556 (19) 0.044 (2) 0.0323 (17) −0.0005 (16) 0.0110 (14) −0.0175 (15)
C8 0.0355 (15) 0.0264 (15) 0.0260 (14) −0.0044 (12) −0.0025 (12) −0.0053 (12)
C9 0.0337 (15) 0.0355 (17) 0.0251 (14) −0.0095 (13) 0.0007 (12) −0.0071 (12)
C10 0.0459 (17) 0.0294 (16) 0.0347 (16) −0.0094 (13) −0.0022 (13) −0.0106 (13)
C11 0.0405 (17) 0.0349 (17) 0.0275 (15) −0.0019 (13) 0.0014 (13) −0.0097 (13)
C12 0.0304 (15) 0.0437 (19) 0.0332 (16) −0.0049 (13) −0.0049 (12) −0.0089 (14)
C13 0.0371 (15) 0.0378 (17) 0.0269 (15) −0.0094 (13) −0.0049 (12) −0.0065 (13)
C14 0.0355 (16) 0.051 (2) 0.0490 (19) −0.0162 (15) 0.0007 (14) −0.0178 (16)
C15 0.0502 (19) 0.043 (2) 0.0460 (19) 0.0061 (15) −0.0021 (15) −0.0173 (16)
C16 0.0486 (18) 0.045 (2) 0.053 (2) −0.0170 (16) −0.0117 (16) −0.0142 (16)
C17 0.0313 (14) 0.0310 (16) 0.0325 (15) −0.0045 (12) 0.0061 (12) −0.0163 (13)
C18 0.0317 (15) 0.0391 (18) 0.0376 (16) −0.0087 (13) 0.0040 (12) −0.0207 (14)
C19 0.0404 (16) 0.0386 (18) 0.0460 (18) −0.0155 (14) 0.0052 (14) −0.0216 (15)
C20 0.0408 (16) 0.0324 (17) 0.0394 (17) −0.0059 (13) 0.0003 (13) −0.0125 (14)
C21 0.0284 (15) 0.0413 (18) 0.0440 (17) −0.0042 (13) −0.0017 (13) −0.0214 (14)
C22 0.0305 (14) 0.0348 (17) 0.0395 (16) −0.0083 (13) 0.0048 (12) −0.0208 (13)
C23 0.0357 (16) 0.061 (2) 0.060 (2) −0.0147 (16) −0.0014 (15) −0.0297 (18)
C24 0.055 (2) 0.0368 (19) 0.061 (2) −0.0012 (16) −0.0054 (17) −0.0173 (17)
C25 0.0439 (18) 0.049 (2) 0.071 (2) −0.0189 (16) 0.0035 (16) −0.0300 (18)

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene-κC2]chromium(II)}, (2) . Geometric parameters (Å, º)

Cr—Cri 2.5284 (9) C11—C15 1.511 (4)
Cr—O1 2.0274 (18) C12—H12 0.9500
Cr—O2i 2.0238 (17) C12—C13 1.393 (4)
Cr—O3 2.0269 (18) C13—C16 1.495 (4)
Cr—O4i 2.0270 (18) C14—H14A 0.9800
Cr—C5 2.365 (3) C14—H14B 0.9800
O1—C1 1.260 (3) C14—H14C 0.9800
N1—C5 1.360 (3) C15—H15A 0.9800
N1—C6 1.384 (4) C15—H15B 0.9800
N1—C8 1.445 (3) C15—H15C 0.9800
C1—O2 1.260 (3) C16—H16A 0.9800
C1—C2 1.504 (3) C16—H16B 0.9800
N2—C5 1.366 (3) C16—H16C 0.9800
N2—C7 1.388 (4) C17—C18 1.385 (4)
N2—C17 1.441 (3) C17—C22 1.398 (4)
C2—H2A 0.9800 C18—C19 1.378 (4)
C2—H2B 0.9800 C18—C23 1.510 (4)
C2—H2C 0.9800 C19—H19 0.9500
O3—C3 1.263 (3) C19—C20 1.392 (4)
C3—O4 1.255 (3) C20—C21 1.384 (4)
C3—C4 1.504 (4) C20—C24 1.500 (4)
C4—H4A 0.9800 C21—H21 0.9500
C4—H4B 0.9800 C21—C22 1.374 (4)
C4—H4C 0.9800 C22—C25 1.500 (4)
C6—H6 0.9500 C23—H23A 0.9800
C6—C7 1.321 (4) C23—H23B 0.9800
C7—H7 0.9500 C23—H23C 0.9800
C8—C9 1.391 (4) C24—H24A 0.9800
C8—C13 1.394 (4) C24—H24B 0.9800
C9—C10 1.384 (4) C24—H24C 0.9800
C9—C14 1.508 (4) C25—H25A 0.9800
C10—H10 0.9500 C25—H25B 0.9800
C10—C11 1.387 (4) C25—H25C 0.9800
C11—C12 1.375 (4)
O1—Cr—Cri 85.57 (6) C12—C11—C10 118.3 (3)
O1—Cr—C5 93.88 (8) C12—C11—C15 120.9 (3)
O2i—Cr—Cri 86.09 (6) C11—C12—H12 118.8
O2i—Cr—O1 171.65 (8) C11—C12—C13 122.4 (3)
O2i—Cr—O3 88.82 (7) C13—C12—H12 118.8
O2i—Cr—O4i 91.03 (7) C8—C13—C16 121.2 (3)
O2i—Cr—C5 94.46 (8) C12—C13—C8 117.2 (3)
O3—Cr—Cri 85.62 (6) C12—C13—C16 121.6 (3)
O3—Cr—O1 90.66 (8) C9—C14—H14A 109.5
O3—Cr—C5 93.90 (8) C9—C14—H14B 109.5
O4i—Cr—Cri 86.03 (6) C9—C14—H14C 109.5
O4i—Cr—O1 88.28 (7) H14A—C14—H14B 109.5
O4i—Cr—O3 171.63 (8) H14A—C14—H14C 109.5
O4i—Cr—C5 94.45 (8) H14B—C14—H14C 109.5
C5—Cr—Cri 179.26 (7) C11—C15—H15A 109.5
C1—O1—Cr 121.90 (16) C11—C15—H15B 109.5
C5—N1—C6 112.2 (2) C11—C15—H15C 109.5
C5—N1—C8 125.9 (2) H15A—C15—H15B 109.5
C6—N1—C8 121.7 (2) H15A—C15—H15C 109.5
O1—C1—C2 117.3 (2) H15B—C15—H15C 109.5
O2—C1—O1 124.9 (2) C13—C16—H16A 109.5
O2—C1—C2 117.8 (2) C13—C16—H16B 109.5
C1—O2—Cri 121.50 (16) C13—C16—H16C 109.5
C5—N2—C7 111.9 (2) H16A—C16—H16B 109.5
C5—N2—C17 126.7 (2) H16A—C16—H16C 109.5
C7—N2—C17 121.4 (2) H16B—C16—H16C 109.5
C1—C2—H2A 109.5 C18—C17—N2 119.0 (2)
C1—C2—H2B 109.5 C18—C17—C22 122.1 (3)
C1—C2—H2C 109.5 C22—C17—N2 118.8 (2)
H2A—C2—H2B 109.5 C17—C18—C23 120.8 (3)
H2A—C2—H2C 109.5 C19—C18—C17 117.9 (2)
H2B—C2—H2C 109.5 C19—C18—C23 121.3 (3)
C3—O3—Cr 121.83 (18) C18—C19—H19 118.8
O3—C3—C4 117.2 (3) C18—C19—C20 122.3 (3)
O4—C3—O3 124.9 (2) C20—C19—H19 118.8
O4—C3—C4 117.8 (2) C19—C20—C24 121.3 (3)
C3—O4—Cri 121.56 (16) C21—C20—C19 117.4 (3)
C3—C4—H4A 109.5 C21—C20—C24 121.4 (3)
C3—C4—H4B 109.5 C20—C21—H21 118.5
C3—C4—H4C 109.5 C22—C21—C20 123.0 (2)
H4A—C4—H4B 109.5 C22—C21—H21 118.5
H4A—C4—H4C 109.5 C17—C22—C25 121.0 (3)
H4B—C4—H4C 109.5 C21—C22—C17 117.4 (3)
N1—C5—Cr 128.80 (18) C21—C22—C25 121.6 (3)
N1—C5—N2 102.3 (2) C18—C23—H23A 109.5
N2—C5—Cr 128.90 (19) C18—C23—H23B 109.5
N1—C6—H6 126.6 C18—C23—H23C 109.5
C7—C6—N1 106.8 (3) H23A—C23—H23B 109.5
C7—C6—H6 126.6 H23A—C23—H23C 109.5
N2—C7—H7 126.6 H23B—C23—H23C 109.5
C6—C7—N2 106.8 (3) C20—C24—H24A 109.5
C6—C7—H7 126.6 C20—C24—H24B 109.5
C9—C8—N1 119.5 (2) C20—C24—H24C 109.5
C9—C8—C13 122.3 (3) H24A—C24—H24B 109.5
C13—C8—N1 118.0 (2) H24A—C24—H24C 109.5
C8—C9—C14 121.6 (3) H24B—C24—H24C 109.5
C10—C9—C8 117.6 (2) C22—C25—H25A 109.5
C10—C9—C14 120.9 (3) C22—C25—H25B 109.5
C9—C10—H10 118.9 C22—C25—H25C 109.5
C9—C10—C11 122.2 (3) H25A—C25—H25B 109.5
C11—C10—H10 118.9 H25A—C25—H25C 109.5
C10—C11—C15 120.8 (3) H25B—C25—H25C 109.5
Cr—O1—C1—O2 2.9 (4) C8—N1—C5—Cr −6.1 (4)
Cr—O1—C1—C2 −176.25 (18) C8—N1—C5—N2 176.0 (2)
Cr—O3—C3—O4 −2.0 (3) C8—N1—C6—C7 −176.2 (3)
Cr—O3—C3—C4 176.97 (17) C8—C9—C10—C11 0.5 (4)
O1—C1—O2—Cri −3.0 (4) C9—C8—C13—C12 1.4 (4)
N1—C6—C7—N2 0.6 (4) C9—C8—C13—C16 −177.7 (3)
N1—C8—C9—C10 174.8 (2) C9—C10—C11—C12 1.1 (4)
N1—C8—C9—C14 −5.8 (4) C9—C10—C11—C15 −177.0 (3)
N1—C8—C13—C12 −175.2 (2) C10—C11—C12—C13 −1.5 (4)
N1—C8—C13—C16 5.7 (4) C11—C12—C13—C8 0.3 (4)
N2—C17—C18—C19 175.5 (2) C11—C12—C13—C16 179.4 (3)
N2—C17—C18—C23 −3.4 (4) C13—C8—C9—C10 −1.8 (4)
N2—C17—C22—C21 −174.8 (2) C13—C8—C9—C14 177.7 (3)
N2—C17—C22—C25 3.1 (4) C14—C9—C10—C11 −179.0 (3)
C2—C1—O2—Cri 176.10 (18) C15—C11—C12—C13 176.5 (3)
O3—C3—O4—Cri 1.5 (3) C17—N2—C5—Cr 2.8 (4)
C4—C3—O4—Cri −177.53 (17) C17—N2—C5—N1 −179.3 (2)
C5—N1—C6—C7 −1.2 (4) C17—N2—C7—C6 178.7 (3)
C5—N1—C8—C9 96.3 (3) C17—C18—C19—C20 −0.9 (4)
C5—N1—C8—C13 −87.0 (3) C18—C17—C22—C21 1.6 (4)
C5—N2—C7—C6 0.1 (4) C18—C17—C22—C25 179.5 (3)
C5—N2—C17—C18 87.9 (3) C18—C19—C20—C21 2.0 (4)
C5—N2—C17—C22 −95.5 (3) C18—C19—C20—C24 −176.7 (3)
C6—N1—C5—Cr 179.1 (2) C19—C20—C21—C22 −1.2 (4)
C6—N1—C5—N2 1.2 (3) C20—C21—C22—C17 −0.5 (4)
C6—N1—C8—C9 −89.3 (3) C20—C21—C22—C25 −178.4 (3)
C6—N1—C8—C13 87.3 (3) C22—C17—C18—C19 −1.0 (4)
C7—N2—C5—Cr −178.7 (2) C22—C17—C18—C23 −179.9 (3)
C7—N2—C5—N1 −0.8 (3) C23—C18—C19—C20 178.0 (3)
C7—N2—C17—C18 −90.5 (3) C24—C20—C21—C22 177.4 (3)
C7—N2—C17—C22 86.1 (3)

Symmetry code: (i) −x+1, −y+1, −z+1.

Tetrakis(µ-acetato-κ2O:O')bis{[1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene-κC2]chromium(II)}, (2) . Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C17–C22 ring.

D—H···A D—H H···A D···A D—H···A
C2—H2B···O2ii 0.98 2.61 3.527 (4) 155
C15—H15A···Cgiii 0.98 2.62 3.340 (3) 125

Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x−1, y+1, z.

References

  1. Abernethy, C. D., Clyburne, J. A. C., Cowley, A. H. & Jones, R. A. (1999). J. Am. Chem. Soc.121, 2329–2330.
  2. Ashida, Y., Egi, A., Arashiba, K., Tanaka, H., Mitsumoto, T., Kuriyama, S., Yoshizawa, K. & Nishibayashi, Y. (2022). Chem. Eur. J.28, e202200557. [DOI] [PubMed]
  3. Benard, M., Coppens, P., DeLucia, M. L. & Stevens, E. D. (1980). Inorg. Chem.19, 1924–1930.
  4. Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. Brauer, G. (1981). In Handbuch der Präparativen und Anorganischen Chemie. Stuttgart: Ferdinand Enke.
  6. Conde-Guadano, S., Danopoulos, A. A., Pattacini, R., Hanton, M. & Tooze, R. P. (2012a). Organometallics, 31, 1643–1652.
  7. Conde-Guadano, S., Hanton, M. R. P., Tooze, R. P. A. A., Danopoulos, A. A. & Braunstein, P. (2012b). Dalton Trans.41, 12558–12567. [DOI] [PubMed]
  8. Cotton, F. A., DeBoer, B. G., LaPrade, M. D., Pipal, J. R. & Ucko, D. A. (1971). Acta Cryst. B27, 1664–1671.
  9. Cotton, F. A. & Felthouse, T. R. (1980). Inorg. Chem.19, 328–331.
  10. Cotton, F. A., Hillard, E. A., Murillo, C. A. & Zhou, H.-C. (2000). J. Am. Chem. Soc.122, 416–417.
  11. Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed. New York: Springer Science and Business Media Inc.
  12. Cotton, F. A. & Rice, G. W. (1978). Inorg. Chem.17, 2004–2009.
  13. Cotton, F. A. & Wang, W. (1984). New J. Chem.8, 331–340.
  14. Danopoulos, A. A., Hankin, D. M., Wilkinson, G., Cafferkey, S. M., Sweet, T. K. M. & Hursthouse, M. B. (1997). Polyhedron, 16, 3879–3892.
  15. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  16. Fritsch, N., Wick, C. R., Waidmann, T., Dral, P. O., Tucher, J., Heinemann, F. W., Shubina, T. E., Clark, T. & Burzlaff, N. (2014). Inorg. Chem.53, 12305–12314. [DOI] [PubMed]
  17. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  18. Heiser, C. & Merzweiler, K. (2022). Z. Anorg. Allg. Chem.648, e202200257.
  19. Heiser, C. & Merzweiler, K. (2023). IUCrData, 8, x230801. [DOI] [PMC free article] [PubMed]
  20. Herich, P., Bučinský, L., Breza, M., Gall, M., Fronc, M., Petřiček, V. & Kožíšek, J. (2018). Acta Cryst. B74, 681–692.
  21. Huang, P.-J., Natori, Y., Kitagawa, Y., Sekine, Y., Kosaka, W. & Miyasaka, H. (2018). Inorg. Chem.57, 5371–5379. [DOI] [PubMed]
  22. Jones, C., Dange, D. & Stasch, A. (2012). J. Chem. Crystallogr.42, 494–497.
  23. Kreisel, K. A., Yap, G. P. A. & Theopold, K. H. (2006). Organometallics, 25, 4670–4679.
  24. Kreisel, K. A., Yap, G. P. A. & Theopold, K. H. (2007). Chem. Commun. pp. 1510–1511. [DOI] [PubMed]
  25. Medici, F., Gontard, G., Derat, E., Lemière, G. & Fensterbank, L. (2018). Organometallics, 37, 517–520.
  26. Niekerk, J. N. van, Schoening, F. R. L. & de Wet, J. F. (1953). Acta Cryst.6, 501–504.
  27. Peligot, M. E. (1844). C. R. Acad. Sci. pp. 609–615.
  28. Pugh, D., Wright, J. A., Freeman, S. & Danopoulos, A. A. (2006). Dalton Trans. pp. 775–782. [DOI] [PubMed]
  29. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  30. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  31. Simler, T., Danopoulos, A. A. & Braunstein, P. (2015). Chem. Commun.51, 10699–10702. [DOI] [PubMed]
  32. Stoe & Cie (2015). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.
  33. Voges, M. H., Rømming, C. & Tilset, M. (1999). Organometallics, 18, 529–533.
  34. Wang, J., An, D. & Zhu, H. (2010). Jiegou Huaxue, 29, 933–939.
  35. Wang, J., Tan, G., An, D., Zhu, H. & Yang, Y. (2011). Z. Anorg. Allg. Chem.637, 1597–1601.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989024005796/jq2035sup1.cif

e-80-00811-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989024005796/jq20351sup2.hkl

e-80-00811-1sup2.hkl (749.4KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989024005796/jq20352sup3.hkl

e-80-00811-2sup3.hkl (332.5KB, hkl)

CCDC references: 2362906, 2362905

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES