Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Jun 4;80(Pt 7):699–703. doi: 10.1107/S2056989024005103

Synthesis and crystal structures of two racemic 2-heteroaryl-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-ones

Hemant P Yennawar a, Tapas K Mal b, Mark A Olsen c, Anthony F Lagalante c, Evelyn M Louca d, Aloura D Gavalis d, Lee J Silverberg d,*
Editor: B Therriene
PMCID: PMC11223699  PMID: 38974155

3-Phenyl-2-(thio­phen-3-yl)-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one (C17H12N2OS2, 1) and 2-(1H-indol-3-yl)-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one 0.438-hydrate (C21H15N3OS·0.438H2O, 2) crystallize in space groups P21/n and C2/c, respectively. The asymmetric unit in each case is comprised of two parent mol­ecules, albeit of mixed chirality in the case of 1 and of similar chirality in 2 with the enanti­omers occupying the neighboring asymmetric units. Structure 2 also has water mol­ecules (partial occupancies) that form continous channels along the b-axis direction.

Keywords: crystal structure, thia­zine, envolope pucker, pyridine, heteroar­yl, indole, thio­phene, water channel, C—H⋯N weak hydrogen bonds

Abstract

3-Phenyl-2-(thio­phen-3-yl)-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one (C17H12N2OS2, 1) and 2-(1H-indol-3-yl)-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one 0.438-hydrate (C21H15N3OS·0.438H2O, 2) crystallize in space groups P21/n and C2/c, respectively. The asymmetric unit in each case is comprised of two parent mol­ecules, albeit of mixed chirality in the case of 1 and of similar chirality in 2 with the enanti­omers occupying the neighboring asymmetric units. Structure 2 also has water mol­ecules (partial occupancies) that form continuous channels along the b-axis direction. The thia­zine rings in both structures exhibit an envelope conformation. Inter­molecular inter­actions in 1 are defined only by C—H⋯O and C—H⋯N hydrogen bonds between crystallographically independent mol­ecules. In 2, hydrogen bonds of the type N—H⋯O between independent mol­ecules and C—H⋯N(π) type, and π–π stacking inter­actions between the pyridine rings of symmetry-related mol­ecules are observed.

1. Chemical context

The 2,3-disubstituted-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one scaffold features a pyridine ring fused to a thia­zine ring at the 5 and 6 positions. Compounds with this scaffold have previously shown anti­bacterial (Nayak et al., 2022) anti­cancer (Arya et al., 2014; Wang et al., 2015), glycosidase inhibitory (Li et al., 2012), and anti­fungal bioactivity (Liporagi-Lopes et al., 2020). A compound previously reported by us, 2,3-diphenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one (Silverberg et al., 2015; Yennawar et al., 2014), inhibited growth of two kinetoplastid parasites, Trypanosoma brucei and Crithidia fasciculata (Malfara et al., 2021). The effect was especially inter­esting for T. brucei, which causes African Sleeping Sickness (Human African Trypanosomiasis, HAT). A series of 2-aryl-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-ones was then synthesized, with various substituents on the C-aryl ring. Five of these compounds (p- and m-CF3, p- and m-Br, p-CH3) showed much stronger activity against T. brucei than 2,3-diphenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one (Silverberg et al., 2021). A series of 3-aryl-2-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-ones has since been synthesized with various substituents on the N-aryl ring and is currently undergoing testing.

Using our simple 2,4,6-tripropyl-1,3,5,2,4,6-trioxatri­phos­pho­rinane-2,4,6-trioxide (T3P)-promoted method (Silverberg et al., 2021), a series of heteroaryl-substituted 2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-ones are now being synthesized. In this communication, we report the synthesis and crystal structures of two compounds (1 and 2) in which there is a heteroaromatic ring on C2. Compound 1 has a 3-thio­phene and compound 2 has a 3-(1H)-indole. Thio­phene and indole derivatives are each known for their biological activity (da Cruz et al., 2021; Konus et al., 2022) and could have inter­esting effects on the activity of the 2-aryl-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-ones. The new compounds each have a total of three heterocycles.1.

2. Structural commentary

The title compounds crystallize in monoclinic lattices with two independent mol­ecules (A containing C1 in 1 and 2, and B containing C18 in 1 and C22 in 2; Figs. 1 and 2) in their respective asymmetric units. In 1, mol­ecules of both chiralities are seen, while in 2 both mol­ecules of similar chirality occupy the asymmetric unit. In each structure the independent mol­ecules (with appropriate inversion applied in 1) have almost identical configuration, as was confirmed by the alignment RMSD values falling within 0.013 Å when superposing chirally similar mol­ecules and matching the three non-H atoms surrounding the 2-carbon. In 2, four disordered water mol­ecule sites were identified in difference-Fourier maps and refined well with manually adjusted quarter occupancy each. However, one of those oxygen atoms sits on a special position (multiplicity 2) resulting in a total contribution of 0.875 water mol­ecules per asymmetric unit (or about 0.438 water mol­ecules per parent mol­ecule). The core thia­zine ring in both structures exhibits an envelope conformation with the 2-carbon forming the flap [puckering amplitude Q ranging between 0.5545 (15) and 0.631 (2) Å, and the θ and φ values, after accounting for the absolute configuration transformations, are between 61.47 (17) and 66.50 (18)°, and 35.6 (2) and 47.14 (2)°, respectively].

Figure 1.

Figure 1

The mol­ecular structure of 1 with displacement ellipsoids drawn at the 50% probability level. Mol­ecules of both chirality are seen. The thio­phene ring of mol­ecule B exhibits a rotational disorder.

Figure 2.

Figure 2

The mol­ecular structure of 2 with displacement ellipsoids drawn at the 50% probability level. Both mol­ecules have the same chirality. The water O atoms (O3 to O6) at quarter occupancy each were refined without protons.

3. Supra­molecular features

In 1, the inter­molecular inter­actions are defined solely by hydrogen bonds (Table 1, Fig. 3) of two types – the C—H⋯O type where a carbon atom of the thio­phene ring in mol­ecule A donates a proton to the only oxygen of its translational neighbour [C4—H4⋯O1 = 3.168 (2) Å, 164.5°] and the C—H⋯N type where the 2-carbon of the thia­zine in mol­ecule B donates a proton to the lone pair on the nitro­gen of fused pyridine ring of its independent neighbor i.e. mol­ecule A [C18—H18⋯N2 = 3.494 (2) Å, 167.1°]. The C—H⋯N type inter­actions are considered weak, but Webber et al. (2020) have studied their strengths. No π–π stacking inter­actions between rings of the neighboring mol­ecules were observed in this structure.

Table 1. Hydrogen-bond geometry (Å, °) for 1.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.26 3.168 (2) 165
C18—H18⋯N2ii 0.98 2.53 3.494 (2) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

Packing diagram for 1 showing C—H⋯O and C—H⋯N type hydrogen bonds between mol­ecules.

In 2, there are two types of hydrogen-bond inter­actions as well (Table 2, Fig. 4). One is an N—H⋯O type hydrogen bond [N3—H3⋯O2 = 2.828 (3) Å, 160.7°] where the nitro­gen of the indole ring of mol­ecule A donates a proton to the oxygen of enanti­omeric mol­ecule B. The other is a reciprocal pair of C—H⋯N(π) hydrogen bonds where a carbon from the fused pyridine ring donates a proton to the π electron cloud over the nitro­gen atom in the indole ring, connecting two enanti­omers of mol­ecule B in a give-and-take fashion [C26—H26⋯N6 = 3.463 (3) Å, 155.1°]. In the extended structure, the hydrogen bonds of both types result in the assembly of continuous mol­ecular chains in the [101] direction. Unlike the crystal of 1, this one is further stabilized by π–π stacking inter­actions between pyridine rings of symmetry-related mol­ecules [the centroid–centroid distance and slippage are 3.5677 (16) and 1.017 Å, respectively]. These ring overlaps resemble the teeth of a zipper, binding the adjacent parallel mol­ecular chains. Continuous water channels along the b-axis direction punctuate the ‘teeth’, in an alternating fashion.

Table 2. Hydrogen-bond geometry (Å, °) for 2.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2i 0.86 2.00 2.828 (3) 161
C26—H26⋯N6ii 0.93 2.60 3.463 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

Packing diagram for 2 viewing down the b-axis, showing N—H⋯O and C—H⋯N hydrogen bonds between mol­ecules. The π–π stacking inter­actions that hold adjacent parallel chains akin to the teeth of a zipper and partially occupied water mol­ecules forming continuous channels down the b-axis are also seen.

4. Database survey

We have previously reported crystal structures of 2,3-di­henyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one (Yennawar et al., 2014), its sulfoxide (Yennawar et al., 2017), and its sulfone (Yennawar et al., 2023). We have also reported structures of two 2-aryl-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-ones, 2-(4-fluoro­phen­yl)-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one and 2-(4-nitro­phen­yl)-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one (Yennawar et al., 2019).

5. Synthesis and crystallization

General: TLC plates (silica gel GF, 250-micron, 10 x 20 cm, cat. No. P21521) were purchased from Miles Scientific. TLCs were visualized under short wave UV, and then with I2, and then by spraying with ceric ammonium nitrate/sulfuric acid and heating. Infrared spectra were run on a Thermo-Fisher NICOLET iS50 FT-IR using a diamond-ATR attachment for direct powder analysis (Penn State Schuylkill). 1H and 13C NMR experiments (Penn State’s shared NMR facility, University Park) were carried out on a Bruker Avance-III-HD 500.20-MHz (1H frequency) instrument using a 5 mm Prodigy (liquid nitro­gen cooled) BBOBB-1H/19F/D Z-GRD cryo­probe. Samples were dissolved in pyridine-d5 and analyzed at RT. Typical conditions for 1H acquisition were 1 s relaxation delay, acquisition time of 3.28 s, and spectral width of 10 kHz, 32 scans. Spectra were zero-filled to 128k points, and multiplied by exponential multiplication (EM with LB = 0.3 Hz) prior to FT. For 13C experiments, data were acquired with power-gated 1H decoupling using a 2 s relaxation delay, with an acquisition time of 1.1 s, spectral width of 29.8 kHz, and 256 scans. Spectra were zero-filled once, and multiplied by EM with LB = 2 Hz prior to FT. MS samples were analyzed for purity and accurate mass by LCMS on a SCIEX Exion LC with a SCIEX 5600+ TripleTOF MS. Separation was achieved on an Agilent Infinity LabPoroshell column 120 EC-C18, 2.1 X 50mm, 2.7-micron particle (p/n 699775-902), column maintained at 313 K. Elution using a reversed phase gradient of 100% (water with 0.1% formic acid)ramped to 100% (aceto­nitrile with 0.1% formic acid) over 10 min at a flowrate of 0.4m L min−1. The MS was scanned over 50-1200 Da and calibrated with the SCIEX APCI positive calibrant solution (Part 4460131) prior to sample analysis. Samples were analyzed in ESI positive mode with a DP = 100 V, CE = 10, GAS1 = GAS2 = 60 psi, curtain = 30 psi, ISV = 5500 V, and source temperature of 773 K (Villanova University). Melting points were performed on a Vernier Melt Station (Penn State Schuylkill). Suitable crystals were selected and sequentially mounted using a nylon loop and a dab of paratone oil on a Rigaku Oxford diffraction, Synergy Custom system, HyPix-Arc 150 diffractometer at Penn State, University Park. The crystals were frozen to 173 (2) K during data collection. Using OLEX2, the structures were solved with the SHELXT (Sheldrick, 2015a) structure solution program using Intrinsic Phasing and refined with the SHELXL (Sheldrick, 2015b) refinement package using least-squares minimization.

General Synthetic Procedure: A two-necked 25 mL round-bottom flask was oven-dried, cooled under N2, and charged with a stirring bar. Aniline (0.559 g, 6 mmol) and a heteroaromatic aldehyde (3-thio­phencarboxaldehyde for 1 or 1H-indole-3-carbaldehyde for 2; 6 mmol) was added. 2-Methyl­tetra­hydro­furan (2.3 mL) was added and the solution was stirred for five minutes. Thio­nicotinic acid (0.931 g, 6 mmol) was added. Pyridine (2.9 mL, 36 mmol) was added. Finally, 2,4,6-tripropyl-1,3,5,2,4,6-trioxatri­phospho­rinane-2,4,6-tri­oxide (T3P) in 2-methyl­tetra­hydro­furan (50 weight percent; 11 mL, 18 mmol) was added. The reaction was stirred at room temperature for 1–2 weeks and followed by TLC, then poured into a separatory funnel with di­chloro­methane (20 mL). The mixture was washed with water (10 mL). The aqueous solution was then extracted twice with di­chloro­methane (10 mL each). The organics were combined and washed with saturated sodium bicarbonate (10 mL) and then saturated sodium chloride (10 mL) solutions. The organic phase was dried over sodium sulfate and concentrated under vacuum to give a crude mixture. Further purification was carried out as indicated below for each compound.

3-Phenyl-2-(thio­phen-3-yl)-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one, 1: After chromatography on 30 g silica gel with a gradient from 30% ethyl acetate / 70% hexa­nes to 70% ethyl acetate / 30% hexa­nes, recrystallization from 2-propanol, and then from ethyl acetate and hexa­nes gave an off-white powder (0.3456 g, 19% yield), m.p. 426.0-426.6 K. Crystals for crystallography were grown by slow evaporation from 2-propanol. 1H NMR (d5-pyridine) δ 8.56 (d, J = 7.9 Hz, 1H), 8.47 (d, J = 4.8 Hz, 1H), 7.61 (d, J = 8.2 Hz, 2H), 7.56 (s or d overlapping a solvent peak, 1H), 7.37 (t, J = 7.9 Hz, 2H), 7.34–7.29 (m, 1H), 7.28–7.21 (m, 2H), 7.06 (dd, J = 7.9, 4.7 Hz, 1H), 6.78 (s, 1H, S—CH—N). 13C NMR (d5-pyridine) δ 162.88 (C=O), 157.49, 152.88, 142.47, 141.50, 137.80, 129.28, 127.32, 127.20, 126.85, 126.33, 126.25, 124.01, 121.26, 61.85 (S—C—N). HRMS (m/z): [M + H+] of 325.0460 is consistent with calculated [M + H]+ of 325.0463. IR (neat, cm−1): 1641 (C=O).

2-(1H-Indol-3-yl)-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one 0.438 hydrate, 2: After chromatography on 30 g silica gel with a gradient from 30% ethyl acetate / 70% hexa­nes to 70% ethyl acetate / 30% hexa­nes, recrystallization from ethyl acetate and hexa­nes gave an off-white powder (0.855 g). 1H NMR showed this was an ethyl acetate solvate (mole ratio of 69.8% 2: 30.2% ethyl acetate). Accounting for that, the yield of 2 was 0.772 g (36%), m.p. 416–418 K. Crystals for crystallography were grown by slow evaporation from ethanol. 1H NMR (d5-pyridine) δ 12.30 (s, 1H, NH), 8.60 (dd, J = 7.8, 2.0 Hz, 1H), 8.43 (dd, J = 4.7, 1.9 Hz, 1H), 8.08 (d, J = 7.0 Hz, 1H), 7.73 (d, J = 3.3 Hz, 1H), 7.68 (d, J = 8.2 Hz, 2H), 7.39 (dd, J = 6.2, 2.1 Hz, 1H), 7.32 (t, J = 7.9 Hz, 2H), 7.28–7.20 (m, 3H), 7.16 (s, 1H, S—CH—N), 7.02 (dd, J = 7.9, 4.7 Hz, 1H). 13C NMR (d5-pyridine) δ 163.30 (C=O), 158.41, 152.76, 142.64, 137.91, 137.83, 129.09, 126.95, 126.48, 126.26, 125.38, 125.22, 122.49, 120.96, 120.06, 119.86, 114.12, 112.21, 60.66 (S—C—N). [M + H+] of 358.1002 is consistent with calculated [M + H]+ of 358.1008. IR (neat, cm−1): 3245 (N—H), 1641 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3. Experimental details.

  1 2
Crystal data
Chemical formula C17H12N2OS2 C21H15N3OS·0.438H2O
M r 324.41 364.85
Crystal system, space group Monoclinic, P21/n Monoclinic, C2/c
Temperature (K) 173 173
a, b, c (Å) 9.22549 (10), 20.8037 (2), 15.87594 (19) 28.2424 (4), 11.0307 (1), 28.6936 (4)
β (°) 92.7309 (11) 111.952 (2)
V3) 3043.52 (6) 8290.9 (2)
Z 8 16
Radiation type Cu Kα Cu Kα
μ (mm−1) 3.19 1.51
Crystal size (mm) 0.15 × 0.13 × 0.08 0.2 × 0.2 × 0.17
 
Data collection
Diffractometer ROD, Synergy Custom system, HyPix-Arc 150 ROD, Synergy Custom system, HyPix-Arc 150
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023) Multi-scan (CrysAlis PRO; Rigaku OD, 2023)
Tmin, Tmax 0.628, 1.000 0.652, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20274, 6042, 4922 26357, 8118, 6592
R int 0.032 0.027
(sin θ/λ)max−1) 0.630 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.07 0.068, 0.218, 1.09
No. of reflections 6042 8118
No. of parameters 435 492
No. of restraints 139 560
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.32 0.93, −0.25

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

For refining structure 1 that has the rotational-flip of the thio­phene ring, rigid-group disorder, geometric and atomic-displacement restraints (RIGU, DFIX, SADI, SIMU, DELU and ISOR) were used to achieve the convergence.

The refinement of structure 2 involved four partially occupied water mol­ecules identified from the difference-Fourier map and their occupancies manually adjusted to 0.25 each. Placing the hydrogen atoms on the water mol­ecules resulted in high shift/esd values and so were excluded. ISOR restraint for all the four water oxygens and for C10, C11 atoms of phenyl ring in mol­ecule A and C38 and C39 atoms in the indole ring of mol­ecule B, as well as SIMU and DELU for all atoms in the structure, helped converge the refinement. In both above structures, hydrogen atoms were placed at calculated positions and refined using a riding model.

Supplementary Material

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989024005103/tx2086sup1.cif

e-80-00699-sup1.cif (654.3KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989024005103/tx20861sup2.hkl

e-80-00699-1sup2.hkl (331.2KB, hkl)
e-80-00699-1sup4.mol (2.1KB, mol)

Supporting information file. DOI: 10.1107/S2056989024005103/tx20861sup4.mol

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989024005103/tx20862sup3.hkl

e-80-00699-2sup3.hkl (444.8KB, hkl)
e-80-00699-2sup5.mol (2.5KB, mol)

Supporting information file. DOI: 10.1107/S2056989024005103/tx20862sup5.mol

e-80-00699-1sup6.cml (5.6KB, cml)

Supporting information file. DOI: 10.1107/S2056989024005103/tx20861sup6.cml

Supporting information file. DOI: 10.1107/S2056989024005103/tx20862sup7.cml

CCDC references: 2359143, 2359142

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Our gratitude to Oakwood Chemical for the gifts of 3-thio­phene­carboxaldehyde and 1H-indole-3-carbaldehyde.

supplementary crystallographic information

3-Phenyl-2-(thiophen-3-yl)-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one (1) . Crystal data

C17H12N2OS2 F(000) = 1344
Mr = 324.41 Dx = 1.416 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 9.22549 (10) Å Cell parameters from 9971 reflections
b = 20.8037 (2) Å θ = 3.5–76.2°
c = 15.87594 (19) Å µ = 3.19 mm1
β = 92.7309 (11)° T = 173 K
V = 3043.52 (6) Å3 Block, clear colourless
Z = 8 0.15 × 0.13 × 0.08 mm

3-Phenyl-2-(thiophen-3-yl)-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one (1) . Data collection

ROD, Synergy Custom system, HyPix-Arc 150 diffractometer 6042 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source 4922 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.032
Detector resolution: 10.0000 pixels mm-1 θmax = 76.4°, θmin = 3.5°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) k = −24→25
Tmin = 0.628, Tmax = 1.000 l = −19→16
20274 measured reflections

3-Phenyl-2-(thiophen-3-yl)-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one (1) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.5556P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096 (Δ/σ)max = 0.001
S = 1.07 Δρmax = 0.20 e Å3
6042 reflections Δρmin = −0.32 e Å3
435 parameters Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
139 restraints Extinction coefficient: 0.00078 (8)
Primary atom site location: dual

3-Phenyl-2-(thiophen-3-yl)-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3-Phenyl-2-(thiophen-3-yl)-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.77155 (5) 0.62406 (2) 0.51130 (3) 0.04325 (12)
S2 0.56507 (6) 0.85356 (2) 0.47059 (3) 0.05474 (14)
O1 1.12238 (14) 0.76514 (8) 0.50000 (9) 0.0611 (4)
N1 0.93720 (14) 0.71164 (7) 0.43232 (9) 0.0383 (3)
N2 0.83219 (17) 0.63711 (8) 0.67292 (10) 0.0514 (4)
C1 0.78696 (17) 0.69009 (8) 0.43630 (11) 0.0365 (4)
H1 0.758821 0.672688 0.380531 0.044*
C2 0.68234 (17) 0.74370 (8) 0.45268 (10) 0.0350 (3)
C3 0.53153 (18) 0.73296 (9) 0.46130 (12) 0.0445 (4)
H3 0.488994 0.692420 0.459691 0.053*
C4 0.4561 (2) 0.78833 (10) 0.47216 (13) 0.0503 (5)
H4 0.356762 0.790048 0.479538 0.060*
C5 0.71511 (19) 0.80735 (9) 0.45651 (12) 0.0440 (4)
H5 0.808150 0.823803 0.452003 0.053*
C6 0.86214 (18) 0.66143 (8) 0.59760 (11) 0.0395 (4)
C7 0.9010 (2) 0.66294 (12) 0.74017 (13) 0.0619 (6)
H7 0.883201 0.645858 0.792814 0.074*
C8 0.9969 (2) 0.71339 (13) 0.73668 (13) 0.0650 (6)
H8 1.039798 0.730783 0.785748 0.078*
C9 1.0278 (2) 0.73741 (11) 0.65925 (13) 0.0553 (5)
H9 1.092899 0.771252 0.655162 0.066*
C10 0.96128 (17) 0.71101 (9) 0.58664 (11) 0.0410 (4)
C11 1.01260 (18) 0.73236 (9) 0.50360 (11) 0.0420 (4)
C12 0.99721 (18) 0.71782 (8) 0.35064 (11) 0.0399 (4)
C13 0.9161 (2) 0.74399 (9) 0.28410 (12) 0.0490 (4)
H13 0.823682 0.759897 0.292406 0.059*
C14 0.9723 (3) 0.74662 (10) 0.20480 (13) 0.0602 (5)
H14 0.917104 0.763988 0.159829 0.072*
C15 1.1088 (3) 0.72372 (11) 0.19240 (14) 0.0633 (6)
H15 1.146461 0.725768 0.139154 0.076*
C16 1.1901 (3) 0.69772 (11) 0.25872 (15) 0.0625 (6)
H16 1.282569 0.682033 0.249955 0.075*
C17 1.1359 (2) 0.69463 (9) 0.33842 (13) 0.0501 (5)
H17 1.191497 0.677257 0.383208 0.060*
S3 0.62400 (6) 0.41208 (2) 0.26334 (3) 0.05086 (14)
S4B 0.2995 (2) 0.50603 (6) 0.02355 (7) 0.0711 (3) 0.874 (3)
O2 0.56355 (15) 0.61714 (6) 0.30744 (9) 0.0556 (4)
N3 0.46385 (15) 0.51735 (7) 0.30055 (9) 0.0412 (3)
N4 0.85514 (18) 0.45429 (9) 0.19311 (11) 0.0585 (4)
C18 0.45275 (19) 0.45587 (8) 0.25591 (11) 0.0414 (4)
H18 0.381763 0.429829 0.284727 0.050*
C19 0.39720 (18) 0.46234 (9) 0.16534 (11) 0.0428 (4)
C20B 0.3787 (10) 0.4084 (3) 0.1097 (3) 0.0535 (12) 0.874 (3)
H20B 0.400998 0.366169 0.124316 0.064* 0.874 (3)
C21B 0.3241 (12) 0.4275 (5) 0.0325 (6) 0.075 (3) 0.874 (3)
H21B 0.302562 0.398858 −0.011382 0.090* 0.874 (3)
C22B 0.3586 (10) 0.5181 (2) 0.1271 (3) 0.0529 (10) 0.874 (3)
H22B 0.363219 0.558111 0.153342 0.063* 0.874 (3)
C23 0.73266 (19) 0.47405 (9) 0.22665 (11) 0.0431 (4)
C24 0.9417 (2) 0.49976 (13) 0.16421 (14) 0.0644 (6)
H24 1.027172 0.486821 0.140496 0.077*
C25 0.9128 (2) 0.56440 (12) 0.16714 (13) 0.0616 (6)
H25 0.976064 0.594185 0.145228 0.074*
C26 0.7870 (2) 0.58404 (10) 0.20361 (12) 0.0521 (5)
H26 0.765099 0.627564 0.207161 0.062*
C27 0.69361 (18) 0.53857 (8) 0.23486 (11) 0.0407 (4)
C28 0.56838 (18) 0.56141 (8) 0.28296 (11) 0.0417 (4)
C29 0.35521 (18) 0.53267 (8) 0.35951 (11) 0.0398 (4)
C30 0.3959 (2) 0.55445 (9) 0.43908 (12) 0.0480 (4)
H30 0.493426 0.560768 0.454313 0.058*
C31 0.2907 (3) 0.56686 (10) 0.49621 (13) 0.0587 (5)
H31 0.318003 0.581916 0.549804 0.070*
C32 0.1466 (3) 0.55717 (11) 0.47459 (15) 0.0631 (6)
H32 0.076454 0.565609 0.513315 0.076*
C33 0.1067 (2) 0.53507 (11) 0.39593 (16) 0.0629 (6)
H33 0.009141 0.528030 0.381416 0.076*
C34 0.2101 (2) 0.52305 (10) 0.33751 (13) 0.0522 (5)
H34 0.182062 0.508564 0.283761 0.063*
C20A 0.357 (7) 0.5169 (16) 0.112 (2) 0.057 (6) 0.126 (3)
H20A 0.370954 0.559347 0.128254 0.068* 0.126 (3)
C21A 0.298 (6) 0.5006 (12) 0.037 (2) 0.064 (5) 0.126 (3)
H21A 0.250599 0.528811 0.000010 0.077* 0.126 (3)
S4A 0.322 (2) 0.4206 (8) 0.0199 (10) 0.063 (3) 0.126 (3)
C22A 0.367 (7) 0.4094 (17) 0.123 (2) 0.051 (5) 0.126 (3)
H22A 0.369269 0.368919 0.148137 0.061* 0.126 (3)

3-Phenyl-2-(thiophen-3-yl)-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0401 (2) 0.0375 (2) 0.0518 (3) −0.00712 (17) −0.00127 (19) 0.00235 (19)
S2 0.0566 (3) 0.0460 (3) 0.0630 (3) 0.0070 (2) 0.0158 (2) 0.0029 (2)
O1 0.0429 (7) 0.0816 (10) 0.0591 (8) −0.0285 (7) 0.0060 (6) −0.0032 (8)
N1 0.0306 (7) 0.0475 (8) 0.0372 (7) −0.0045 (6) 0.0050 (6) 0.0003 (6)
N2 0.0507 (9) 0.0552 (9) 0.0485 (9) 0.0004 (7) 0.0036 (8) 0.0120 (8)
C1 0.0301 (8) 0.0422 (9) 0.0371 (9) −0.0047 (7) 0.0006 (7) −0.0024 (7)
C2 0.0324 (8) 0.0418 (9) 0.0307 (8) −0.0023 (7) 0.0011 (6) 0.0005 (7)
C3 0.0338 (8) 0.0488 (10) 0.0507 (11) −0.0053 (7) 0.0015 (8) 0.0032 (8)
C4 0.0344 (9) 0.0624 (12) 0.0544 (11) 0.0026 (8) 0.0069 (8) 0.0050 (10)
C5 0.0377 (9) 0.0452 (10) 0.0499 (11) −0.0028 (7) 0.0100 (8) 0.0004 (8)
C6 0.0334 (8) 0.0414 (9) 0.0435 (10) 0.0018 (7) 0.0006 (7) 0.0030 (8)
C7 0.0629 (13) 0.0808 (15) 0.0416 (11) −0.0014 (11) −0.0010 (10) 0.0123 (11)
C8 0.0564 (12) 0.0964 (18) 0.0414 (11) −0.0060 (12) −0.0071 (10) −0.0028 (11)
C9 0.0423 (10) 0.0729 (14) 0.0504 (11) −0.0132 (9) −0.0021 (9) −0.0055 (10)
C10 0.0315 (8) 0.0502 (10) 0.0410 (9) −0.0035 (7) −0.0013 (7) 0.0013 (8)
C11 0.0329 (8) 0.0482 (10) 0.0447 (10) −0.0062 (7) 0.0004 (7) −0.0013 (8)
C12 0.0412 (9) 0.0379 (9) 0.0415 (9) −0.0030 (7) 0.0103 (8) 0.0003 (7)
C13 0.0539 (11) 0.0501 (10) 0.0435 (10) 0.0049 (9) 0.0068 (9) 0.0002 (8)
C14 0.0810 (15) 0.0568 (12) 0.0433 (11) −0.0016 (11) 0.0082 (10) 0.0041 (9)
C15 0.0816 (16) 0.0588 (13) 0.0522 (12) −0.0119 (11) 0.0304 (12) −0.0044 (10)
C16 0.0570 (12) 0.0608 (13) 0.0721 (15) −0.0019 (10) 0.0295 (11) −0.0034 (11)
C17 0.0435 (10) 0.0504 (11) 0.0575 (12) 0.0000 (8) 0.0129 (9) 0.0043 (9)
S3 0.0598 (3) 0.0378 (2) 0.0546 (3) 0.0023 (2) −0.0010 (2) 0.0007 (2)
S4B 0.0671 (5) 0.0914 (6) 0.0535 (5) −0.0006 (4) −0.0101 (5) 0.0081 (4)
O2 0.0558 (8) 0.0390 (7) 0.0727 (9) −0.0084 (6) 0.0106 (7) −0.0143 (6)
N3 0.0405 (8) 0.0389 (7) 0.0448 (8) −0.0080 (6) 0.0068 (6) −0.0090 (6)
N4 0.0457 (9) 0.0692 (11) 0.0606 (11) 0.0073 (8) 0.0024 (8) −0.0125 (9)
C18 0.0451 (9) 0.0367 (9) 0.0428 (10) −0.0091 (7) 0.0057 (8) −0.0060 (7)
C19 0.0369 (9) 0.0457 (9) 0.0461 (10) −0.0082 (7) 0.0039 (8) −0.0049 (8)
C20B 0.058 (3) 0.0543 (15) 0.0480 (19) −0.0117 (14) 0.003 (2) −0.0131 (14)
C21B 0.072 (4) 0.091 (4) 0.061 (3) −0.014 (3) −0.001 (2) −0.025 (2)
C22B 0.0563 (18) 0.0554 (16) 0.046 (2) −0.0025 (14) −0.005 (2) −0.0014 (14)
C23 0.0417 (9) 0.0484 (10) 0.0389 (9) 0.0007 (8) −0.0021 (8) −0.0041 (8)
C24 0.0413 (11) 0.0929 (18) 0.0591 (13) −0.0019 (11) 0.0047 (10) −0.0168 (13)
C25 0.0471 (11) 0.0833 (16) 0.0551 (12) −0.0183 (11) 0.0089 (10) −0.0064 (11)
C26 0.0514 (11) 0.0541 (11) 0.0508 (11) −0.0117 (9) 0.0026 (9) −0.0019 (9)
C27 0.0383 (9) 0.0440 (9) 0.0396 (9) −0.0062 (7) −0.0006 (7) −0.0038 (8)
C28 0.0403 (9) 0.0407 (9) 0.0439 (10) −0.0054 (7) 0.0003 (8) −0.0058 (8)
C29 0.0389 (9) 0.0385 (9) 0.0421 (9) −0.0010 (7) 0.0041 (7) −0.0011 (7)
C30 0.0496 (10) 0.0489 (10) 0.0454 (10) −0.0013 (8) 0.0011 (9) −0.0025 (9)
C31 0.0770 (15) 0.0571 (12) 0.0430 (11) 0.0057 (11) 0.0123 (10) −0.0012 (9)
C32 0.0664 (14) 0.0541 (12) 0.0713 (15) 0.0109 (10) 0.0291 (12) 0.0103 (11)
C33 0.0416 (11) 0.0655 (14) 0.0824 (16) 0.0014 (9) 0.0111 (11) 0.0096 (12)
C34 0.0440 (10) 0.0577 (12) 0.0547 (12) −0.0049 (9) −0.0005 (9) −0.0014 (10)
C20A 0.061 (11) 0.047 (7) 0.063 (8) −0.001 (7) 0.007 (7) 0.004 (5)
C21A 0.064 (5) 0.064 (5) 0.064 (5) −0.0001 (10) 0.0031 (10) 0.0004 (10)
S4A 0.062 (5) 0.067 (4) 0.062 (5) −0.015 (3) −0.002 (3) −0.008 (4)
C22A 0.051 (10) 0.052 (6) 0.050 (7) −0.006 (6) 0.007 (8) −0.002 (5)

3-Phenyl-2-(thiophen-3-yl)-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one (1) . Geometric parameters (Å, º)

S1—C1 1.8280 (17) O2—C28 1.224 (2)
S1—C6 1.7524 (18) N3—C18 1.463 (2)
S2—C4 1.690 (2) N3—C28 1.369 (2)
S2—C5 1.7086 (18) N3—C29 1.439 (2)
O1—C11 1.225 (2) N4—C23 1.337 (2)
N1—C1 1.461 (2) N4—C24 1.333 (3)
N1—C11 1.369 (2) C18—H18 0.9800
N1—C12 1.440 (2) C18—C19 1.509 (2)
N2—C6 1.339 (2) C19—C20B 1.433 (5)
N2—C7 1.329 (3) C19—C22B 1.350 (5)
C1—H1 0.9800 C19—C20A 1.46 (3)
C1—C2 1.506 (2) C19—C22A 1.31 (3)
C2—C3 1.422 (2) C20B—H20B 0.9300
C2—C5 1.359 (2) C20B—C21B 1.362 (10)
C3—H3 0.9300 C21B—H21B 0.9300
C3—C4 1.361 (3) C22B—H22B 0.9300
C4—H4 0.9300 C23—C27 1.398 (2)
C5—H5 0.9300 C24—H24 0.9300
C6—C10 1.395 (2) C24—C25 1.372 (3)
C7—H7 0.9300 C25—H25 0.9300
C7—C8 1.376 (3) C25—C26 1.383 (3)
C8—H8 0.9300 C26—H26 0.9300
C8—C9 1.369 (3) C26—C27 1.387 (2)
C9—H9 0.9300 C27—C28 1.492 (2)
C9—C10 1.393 (3) C29—C30 1.377 (2)
C10—C11 1.490 (2) C29—C34 1.382 (2)
C12—C13 1.377 (3) C30—H30 0.9300
C12—C17 1.389 (2) C30—C31 1.384 (3)
C13—H13 0.9300 C31—H31 0.9300
C13—C14 1.385 (3) C31—C32 1.373 (3)
C14—H14 0.9300 C32—H32 0.9300
C14—C15 1.370 (3) C32—C33 1.365 (3)
C15—H15 0.9300 C33—H33 0.9300
C15—C16 1.374 (3) C33—C34 1.385 (3)
C16—H16 0.9300 C34—H34 0.9300
C16—C17 1.384 (3) C20A—H20A 0.9300
C17—H17 0.9300 C20A—C21A 1.32 (3)
S3—C18 1.8226 (19) C21A—H21A 0.9300
S3—C23 1.7498 (19) C21A—S4A 1.703 (17)
S4B—C21B 1.655 (9) S4A—C22A 1.69 (3)
S4B—C22B 1.726 (4) C22A—H22A 0.9300
C6—S1—C1 97.29 (8) N3—C18—S3 111.41 (12)
C4—S2—C5 92.08 (9) N3—C18—H18 106.9
C11—N1—C1 120.42 (14) N3—C18—C19 113.34 (15)
C11—N1—C12 120.95 (14) C19—C18—S3 111.11 (12)
C12—N1—C1 118.21 (13) C19—C18—H18 106.9
C7—N2—C6 116.96 (18) C20B—C19—C18 122.9 (3)
S1—C1—H1 106.6 C22B—C19—C18 125.1 (2)
N1—C1—S1 111.23 (11) C22B—C19—C20B 112.0 (3)
N1—C1—H1 106.6 C20A—C19—C18 133.9 (13)
N1—C1—C2 113.43 (13) C22A—C19—C18 117.8 (14)
C2—C1—S1 111.94 (11) C22A—C19—C20A 108.2 (19)
C2—C1—H1 106.6 C19—C20B—H20B 124.6
C3—C2—C1 122.58 (15) C21B—C20B—C19 110.8 (6)
C5—C2—C1 125.90 (15) C21B—C20B—H20B 124.6
C5—C2—C3 111.43 (16) S4B—C21B—H21B 123.0
C2—C3—H3 123.6 C20B—C21B—S4B 114.0 (6)
C4—C3—C2 112.82 (16) C20B—C21B—H21B 123.0
C4—C3—H3 123.6 S4B—C22B—H22B 124.2
S2—C4—H4 124.2 C19—C22B—S4B 111.6 (3)
C3—C4—S2 111.69 (14) C19—C22B—H22B 124.2
C3—C4—H4 124.2 N4—C23—S3 114.50 (15)
S2—C5—H5 124.0 N4—C23—C27 124.00 (18)
C2—C5—S2 111.97 (13) C27—C23—S3 121.48 (14)
C2—C5—H5 124.0 N4—C24—H24 117.9
N2—C6—S1 114.80 (13) N4—C24—C25 124.3 (2)
N2—C6—C10 123.72 (16) C25—C24—H24 117.9
C10—C6—S1 121.44 (13) C24—C25—H25 120.9
N2—C7—H7 118.0 C24—C25—C26 118.1 (2)
N2—C7—C8 124.0 (2) C26—C25—H25 120.9
C8—C7—H7 118.0 C25—C26—H26 120.1
C7—C8—H8 120.8 C25—C26—C27 119.7 (2)
C9—C8—C7 118.4 (2) C27—C26—H26 120.1
C9—C8—H8 120.8 C23—C27—C28 124.25 (16)
C8—C9—H9 120.1 C26—C27—C23 117.02 (17)
C8—C9—C10 119.81 (19) C26—C27—C28 118.36 (17)
C10—C9—H9 120.1 O2—C28—N3 122.19 (17)
C6—C10—C11 124.67 (16) O2—C28—C27 120.31 (16)
C9—C10—C6 116.99 (17) N3—C28—C27 117.47 (15)
C9—C10—C11 117.97 (16) C30—C29—N3 120.11 (15)
O1—C11—N1 121.69 (17) C30—C29—C34 119.85 (17)
O1—C11—C10 120.39 (16) C34—C29—N3 119.98 (16)
N1—C11—C10 117.86 (14) C29—C30—H30 120.2
C13—C12—N1 120.53 (15) C29—C30—C31 119.59 (18)
C13—C12—C17 120.02 (17) C31—C30—H30 120.2
C17—C12—N1 119.39 (16) C30—C31—H31 119.7
C12—C13—H13 120.0 C32—C31—C30 120.7 (2)
C12—C13—C14 119.98 (19) C32—C31—H31 119.7
C14—C13—H13 120.0 C31—C32—H32 120.2
C13—C14—H14 119.9 C33—C32—C31 119.6 (2)
C15—C14—C13 120.2 (2) C33—C32—H32 120.2
C15—C14—H14 119.9 C32—C33—H33 119.7
C14—C15—H15 120.0 C32—C33—C34 120.6 (2)
C14—C15—C16 119.9 (2) C34—C33—H33 119.7
C16—C15—H15 120.0 C29—C34—C33 119.65 (19)
C15—C16—H16 119.6 C29—C34—H34 120.2
C15—C16—C17 120.7 (2) C33—C34—H34 120.2
C17—C16—H16 119.6 C19—C20A—H20A 123.0
C12—C17—H17 120.4 C21A—C20A—C19 114 (2)
C16—C17—C12 119.1 (2) C21A—C20A—H20A 123.0
C16—C17—H17 120.4 C20A—C21A—H21A 124.8
C23—S3—C18 96.82 (8) C20A—C21A—S4A 110 (2)
C21B—S4B—C22B 91.5 (3) S4A—C21A—H21A 124.8
C28—N3—C18 121.34 (14) C22A—S4A—C21A 90.2 (16)
C28—N3—C29 120.23 (14) C19—C22A—S4A 115 (2)
C29—N3—C18 118.28 (13) C19—C22A—H22A 122.7
C24—N4—C23 116.76 (19) S4A—C22A—H22A 122.7
S3—C18—H18 106.9
S1—C1—C2—C3 −51.29 (19) N3—C18—C19—C20B 179.5 (5)
S1—C1—C2—C5 132.55 (16) N3—C18—C19—C22B −0.8 (5)
S1—C6—C10—C9 −179.84 (14) N3—C18—C19—C20A 2 (4)
S1—C6—C10—C11 −7.0 (2) N3—C18—C19—C22A −172 (3)
N1—C1—C2—C3 −178.17 (15) N3—C29—C30—C31 −177.72 (17)
N1—C1—C2—C5 5.7 (2) N3—C29—C34—C33 177.01 (18)
N1—C12—C13—C14 −176.64 (17) N4—C23—C27—C26 2.0 (3)
N1—C12—C17—C16 176.71 (17) N4—C23—C27—C28 −170.91 (17)
N2—C6—C10—C9 −2.3 (3) N4—C24—C25—C26 1.1 (3)
N2—C6—C10—C11 170.58 (17) C18—S3—C23—N4 −155.97 (14)
N2—C7—C8—C9 −2.3 (4) C18—S3—C23—C27 25.76 (16)
C1—S1—C6—N2 158.55 (14) C18—N3—C28—O2 166.06 (17)
C1—S1—C6—C10 −23.70 (16) C18—N3—C28—C27 −16.2 (2)
C1—N1—C11—O1 −161.38 (17) C18—N3—C29—C30 131.40 (18)
C1—N1—C11—C10 21.7 (2) C18—N3—C29—C34 −46.0 (2)
C1—N1—C12—C13 41.6 (2) C18—C19—C20B—C21B 178.6 (6)
C1—N1—C12—C17 −135.66 (17) C18—C19—C22B—S4B −179.7 (3)
C1—C2—C3—C4 −177.30 (16) C18—C19—C20A—C21A −173 (3)
C1—C2—C5—S2 176.65 (13) C18—C19—C22A—S4A −174 (2)
C2—C3—C4—S2 0.9 (2) C19—C20B—C21B—S4B 1.7 (11)
C3—C2—C5—S2 0.1 (2) C19—C20A—C21A—S4A −12 (7)
C4—S2—C5—C2 0.31 (15) C20B—C19—C22B—S4B 0.0 (8)
C5—S2—C4—C3 −0.68 (16) C21B—S4B—C22B—C19 0.8 (7)
C5—C2—C3—C4 −0.6 (2) C22B—S4B—C21B—C20B −1.5 (9)
C6—S1—C1—N1 52.23 (13) C22B—C19—C20B—C21B −1.1 (10)
C6—S1—C1—C2 −75.83 (12) C23—S3—C18—N3 −53.18 (13)
C6—N2—C7—C8 1.6 (3) C23—S3—C18—C19 74.24 (13)
C6—C10—C11—O1 −163.02 (18) C23—N4—C24—C25 0.2 (3)
C6—C10—C11—N1 14.0 (3) C23—C27—C28—O2 159.54 (18)
C7—N2—C6—S1 178.47 (15) C23—C27—C28—N3 −18.3 (3)
C7—N2—C6—C10 0.8 (3) C24—N4—C23—S3 179.98 (15)
C7—C8—C9—C10 0.6 (3) C24—N4—C23—C27 −1.8 (3)
C8—C9—C10—C6 1.5 (3) C24—C25—C26—C27 −0.8 (3)
C8—C9—C10—C11 −171.83 (19) C25—C26—C27—C23 −0.6 (3)
C9—C10—C11—O1 9.8 (3) C25—C26—C27—C28 172.74 (17)
C9—C10—C11—N1 −173.22 (17) C26—C27—C28—O2 −13.3 (3)
C11—N1—C1—S1 −57.40 (18) C26—C27—C28—N3 168.89 (16)
C11—N1—C1—C2 69.8 (2) C28—N3—C18—S3 54.8 (2)
C11—N1—C12—C13 −130.96 (18) C28—N3—C18—C19 −71.4 (2)
C11—N1—C12—C17 51.8 (2) C28—N3—C29—C30 −53.0 (2)
C12—N1—C1—S1 129.98 (13) C28—N3—C29—C34 129.62 (19)
C12—N1—C1—C2 −102.77 (17) C29—N3—C18—S3 −129.72 (14)
C12—N1—C11—O1 11.0 (3) C29—N3—C18—C19 104.08 (17)
C12—N1—C11—C10 −165.93 (15) C29—N3—C28—O2 −9.4 (3)
C12—C13—C14—C15 −0.5 (3) C29—N3—C28—C27 168.40 (15)
C13—C12—C17—C16 −0.6 (3) C29—C30—C31—C32 0.6 (3)
C13—C14—C15—C16 0.4 (3) C30—C29—C34—C33 −0.3 (3)
C14—C15—C16—C17 −0.3 (3) C30—C31—C32—C33 0.0 (3)
C15—C16—C17—C12 0.4 (3) C31—C32—C33—C34 −0.7 (3)
C17—C12—C13—C14 0.6 (3) C32—C33—C34—C29 0.9 (3)
S3—C18—C19—C20B 53.2 (5) C34—C29—C30—C31 −0.4 (3)
S3—C18—C19—C22B −127.2 (5) C20A—C19—C22A—S4A 10 (6)
S3—C18—C19—C20A −124 (4) C20A—C21A—S4A—C22A 15 (5)
S3—C18—C19—C22A 62 (3) C21A—S4A—C22A—C19 −15 (5)
S3—C23—C27—C26 −179.89 (13) C22A—C19—C20A—C21A 2 (7)
S3—C23—C27—C28 7.2 (2)

3-Phenyl-2-(thiophen-3-yl)-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one (1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O1i 0.93 2.26 3.168 (2) 165
C18—H18···N2ii 0.98 2.53 3.494 (2) 167

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1.

2-(1H-Indol-3-yl)-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one 0.438-hydrate (2) . Crystal data

C21H15N3OS·0.438H2O F(000) = 3032
Mr = 364.85 Dx = 1.168 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54184 Å
a = 28.2424 (4) Å Cell parameters from 15647 reflections
b = 11.0307 (1) Å θ = 3.3–74.6°
c = 28.6936 (4) Å µ = 1.51 mm1
β = 111.952 (2)° T = 173 K
V = 8290.9 (2) Å3 Block, clear colourless
Z = 16 0.2 × 0.2 × 0.17 mm

2-(1H-Indol-3-yl)-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one 0.438-hydrate (2) . Data collection

ROD, Synergy Custom system, HyPix-Arc 150 diffractometer 8118 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source 6592 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.027
Detector resolution: 10.0000 pixels mm-1 θmax = 76.1°, θmin = 3.3°
ω scans h = −34→35
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) k = −13→11
Tmin = 0.652, Tmax = 1.000 l = −34→34
26357 measured reflections

2-(1H-Indol-3-yl)-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one 0.438-hydrate (2) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.068 w = 1/[σ2(Fo2) + (0.1597P)2 + 0.3431P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.218 (Δ/σ)max = 0.001
S = 1.09 Δρmax = 0.93 e Å3
8118 reflections Δρmin = −0.25 e Å3
492 parameters Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
560 restraints Extinction coefficient: 0.00059 (7)
Primary atom site location: dual

2-(1H-Indol-3-yl)-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one 0.438-hydrate (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-(1H-Indol-3-yl)-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one 0.438-hydrate (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.26724 (2) 1.02257 (5) 0.46586 (2) 0.0607 (2)
O1 0.29327 (7) 0.67587 (14) 0.40917 (7) 0.0681 (4)
N1 0.30301 (7) 0.87957 (16) 0.40907 (7) 0.0550 (4)
N2 0.18973 (8) 0.9065 (2) 0.47392 (8) 0.0682 (5)
N3 0.17476 (8) 1.01209 (17) 0.28666 (7) 0.0651 (5)
H3 0.154615 0.980900 0.258841 0.078*
C1 0.28198 (8) 1.00078 (19) 0.40921 (8) 0.0526 (5)
H1 0.308920 1.058872 0.411199 0.063*
C2 0.27894 (9) 0.77749 (19) 0.41489 (8) 0.0551 (5)
C3 0.23430 (8) 0.7943 (2) 0.43077 (8) 0.0570 (5)
C4 0.22659 (8) 0.8966 (2) 0.45517 (8) 0.0563 (5)
C5 0.15820 (11) 0.8124 (3) 0.46694 (12) 0.0790 (7)
H5 0.132288 0.817730 0.479478 0.095*
C6 0.16178 (11) 0.7077 (3) 0.44220 (12) 0.0819 (8)
H6 0.138430 0.645049 0.437607 0.098*
C7 0.20094 (10) 0.6979 (2) 0.42435 (10) 0.0699 (6)
H7 0.204796 0.627491 0.408270 0.084*
C8 0.34927 (8) 0.87271 (19) 0.39858 (8) 0.0540 (5)
C9 0.34817 (11) 0.9027 (2) 0.35146 (9) 0.0679 (6)
H9 0.317518 0.921538 0.325509 0.081*
C10 0.39417 (13) 0.9043 (3) 0.34361 (11) 0.0783 (7)
H10 0.394180 0.923974 0.312100 0.094*
C11 0.43956 (11) 0.8768 (2) 0.38238 (12) 0.0758 (7)
H11 0.470041 0.878957 0.377004 0.091*
C12 0.43979 (11) 0.8469 (3) 0.42784 (12) 0.0799 (7)
H12 0.470460 0.827601 0.453652 0.096*
C13 0.39456 (9) 0.8446 (2) 0.43673 (10) 0.0670 (6)
H13 0.395056 0.824079 0.468345 0.080*
C14 0.23751 (8) 1.02915 (18) 0.36249 (8) 0.0514 (5)
C15 0.21385 (9) 0.9531 (2) 0.32312 (8) 0.0587 (5)
H15 0.222979 0.872738 0.321317 0.070*
C16 0.17313 (10) 1.1292 (2) 0.30193 (9) 0.0612 (5)
C17 0.14068 (13) 1.2233 (3) 0.27683 (11) 0.0810 (8)
H17 0.114825 1.211520 0.245580 0.097*
C18 0.14847 (15) 1.3332 (3) 0.30004 (13) 0.0939 (10)
H18 0.127790 1.398271 0.284149 0.113*
C19 0.18725 (15) 1.3503 (2) 0.34765 (12) 0.0860 (9)
H19 0.191610 1.426651 0.362375 0.103*
C20 0.21896 (11) 1.2571 (2) 0.37311 (9) 0.0649 (6)
H20 0.244057 1.269320 0.404791 0.078*
C21 0.21210 (9) 1.14314 (18) 0.34960 (8) 0.0533 (5)
S2 0.53208 (2) 0.80892 (5) 0.57938 (2) 0.0617 (2)
O2 0.60256 (8) 0.53259 (16) 0.68886 (7) 0.0789 (6)
N4 0.61311 (8) 0.70766 (16) 0.65308 (6) 0.0579 (5)
N5 0.46962 (7) 0.6310 (2) 0.53623 (8) 0.0701 (5)
N6 0.66329 (8) 0.6096 (2) 0.53522 (9) 0.0724 (6)
H6A 0.681683 0.551779 0.530967 0.087*
C22 0.60106 (8) 0.78069 (19) 0.60738 (7) 0.0535 (5)
H22 0.617659 0.859538 0.617745 0.064*
C23 0.58928 (9) 0.6000 (2) 0.65250 (8) 0.0590 (5)
C24 0.54443 (8) 0.5693 (2) 0.60636 (8) 0.0566 (5)
C25 0.51395 (8) 0.6560 (2) 0.57346 (8) 0.0558 (5)
C26 0.45593 (10) 0.5135 (3) 0.53047 (11) 0.0796 (8)
H26 0.425467 0.493622 0.504472 0.095*
C27 0.48337 (11) 0.4214 (3) 0.55987 (11) 0.0812 (8)
H27 0.471970 0.341705 0.553716 0.097*
C28 0.52867 (10) 0.4490 (2) 0.59919 (10) 0.0696 (6)
H28 0.548071 0.388435 0.620286 0.084*
C29 0.64864 (9) 0.7565 (2) 0.69909 (8) 0.0603 (6)
C30 0.62963 (12) 0.7931 (2) 0.73587 (10) 0.0736 (7)
H30 0.595434 0.781919 0.730879 0.088*
C31 0.66289 (15) 0.8460 (3) 0.77949 (10) 0.0847 (8)
H31 0.651188 0.868089 0.804590 0.102*
C32 0.71196 (15) 0.8660 (3) 0.78611 (11) 0.0872 (9)
H32 0.733482 0.904643 0.815103 0.105*
C33 0.73048 (14) 0.8301 (3) 0.75058 (13) 0.0976 (10)
H33 0.764686 0.842240 0.755844 0.117*
C34 0.69784 (12) 0.7750 (3) 0.70623 (10) 0.0830 (8)
H34 0.710222 0.751269 0.681804 0.100*
C35 0.62190 (8) 0.7274 (2) 0.57069 (8) 0.0540 (5)
C36 0.65085 (9) 0.6248 (2) 0.57640 (9) 0.0627 (6)
H36 0.660523 0.573444 0.604098 0.075*
C37 0.64177 (9) 0.7015 (3) 0.50155 (9) 0.0671 (6)
C38 0.64240 (12) 0.7204 (3) 0.45374 (11) 0.0857 (8)
H38 0.659817 0.668545 0.440134 0.103*
C39 0.61610 (14) 0.8191 (4) 0.42777 (12) 0.0997 (10)
H39 0.616231 0.834870 0.395984 0.120*
C40 0.58901 (13) 0.8970 (3) 0.44741 (11) 0.0864 (8)
H40 0.570973 0.962260 0.428514 0.104*
C41 0.58924 (10) 0.8765 (2) 0.49478 (9) 0.0682 (6)
H41 0.571843 0.928847 0.508220 0.082*
C42 0.61552 (8) 0.7774 (2) 0.52264 (8) 0.0570 (5)
O3 0.435729 0.497409 0.668991 0.203 (7) 0.25
O4 0.474029 0.693590 0.701120 0.222 (8) 0.25
O6 0.420529 0.560530 0.655540 0.175 (6) 0.25
O5 0.500000 0.050190 0.750000 0.231 (12) 0.25

2-(1H-Indol-3-yl)-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one 0.438-hydrate (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0596 (4) 0.0634 (4) 0.0523 (3) −0.0050 (2) 0.0130 (2) −0.0096 (2)
O1 0.0792 (11) 0.0544 (9) 0.0689 (10) −0.0008 (8) 0.0255 (9) −0.0055 (7)
N1 0.0507 (10) 0.0517 (9) 0.0593 (10) −0.0003 (7) 0.0169 (8) 0.0002 (8)
N2 0.0568 (11) 0.0810 (13) 0.0657 (11) 0.0064 (10) 0.0217 (9) 0.0143 (10)
N3 0.0691 (12) 0.0567 (10) 0.0541 (10) −0.0052 (9) 0.0053 (9) −0.0016 (8)
C1 0.0479 (11) 0.0505 (10) 0.0551 (11) −0.0069 (8) 0.0145 (9) −0.0044 (9)
C2 0.0559 (12) 0.0529 (11) 0.0485 (10) −0.0029 (9) 0.0101 (9) −0.0025 (9)
C3 0.0501 (11) 0.0606 (12) 0.0516 (11) −0.0046 (9) 0.0089 (9) 0.0029 (9)
C4 0.0494 (11) 0.0639 (12) 0.0477 (10) 0.0010 (9) 0.0092 (8) 0.0060 (9)
C5 0.0585 (14) 0.0924 (19) 0.0853 (18) 0.0063 (13) 0.0260 (13) 0.0249 (15)
C6 0.0577 (14) 0.0852 (18) 0.0928 (19) −0.0136 (13) 0.0165 (13) 0.0217 (15)
C7 0.0657 (14) 0.0644 (14) 0.0688 (14) −0.0113 (11) 0.0129 (11) 0.0072 (11)
C8 0.0540 (11) 0.0495 (10) 0.0566 (11) −0.0006 (9) 0.0183 (9) −0.0026 (9)
C9 0.0726 (15) 0.0703 (14) 0.0599 (13) 0.0040 (12) 0.0238 (11) −0.0010 (11)
C10 0.0999 (19) 0.0736 (15) 0.0756 (15) −0.0018 (14) 0.0489 (14) −0.0050 (13)
C11 0.0685 (15) 0.0715 (15) 0.0983 (18) 0.0020 (12) 0.0436 (14) −0.0098 (13)
C12 0.0576 (14) 0.0897 (19) 0.0889 (18) 0.0108 (13) 0.0236 (13) −0.0037 (15)
C13 0.0573 (13) 0.0782 (15) 0.0621 (13) 0.0048 (11) 0.0184 (10) 0.0021 (11)
C14 0.0523 (11) 0.0464 (10) 0.0516 (10) −0.0042 (8) 0.0149 (9) 0.0013 (8)
C15 0.0634 (13) 0.0461 (10) 0.0577 (12) −0.0026 (9) 0.0124 (10) −0.0031 (9)
C16 0.0668 (14) 0.0544 (12) 0.0571 (12) −0.0005 (10) 0.0168 (10) 0.0063 (9)
C17 0.091 (2) 0.0725 (16) 0.0681 (15) 0.0140 (14) 0.0166 (14) 0.0171 (12)
C18 0.126 (3) 0.0602 (15) 0.0856 (19) 0.0237 (17) 0.0287 (18) 0.0215 (14)
C19 0.130 (3) 0.0457 (12) 0.0895 (19) 0.0061 (14) 0.0501 (19) 0.0036 (12)
C20 0.0849 (17) 0.0483 (11) 0.0652 (13) −0.0093 (11) 0.0322 (12) −0.0015 (10)
C21 0.0590 (12) 0.0462 (10) 0.0560 (11) −0.0059 (9) 0.0229 (9) 0.0012 (8)
S2 0.0612 (4) 0.0578 (3) 0.0657 (4) 0.0043 (2) 0.0234 (3) 0.0001 (2)
O2 0.0867 (13) 0.0657 (10) 0.0587 (9) −0.0204 (9) −0.0021 (9) 0.0080 (8)
N4 0.0648 (11) 0.0555 (10) 0.0444 (8) −0.0153 (8) 0.0100 (8) −0.0063 (7)
N5 0.0468 (10) 0.0849 (14) 0.0693 (12) −0.0012 (9) 0.0111 (9) −0.0054 (10)
N6 0.0487 (10) 0.0872 (14) 0.0779 (13) −0.0076 (10) 0.0200 (9) −0.0315 (11)
C22 0.0580 (12) 0.0528 (11) 0.0454 (10) −0.0100 (9) 0.0144 (9) −0.0081 (8)
C23 0.0604 (13) 0.0559 (11) 0.0509 (11) −0.0120 (10) 0.0093 (9) −0.0062 (9)
C24 0.0514 (11) 0.0574 (11) 0.0533 (11) −0.0089 (9) 0.0108 (9) −0.0079 (9)
C25 0.0470 (11) 0.0649 (12) 0.0531 (11) −0.0014 (9) 0.0157 (9) −0.0067 (9)
C26 0.0504 (13) 0.0942 (19) 0.0770 (17) −0.0174 (13) 0.0041 (12) −0.0155 (14)
C27 0.0620 (15) 0.0706 (15) 0.0933 (19) −0.0201 (13) 0.0088 (13) −0.0215 (14)
C28 0.0621 (14) 0.0581 (12) 0.0735 (15) −0.0118 (11) 0.0078 (11) −0.0079 (11)
C29 0.0691 (14) 0.0546 (12) 0.0462 (10) −0.0156 (10) 0.0087 (9) −0.0064 (9)
C30 0.0821 (17) 0.0706 (15) 0.0602 (13) 0.0044 (13) 0.0175 (12) −0.0113 (11)
C31 0.116 (2) 0.0689 (16) 0.0579 (14) 0.0003 (16) 0.0200 (15) −0.0152 (12)
C32 0.115 (2) 0.0640 (15) 0.0599 (14) −0.0278 (15) 0.0061 (15) −0.0065 (12)
C33 0.084 (2) 0.114 (3) 0.0811 (19) −0.0478 (19) 0.0149 (15) −0.0072 (17)
C34 0.0751 (17) 0.111 (2) 0.0605 (14) −0.0343 (16) 0.0224 (12) −0.0107 (14)
C35 0.0450 (10) 0.0602 (12) 0.0512 (10) −0.0135 (9) 0.0116 (8) −0.0146 (9)
C36 0.0482 (11) 0.0699 (14) 0.0628 (12) −0.0092 (10) 0.0123 (10) −0.0151 (10)
C37 0.0498 (12) 0.0871 (16) 0.0625 (13) −0.0246 (11) 0.0190 (10) −0.0252 (12)
C38 0.0764 (17) 0.118 (2) 0.0719 (15) −0.0254 (16) 0.0384 (14) −0.0273 (15)
C39 0.097 (2) 0.139 (3) 0.0708 (16) −0.0375 (19) 0.0406 (16) −0.0105 (17)
C40 0.091 (2) 0.097 (2) 0.0706 (16) −0.0297 (16) 0.0293 (15) 0.0030 (15)
C41 0.0668 (14) 0.0730 (15) 0.0626 (13) −0.0222 (12) 0.0217 (11) −0.0049 (11)
C42 0.0508 (11) 0.0656 (12) 0.0523 (10) −0.0211 (10) 0.0165 (9) −0.0158 (9)
O3 0.205 (10) 0.219 (11) 0.213 (11) −0.027 (8) 0.108 (8) 0.011 (8)
O4 0.231 (12) 0.216 (11) 0.203 (11) 0.018 (9) 0.062 (9) 0.024 (8)
O6 0.181 (9) 0.184 (9) 0.166 (9) 0.024 (8) 0.071 (7) 0.047 (7)
O5 0.211 (15) 0.237 (15) 0.240 (15) 0.000 0.081 (10) 0.000

2-(1H-Indol-3-yl)-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one 0.438-hydrate (2) . Geometric parameters (Å, º)

S1—C1 1.838 (2) S2—C22 1.835 (2)
S1—C4 1.755 (2) S2—C25 1.753 (2)
O1—C2 1.223 (3) O2—C23 1.220 (3)
N1—C1 1.464 (3) N4—C22 1.467 (3)
N1—C2 1.357 (3) N4—C23 1.362 (3)
N1—C8 1.448 (3) N4—C29 1.432 (3)
N2—C4 1.343 (3) N5—C25 1.336 (3)
N2—C5 1.333 (4) N5—C26 1.345 (4)
N3—C15 1.369 (3) N6—C36 1.363 (3)
N3—C16 1.371 (3) N6—C37 1.375 (4)
C1—C14 1.488 (3) C22—C35 1.504 (3)
C2—C3 1.504 (3) C23—C24 1.489 (3)
C3—C4 1.387 (3) C24—C25 1.392 (3)
C3—C7 1.387 (3) C24—C28 1.391 (3)
C5—C6 1.379 (5) C26—C27 1.362 (4)
C6—C7 1.386 (4) C27—C28 1.387 (3)
C8—C9 1.381 (3) C29—C30 1.410 (4)
C8—C13 1.372 (3) C29—C34 1.342 (4)
C9—C10 1.399 (4) C30—C31 1.382 (4)
C10—C11 1.381 (4) C31—C32 1.345 (5)
C11—C12 1.343 (4) C32—C33 1.367 (5)
C12—C13 1.393 (4) C33—C34 1.401 (4)
C14—C15 1.365 (3) C35—C36 1.370 (3)
C14—C21 1.426 (3) C35—C42 1.432 (3)
C16—C17 1.394 (3) C37—C38 1.394 (4)
C16—C21 1.407 (3) C37—C42 1.397 (3)
C17—C18 1.361 (4) C38—C39 1.370 (5)
C18—C19 1.408 (5) C39—C40 1.402 (5)
C19—C20 1.379 (4) C40—C41 1.375 (4)
C20—C21 1.406 (3) C41—C42 1.394 (4)
C4—S1—C1 95.25 (10) C25—S2—C22 95.91 (10)
C2—N1—C1 122.35 (18) C23—N4—C22 121.32 (17)
C2—N1—C8 120.96 (17) C23—N4—C29 120.80 (18)
C8—N1—C1 116.54 (16) C29—N4—C22 117.79 (17)
C5—N2—C4 116.8 (2) C25—N5—C26 116.0 (2)
C15—N3—C16 108.53 (19) C36—N6—C37 109.2 (2)
N1—C1—S1 110.37 (14) N4—C22—S2 109.75 (15)
N1—C1—C14 113.36 (17) N4—C22—C35 112.98 (19)
C14—C1—S1 112.06 (15) C35—C22—S2 112.90 (14)
O1—C2—N1 122.5 (2) O2—C23—N4 121.9 (2)
O1—C2—C3 120.7 (2) O2—C23—C24 120.6 (2)
N1—C2—C3 116.73 (19) N4—C23—C24 117.4 (2)
C4—C3—C2 124.1 (2) C25—C24—C23 123.5 (2)
C7—C3—C2 118.0 (2) C28—C24—C23 117.8 (2)
C7—C3—C4 117.6 (2) C28—C24—C25 118.2 (2)
N2—C4—S1 114.87 (18) N5—C25—S2 115.41 (18)
N2—C4—C3 124.0 (2) N5—C25—C24 123.9 (2)
C3—C4—S1 121.08 (17) C24—C25—S2 120.72 (16)
N2—C5—C6 123.8 (3) N5—C26—C27 124.9 (2)
C5—C6—C7 118.6 (3) C26—C27—C28 118.6 (3)
C6—C7—C3 119.1 (3) C27—C28—C24 118.5 (2)
C9—C8—N1 119.9 (2) C30—C29—N4 117.8 (2)
C13—C8—N1 119.4 (2) C34—C29—N4 121.8 (2)
C13—C8—C9 120.5 (2) C34—C29—C30 120.3 (2)
C8—C9—C10 118.6 (2) C31—C30—C29 118.6 (3)
C11—C10—C9 120.4 (3) C32—C31—C30 120.8 (3)
C12—C11—C10 120.2 (3) C31—C32—C33 120.6 (3)
C11—C12—C13 120.7 (3) C32—C33—C34 119.9 (3)
C8—C13—C12 119.6 (2) C29—C34—C33 119.8 (3)
C15—C14—C1 127.15 (19) C36—C35—C22 127.7 (2)
C15—C14—C21 106.50 (19) C36—C35—C42 106.7 (2)
C21—C14—C1 126.33 (19) C42—C35—C22 125.6 (2)
C14—C15—N3 110.2 (2) N6—C36—C35 109.5 (2)
N3—C16—C17 129.1 (2) N6—C37—C38 129.5 (3)
N3—C16—C21 107.8 (2) N6—C37—C42 107.7 (2)
C17—C16—C21 123.0 (2) C38—C37—C42 122.8 (3)
C18—C17—C16 117.1 (3) C39—C38—C37 116.7 (3)
C17—C18—C19 121.2 (3) C38—C39—C40 122.4 (3)
C20—C19—C18 122.0 (3) C41—C40—C39 119.7 (3)
C19—C20—C21 117.8 (3) C40—C41—C42 120.0 (3)
C16—C21—C14 106.90 (19) C37—C42—C35 106.9 (2)
C20—C21—C14 134.3 (2) C41—C42—C35 134.6 (2)
C20—C21—C16 118.8 (2) C41—C42—C37 118.5 (2)

2-(1H-Indol-3-yl)-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one 0.438-hydrate (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···O2i 0.86 2.00 2.828 (3) 161
C26—H26···N6ii 0.93 2.60 3.463 (3) 155

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by Fred J. Wiest Faculty Research Award at Penn State Schuylkill ; National Institutes of Health grant (1S10OD028589-01 to Pennsylvania State University; National Institutes of Health grant 1S10RR023439-01 to Pennsylvania State University; National Science Foundation grant CHE-1827930 to Villanova University.

References

  1. Arya, K., Tomar, P. & Singh, J. (2014). RSC Adv.4, 3060–3064.
  2. Cruz, R. M. D. da, Mendonça-Junior, F. J. B., de Mélo, N. B., Scotti, L., de Araújo, R. S. A., de Almeida, R. N. & de Moura, R. O. (2021). Pharmaceuticals14, 692. [DOI] [PMC free article] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  4. Konus, M., Çetin, D., Kızılkan, N. D., Yılmaz, C., Fidan, C., Algso, M., Kavak, E., Kivrak, A., Kurt-Kızıldoğan, A., Otur, C., Mutlu, D., Abdelsalam, A. H. & Arslan, S. (2022). J. Mol. Struct.1263, 133168.
  5. Li, X., Qin, Z., Yang, T., Zhang, H., Wei, S., Li, C., Chen, H. & Meng, M. (2012). Bioorg. Med. Chem. Lett.22, 2712–2716. [DOI] [PubMed]
  6. Liporagi-Lopes, L., Sobhi, H. F., Silverberg, L. J., Cordero, R. J. B. & Casadevall, A. (2020). BioRxiv. https://doi.org/10.1101/2020.06.27.175711
  7. Malfara, M. F., Silverberg, L. J., DiMaio, J., Lagalante, A. F., Olsen, M. A., Madison, E. & Povelones, M. L. (2021). Mol. Biochem. Parasitol.245, 111396. [DOI] [PubMed]
  8. Nayak, J., Bhat, R. S. & Chethan, D. M. (2022). ChemistrySelect, 7, e202103543.
  9. Rigaku OD (2023). Rigaku Oxford Diffraction, Yarnton, England.
  10. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  11. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  12. Silverberg, L. J., Mal, T. K., Pacheco, C. N., Povelones, M. L., Malfara, M. F., Lagalante, A. F., Olsen, M. A., Yennawar, H. P., Sobhi, H. F., Baney, K. R., Bozeman, R. L., Eroh, C. S., Fleming, M. J., Garcia, T. L., Gregory, C. L., Hahn, J. E., Hatter, A. M., Johns, L., Klinger, T. L., Li, J., Menig, A. J., Muench, G. C., Ramirez, M. E., Reilly, J., Sacco, N., Sheidy, A., Stoner, M. M., Thompson, E. N. & Yazdani, S. (2021). Molecules, 26, 6099.
  13. Silverberg, L. J., Pacheco, C. N., Lagalante, A., Cannon, K. C., Bachert, J. T., Xie, Y., Baker, L. & Bayliff, J. A. (2015). Int. J. Chem.7, 150–162.
  14. Wang, S., Fang, K., Dong, G., Chen, S., Liu, N., Miao, Z., Yao, J., Li, J., Zhang, W. & Sheng, C. (2015). J. Med. Chem.58, 6678–6696. [DOI] [PubMed]
  15. Webber, A. L., Yates, J. R., Zilka, M., Sturniolo, S., Uldry, A. C., Corlett, E. K., Pickard, C. J., Pérez-Torralba, M., Angeles Garcia, M., Santa Maria, D., Claramunt, R. M. & Brown, S. P. (2020). J. Phys. Chem. A, 124, 560–572. [DOI] [PubMed]
  16. Yennawar, H. P., Mal, T. K., Pacheco, C. N., Lagalante, A. F., Olsen, M. A., Russell, M. W., Muench, G. C., Moyer, Q. J. & Silverberg, L. J. (2023). Acta Cryst. E79, 221–225. [DOI] [PMC free article] [PubMed]
  17. Yennawar, H. P., Noble, D. J., Yang, Z. & Silverberg, L. J. (2017). IUCrData, 2, x171112.
  18. Yennawar, H. P., Singh, H. & Silverberg, L. J. (2014). Acta Cryst. E70, o638. [DOI] [PMC free article] [PubMed]
  19. Yennawar, H. P., Thompson, E. N., Li, J. & Silverberg, L. J. (2019). Acta Cryst. E75, 1689–1693. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989024005103/tx2086sup1.cif

e-80-00699-sup1.cif (654.3KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989024005103/tx20861sup2.hkl

e-80-00699-1sup2.hkl (331.2KB, hkl)
e-80-00699-1sup4.mol (2.1KB, mol)

Supporting information file. DOI: 10.1107/S2056989024005103/tx20861sup4.mol

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989024005103/tx20862sup3.hkl

e-80-00699-2sup3.hkl (444.8KB, hkl)
e-80-00699-2sup5.mol (2.5KB, mol)

Supporting information file. DOI: 10.1107/S2056989024005103/tx20862sup5.mol

e-80-00699-1sup6.cml (5.6KB, cml)

Supporting information file. DOI: 10.1107/S2056989024005103/tx20861sup6.cml

Supporting information file. DOI: 10.1107/S2056989024005103/tx20862sup7.cml

CCDC references: 2359143, 2359142

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES