Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Jun 28;80(Pt 7):795–799. doi: 10.1107/S2056989024006042

Synthesis, crystal structure and photophysical properties of a dinuclear MnII complex with 6-(di­ethyl­amino)-4-phenyl-2-(pyridin-2-yl)quinoline

Hai Le Thi Hong a, Duong Hoang Tuan a, Anh Nguyen Duc a, Hien Nguyen a, Luc Van Meervelt b,*
Editor: M Weilc
PMCID: PMC11223701  PMID: 38974167

The two MnII atoms in the complex display a different coordination number, viz. five with a distorted trigonal–bipyramidal Cl3N2 and six with a distorted octa­hedral Cl3N2O coordination set.

Keywords: crystal structure, MnII complex, dinuclear complex, aggregation-induced emission

Abstract

A new quinoline derivative, namely, 6-(di­ethyl­amino)-4-phenyl-2-(pyridin-2-yl)quinoline, C24H23N3 (QP), and its MnII complex aqua-1κO-di-μ-chlorido-1:2κ4Cl:Cl-di­chlorido-1κCl,2κCl-bis­[6-(di­ethyl­amino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II), [Mn2Cl4(C24H23N3)2(H2O)] (MnQP), were synthesized. Their compositions have been determined with ESI-MS, IR, and 1H NMR spectroscopy. The crystal-structure determination of MnQP revealed a dinuclear complex with a central four-membered Mn2Cl2 ring. Both MnII atoms bind to an additional Cl atom and to two N atoms of the QP ligand. One MnII atom expands its coordination sphere with an extra water mol­ecule, resulting in a distorted octa­hedral shape. The second MnII atom shows a distorted trigonal–bipyramidal shape. The UV–vis absorption and emission spectra of the examined compounds were studied. Furthermore, when investigating the aggregation-induced emission (AIE) properties, it was found that the fluorescent color changes from blue to green and eventually becomes yellow as the fraction of water in the THF/water mixture increases from 0% to 99%. In particular, these color and intensity changes are most pronounced at a water fraction of 60%. The crystal structure contains disordered solvent mol­ecules, which could not be modeled. The SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–18] was used to obtain information on the type and qu­antity of solvent mol­ecules, which resulted in 44 electrons in a void volume of 274 Å3, corresponding to approximately 1.7 mol­ecules of ethanol in the unit cell. These ethanol mol­ecules are not considered in the given chemical formula and other crystal data.

1. Chemical context

Among heterocyclic compounds, quinoline derivatives are of great inter­est because they have many inter­esting properties in terms of both biological and photophysical properties. For example, compounds consisting of quinine, chloro­quine, amidiaquine and primaquine have anti­malarial activity; 8-hy­droxy­quinoline is used to produce pesticides; some derivatives of quinoline are capable of emitting visible light (Sales et al., 2015; dos Santos et al., 2017). Currently, quinoline derivatives synthesized from multicomponent reactions including an aniline derivative, an aldehyde and a phenyl­alkyne with green catalysts are a trend that is receiving more attention due to a one-pot reaction with high yields. Moreover, by changing substituents in the components, it is possible to create many new derivatives of quinoline containing both aryl rings and long π-conjugation systems, and their application can be expanded (Sales et al., 2015; Sharghi et al., 2016). There are also many quinoline derivatives that have some inter­esting photophysical properties such as metal-ion recognition (Wang et al., 2020; Hojitsiriyanont et al., 2021; Mohanasundaram et al., 2021) or aggregation-induced emission (AIE) properties (Zhang et al., 2019; Shen et al., 2021; Hussain et al., 2022). In addition, some quinoline derivatives have been designed that contain electron-donating atoms, N,N-donor ligands, capable of forming chelate complexes with transition-metal ions. Complexes of this type of ligands not only have more diverse structures, but also a large number of superior properties compared to the free ligands, such as higher anti­cancer activities (Shakir et al., 2015; Wang et al., 2017; Hu et al., 2018) or better optical properties (Pathaw et al., 2021).1.

In this report, a new quinoline derivative, 6-(N,N-di­ethyl­amine)-4-phenyl-2(pyridin-2-yl)quinoline (QP), was synthesized via a one-pot reaction involving 4-N,N-di­ethylamine­aniline, pyridine-2-carbaldehyde and phenyl­acetyl­ene. The green catalyst used in this synthesis was montmorillonite (K-10; Fig. 1). For this compound, two electron-withdrawing groups – pyridine and phenyl – were introduced at positions C2 and C4 of the quinoline ring. In addition, an electron-donating group, N,N-di­ethyl­amino (–NEt2), was also incorporated to create an electron push–pull effect. This effect contributes to an intra­molecular charge transfer (ICT) during excitation via photon absorption. Furthermore, the organic compound contains two N-donor atoms from the quinoline and pyridine rings. As a result, the ligand can form five-membered ring chelate complexes with transition-metal ions. More specifically, MnII, with a d5 semi-saturated electronic configuration, is able to form complexes with various coord­ination numbers, ranging from 4 to 7 (Jin et al., 2011; Li et al., 2011; Konar et al., 2011; Wang et al., 2017; Sääsk et al., 2024). Therefore, when MnII inter­acts with the QP ligand, mononuclear and polynuclear complexes with different coordination numbers can be expected. The structure of the product complex, referred to as MnQP, was determined using single-crystal X-ray diffraction. Furthermore, the photophysical and aggregation-induced emission (AIE) properties of both QP and MnQP were investigated using UV–vis absorption and emission spectra.

Figure 1.

Figure 1

Synthesis scheme of QP and title compound MnQP.

2. Structural commentary

MnQP crystallizes in the triclinic space group PInline graphic with one complex mol­ecule in the asymmetric unit (Fig. 2). The complex contains two MnII atoms, two QP ligands (denoted A and B, containing atoms N1 and N4, respectively), four chlorine atoms and one water mol­ecule. Chlorine atom Cl1 is disordered over two positions with a refined occupancy ratio of Cl1A:Cl1B = 0.680 (8):0.320 (8). For the disordered ethyl group C34–C35, the occupancy ratio refined to 0.878 (4):0.122 (4). The crystal structure contains disordered solvent mol­ecules, which could not be modeled. The SQUEEZE procedure (Spek, 2015) was used to obtain information on the type and qu­antity of solvent mol­ecules, which resulted in 44 electrons in a void volume of 274 Å3, corresponding to approximately 1.7 mol­ecules of ethanol in the unit cell.

Figure 2.

Figure 2

The mol­ecular structure of MnQP with complete labeling of non-hydrogen atoms. Displacement ellipsoids are shown at the 30% probability level. For the Cl atom Cl1 and ethyl group C34–C35, only the part with the higher occupancy is shown.

Two bridging chlorine atoms (Cl2, Cl3) connect the two central MnII atoms to form a four-membered rhomb-shaped ring. The metal⋯metal distance is 3.7412 (6) Å. Both MnII atoms have a different coordination environment, fivefold for Mn1 and sixfold for Mn2. The coordination sphere of Mn1 is best described as distorted trigonal–bipyramidal. The equatorial positions are occupied by nitro­gen atom N3 at a distance of 2.215 (2) Å, and two chlorine atoms Cl1 and Cl3 at distances of, respectively, 2.382 (2) (for Cl1A), 2.337 (4) (for Cl1B) and 2.4501 (8) Å. The axial positions are occupied by chlorine atom Cl2 at a distance of 2.4974 (7) Å and nitro­gen atom N1 at a distance of 2.286 (2) Å. The Mn2 ion exhibits a distorted octa­hedral coordination sphere, with the equatorial plane formed by three chlorine atoms Cl2, Cl3 and Cl4 at distances of 2.6269 (8), 2.5838 (8) and 2.4354 (8) Å, respectively, and one nitro­gen atom N6, at a distance of 2.257 (2) Å. One axial position is occupied by water oxygen atom O1 at a distance of 2.213 (2) Å, the other by nitro­gen atom N4 at a distance of 2.3087 (19) Å.

The planar quinoline ring in ligand A (r.m.s. deviation = 0.014 Å) makes a dihedral angle of 9.46 (8)° with pyridine ring N3/C20–C24 and 54.84 (10)° with phenyl ring C14–C19. In ligand B, the quinoline ring (r.m.s. deviation = 0.061 Å) makes a significantly larger dihedral angle with the pyridine ring N6/C44–C48 [23.39 (7)°] and a smaller one with phenyl ring C38–C43 [50.15 (8)°]. The two quinoline rings are mutually inclined at an angle of 53.07 (6)°. The sum of the bond angles around N2 [358.0 (5)°] and N5 [360.0 (3)°] indicate sp2 hybridization.

3. Supra­molecular features

The crystal packing of MnQP is characterized by C—H⋯Cl and C—H⋯π inter­actions. Inversion dimers are formed by C12—H12A⋯Cl1B and C45—H45⋯Cl4 inter­actions. Both dimers are part of slabs forming chains parallel to the a axis through C23—H23⋯Cl3 inter­actions (Fig. 3, Table 1). The packing is further stabilized by four different types of C—H⋯π inter­actions (Fig. 4, Table 1).

Figure 3.

Figure 3

Packing diagram for MnQP showing C—H⋯Cl inter­actions (green lines) between mol­ecules. For clarity, only those H atoms involved in hydrogen bonding are shown. Symmetry codes are given in Table 1.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1Cg4 are the centroids of the C1–C6, C38–C43, N3/C20–C24 and C25–C30 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯Cl1Bi 0.97 2.81 3.734 (7) 158
C23—H23⋯Cl3ii 0.93 2.74 3.567 (3) 149
C45—H45⋯Cl4iii 0.93 2.69 3.563 (3) 157
C11—H11ACg1i 0.96 2.97 3.585 (4) 123
C21—H21⋯Cg2iv 0.93 2.89 3.642 (3) 139
C36—H36BCg3iv 0.97 2.96 3.845 (3) 153
C35B—H35DCg4iv 0.96 2.84 3.45 (2) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 4.

Figure 4

Packing diagram for MnQP showing the C—H⋯π inter­actions (orange lines) between mol­ecules. For clarity, only those H atoms involved in the inter­actions are shown. Symmetry codes are given in Table 1.

The hydrogen atoms of water mol­ecule O1 are not involved in hydrogen-bonding inter­actions. Significant π–π stacking inter­actions between rings of neighboring mol­ecules were not observed in this structure.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.45, update of March 2024; Groom et al., 2016) indicated 347 compounds incorporating a four-membered Mn2Cl2 moiety. Of these compounds, 115 also have two N atoms that bond to the each MnII atom. The number of similar compounds further reduces to 69 when each MnII atom bonds to an additional Cl atom. Adding an additional O atom to one of the MnII atoms results in 12 complexes, all of which exhibit a coordination number of six with a distorted octa­hedral coordination environment for both MnII atoms, and a (pseudo) inversion center at the center of the Mn2Cl2 ring. For four complexes, the O atom is part of a water mol­ecule, where the Mn—O distance varies between 2.141 and 2.274 Å [2.323 (2) Å in MnQP].

5. Photophysical properties

The UV–vis absorption and emission spectra of QP and MnQP (10 µM in THF) are shown in Fig. 5 and numerical data in Table 2. In the UV–vis spectra (Fig. 5a), both QP and MnQP exhibit three absorption bands with maxima at 294 nm, 351 nm, and 405 nm. These bands are attributed to the n→π* and π→π* transitions of the fused aromatic heterocycle. In the emission spectra (Fig. 5b), both the ligand and the complex emit light with a band at 472 nm, corresponding to blue light. Although the maximum absorption and emission wavelength do not change significantly between the ligand and the complex, the emission intensity of the complex is higher than that of the free ligand. This enhancement can be explained by the d5 electronic configuration of the central MnII ion, which forbids absorption of radiation in the visible range according to the Laporte rules. Additionally, the coordination of MnII with the ligand through two heterocyclic N atoms reduces rotation of the pyridine ring, leading to an increase in emission intensity from 55338 a.u. to 83395 a.u. compared to the free ligand.

Figure 5.

Figure 5

(a) UV–vis absorption and (b) emission spectra of QP and MnQP (10 µM in THF, λex = 360 nm).

Table 2. Photophysical data for QP and MnQP (in THF, 10 µM).

Compound Absorption Emission   Stokes shift
  λABS(nm) / ɛ (10−3M−1.cm−1) λem (nm) Intensity (a.u.) Δν (cm−1)
QP 294 (21); 351 (10); 405 (11) 472 55338 7303
MnQP 294 (36); 351 (18); 405 (19) 472 83395 7340

The aggregation-induced emission (AIE) properties of QP and MnQP were investigated by recording photoluminescence (PL) spectra in THF/water mixtures with different water fractions (fw) at a concentration of 10 µM. The results show that their fluorescent color changes from blue to green and finally turns yellow under 365 nm UV light when the water fraction increases from 0% to 99%. For the QP ligand, the color and intensity changes are most pronounced at a 60% water ratio (see Fig. S6 in the electronic supporting information, ESI), and the same trend is observed for the MnQP complex (Fig. 6). This behavior can be explained by the following factors. As the water fraction in the THF–water mixture increases, the solubility of both the ligand and the complex decreases. This reduction in solubility leads to shorter distances between mol­ecules, which in turn promotes π–π inter­actions between adjacent mol­ecules. This inter­action changes the electron density within the mol­ecules, resulting in changes in the emission peak and intensity (Hong et al., 2009).

Figure 6.

Figure 6

(a) Emission spectra and (b) fluorescent color change of MnQP with a concentration of 10 µM in different fractions of water in a THF–water mixture.

6. Synthesis and crystallization

Synthesis of 6-(N,N-di­ethyl­amine)-4-phenyl-2(pyridin-2-yl)quinoline (QP)

To a mixture of 4-N,N-di­ethyl­amine­aniline (196.8 mg, 1.2 mmol), pyridine-2-carbaldehyde (128.4 mg, 1.2 mmol), and phenyl­acetyl­ene (102.0 mg, 1.0 mmol) were added montmorillonite (K-10) (500 mg) and chloro­form (1 ml). The resulting reaction mixture was stirred continuously at 373 K. After 24 h, the reaction mixture was cooled down to room temperature, and extracted three times with ethyl­acetate/water (v/v = 1:1). The collected organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure using a rotatory evaporator to remove the solvent. The residue was then adsorbed on silicagel and purified by silica gel column chromatography with ethyl­ acetate/n-hexane (v/v = 1:10) to obtain QP as a dark-orange solid. The isolated yield of this cyclization reaction is 65%. The product is moderately soluble in ethanol, THF, CHCl3, and DMSO. ESI–MS: 356.3 (100%) = [QP + H]+. 1H NMR (600 MHz, CDCl3, δ ppm): 1.16 (6H, 3J = 7.2 Hz, t, 2 CH3), 3.80 (4H, 3J = 7.2 Hz, q, 2 CH2), 6.90 (1H, 4J = 3.0 Hz, d, Ar-H), 7.27 (1H, 3J = 6.0 Hz, 4J = 1.2 Hz, td, Ar-H), 7.32 (1H, 3J = 9.6 Hz, 4J = 3.0 Hz, dd, Ar-H), 7.45 (1H, 3J = 7.2 Hz, d, Ar-H), 7.49 (2H, 3J = 6.6 Hz, t, Ar-H), 7.60 (2H, 3J = 7.2 Hz, d, Ar-H), 7.82 (1H, 3J = 7.8 Hz, 4J = 1.8 Hz, td, Ar-H), 8.07 (1H, 3J = 9.6 Hz, d, Ar-H), 8.35 (1H, s, Ar-H), 8.59 (1H, 3J = 7.8 Hz, d, Ar-H), 8.67 (1H, 3J = 6.0 Hz, d, Ar-H). IR (KBr, cm−1): 2965 (νC—H ar­yl), 1615, 1585 (νC=C ar­yl), 1504, 1435 (νC=N ar­yl).

ESI–MS, FT–IR and 1H NMR spectra of QP are given in Figs. S1, S2 and S3, respectively, in the ESI.

Synthesis of [Mn2(QP)2Cl4(H2O)] (MnQP)

MnCl2·2H2O (35.64 mg, 0.22 mmol) was added to a QP solution (70.6 mg, 0.2 mmol in 3 ml of ethanol). The resulting mixture was stirred continuously at room temperature for 3 h and became dark yellow. The solution was evaporated slowly for 48 h to obtain yellow crystals of MnQP. The crystals were then filtered and washed with acetone. The yield was about 52%. The crystals are moderately soluble in ethanol, THF, CHCl3 and DMSO. ESI–MS: 729.3 (65%) = [Mn2(QP)2Cl4(H2O)-QP+2DMSO-H2O-H]+; 937.8 (20%) = [Mn2(QP)2Cl4(H2O)-Cl]+. IR (KBr, cm−1): 3407 (νO—H H2O), 2971 (νC—H ar­yl), 1614, 1599 (νC=C ar­yl), 1506, 1483 (νC=N ar­yl).

ESI–MS and FT–IR spectra of MnQP are given in Figs. S4 and S5, respectively, in the ESI.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters Uiso(H) = 1.2 Ueq(C) (1.5 for methyl groups). The Cl1 atom and ethyl group C34–C35 were found to be disordered over two positions with refined occupancies of 0.680 (8) and 0.320 (8) for Cl1, and 0.878 (4) and 0.122 (4) for ethyl group C34–C35. The H atoms of the water mol­ecule were located in a difference electron-density map and refined with Uiso(H) = 1.5Ueq(O) and O—H distances restrained to 0.82 Å. RIGU and DELU restraints were used for atoms N2, Cl2 and Cl3 to impose reasonable relative motion of these atoms. Additional electron density was localized in voids (274 Å3 total potential accessible volume) summing up to 44 electrons, which corresponds to approximately 1.7 mol­ecules of ethanol per unit cell. The electron density associated with the disordered ethanol mol­ecules was removed with the SQUEEZE (Spek, 2015) routine in PLATON (Spek, 2020). These ethanol mol­ecules are not considered in the given chemical formula and other crystal data.

Table 3. Experimental details.

Crystal data
Chemical formula [Mn2Cl4(C24H23N3)2(H2O)]
M r 976.60
Crystal system, space group Triclinic, PInline graphic
Temperature (K) 294
a, b, c (Å) 8.7491 (2), 13.2133 (3), 21.3793 (5)
α, β, γ (°) 88.914 (2), 82.290 (2), 88.989 (2)
V3) 2448.48 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.78
Crystal size (mm) 0.4 × 0.15 × 0.05
 
Data collection
Diffractometer SuperNova, Single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2024)
Tmin, Tmax 0.606, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 50282, 9973, 7946
R int 0.034
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.139, 0.86
No. of reflections 9973
No. of parameters 560
No. of restraints 18
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.86, −0.47

Computer programs: CrysAlis PRO (Rigaku OD, 2024), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024006042/wm5726sup1.cif

e-80-00795-sup1.cif (907KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024006042/wm5726Isup2.hkl

e-80-00795-Isup2.hkl (546.1KB, hkl)

ESI-MS, FT-IR and H-NMR spectra. DOI: 10.1107/S2056989024006042/wm5726sup3.pdf

e-80-00795-sup3.pdf (670.7KB, pdf)

CCDC reference: 2364423

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Hanoi National University of Education for providing a fruitful working environment. LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

supplementary crystallographic information

Aqua-1κO-di-µ-chlorido-1:2κ4Cl:Cl-dichlorido-1κCl,2κCl-bis[6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II) . Crystal data

[Mn2Cl4(C24H23N3)2(H2O)] Z = 2
Mr = 976.60 F(000) = 1008
Triclinic, P1 Dx = 1.325 Mg m3
a = 8.7491 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 13.2133 (3) Å Cell parameters from 20239 reflections
c = 21.3793 (5) Å θ = 3.6–27.7°
α = 88.914 (2)° µ = 0.78 mm1
β = 82.290 (2)° T = 294 K
γ = 88.989 (2)° Plate, yellow
V = 2448.48 (10) Å3 0.4 × 0.15 × 0.05 mm

Aqua-1κO-di-µ-chlorido-1:2κ4Cl:Cl-dichlorido-1κCl,2κCl-bis[6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II) . Data collection

SuperNova, Single source at offset/far, Eos diffractometer 9973 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source 7946 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.034
Detector resolution: 15.9566 pixels mm-1 θmax = 26.4°, θmin = 3.3°
ω scans h = −10→10
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2024) k = −16→16
Tmin = 0.606, Tmax = 1.000 l = −26→26
50282 measured reflections

Aqua-1κO-di-µ-chlorido-1:2κ4Cl:Cl-dichlorido-1κCl,2κCl-bis[6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0889P)2 + 2.333P] where P = (Fo2 + 2Fc2)/3
S = 0.86 (Δ/σ)max = 0.001
9973 reflections Δρmax = 0.86 e Å3
560 parameters Δρmin = −0.47 e Å3
18 restraints

Aqua-1κO-di-µ-chlorido-1:2κ4Cl:Cl-dichlorido-1κCl,2κCl-bis[6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Aqua-1κO-di-µ-chlorido-1:2κ4Cl:Cl-dichlorido-1κCl,2κCl-bis[6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Mn1 0.35314 (5) 0.65406 (3) 0.22302 (2) 0.03955 (12)
Cl1A 0.3891 (5) 0.7046 (2) 0.11458 (10) 0.0598 (4) 0.680 (8)
Cl1B 0.3379 (8) 0.7186 (4) 0.1215 (2) 0.0598 (4) 0.320 (8)
O1 0.0739 (3) 0.8996 (2) 0.25271 (12) 0.0689 (7)
H1A 0.101 (5) 0.9574 (15) 0.243 (2) 0.103*
H1B 0.072 (6) 0.866 (3) 0.2203 (14) 0.103*
N1 0.3023 (2) 0.49080 (16) 0.20012 (10) 0.0365 (5)
C1 0.1824 (3) 0.4612 (2) 0.17034 (12) 0.0383 (5)
Mn2 0.17320 (4) 0.84639 (3) 0.33759 (2) 0.03688 (12)
Cl2 0.44135 (8) 0.81104 (5) 0.26973 (3) 0.04346 (16)
N2 −0.1917 (3) 0.3857 (2) 0.07467 (15) 0.0666 (8)
C2 0.0623 (3) 0.5316 (2) 0.16218 (14) 0.0482 (7)
H2 0.066162 0.596571 0.177875 0.058*
Cl3 0.12894 (9) 0.66307 (6) 0.30488 (4) 0.0539 (2)
N3 0.5448 (2) 0.55925 (16) 0.25097 (10) 0.0388 (5)
C3 −0.0584 (3) 0.5064 (2) 0.13192 (14) 0.0506 (7)
H3 −0.135308 0.554530 0.127541 0.061*
Cl4 0.25143 (9) 1.01982 (6) 0.35077 (4) 0.05338 (19)
N4 0.1805 (2) 0.79905 (15) 0.44166 (9) 0.0314 (4)
C4 −0.0703 (3) 0.4089 (2) 0.10692 (13) 0.0475 (7)
N5 0.6580 (3) 0.5855 (2) 0.53537 (11) 0.0541 (6)
C5 0.0438 (3) 0.3380 (2) 0.11605 (13) 0.0461 (6)
H5 0.035832 0.272545 0.101729 0.055*
N6 −0.0657 (2) 0.86758 (16) 0.39068 (10) 0.0374 (5)
C6 0.1720 (3) 0.36243 (19) 0.14655 (12) 0.0379 (5)
C7 0.2938 (3) 0.29213 (19) 0.15545 (12) 0.0391 (6)
C8 0.4082 (3) 0.32372 (19) 0.18789 (12) 0.0392 (6)
H8 0.485393 0.278036 0.196120 0.047*
C9 0.4120 (3) 0.42339 (19) 0.20908 (11) 0.0360 (5)
C10 −0.3167 (4) 0.4582 (3) 0.06752 (15) 0.0582 (8)
H10A −0.338472 0.496987 0.105847 0.070*
H10B −0.408843 0.421213 0.062418 0.070*
C11 −0.2811 (5) 0.5301 (3) 0.01241 (18) 0.0830 (12)
H11A −0.260119 0.492405 −0.025818 0.125*
H11B −0.192547 0.569133 0.017930 0.125*
H11C −0.368005 0.574673 0.009902 0.125*
C12 −0.1760 (5) 0.2956 (3) 0.0310 (2) 0.0854 (12)
H12A −0.225658 0.311567 −0.006007 0.103*
H12B −0.067625 0.281812 0.017003 0.103*
C13 −0.2449 (7) 0.2072 (4) 0.0624 (3) 0.128 (2)
H13A −0.199280 0.193234 0.100073 0.192*
H13B −0.227740 0.150391 0.034807 0.192*
H13C −0.353785 0.218854 0.073176 0.192*
C14 0.3028 (3) 0.1878 (2) 0.12996 (13) 0.0426 (6)
C15 0.3031 (4) 0.1708 (2) 0.06598 (16) 0.0604 (8)
H15 0.287552 0.224799 0.038894 0.073*
C16 0.3263 (5) 0.0746 (3) 0.04233 (19) 0.0793 (12)
H16 0.325846 0.064160 −0.000539 0.095*
C17 0.3502 (5) −0.0066 (3) 0.0820 (2) 0.0773 (11)
H17 0.365477 −0.071499 0.065966 0.093*
C18 0.3512 (4) 0.0093 (2) 0.14495 (19) 0.0652 (9)
H18 0.368046 −0.044899 0.171690 0.078*
C19 0.3273 (3) 0.1054 (2) 0.16911 (15) 0.0509 (7)
H19 0.327561 0.115159 0.212065 0.061*
C20 0.5421 (3) 0.45903 (19) 0.24069 (11) 0.0351 (5)
C21 0.6551 (3) 0.3940 (2) 0.25902 (14) 0.0480 (7)
H21 0.651441 0.324875 0.252079 0.058*
C22 0.7730 (3) 0.4332 (3) 0.28766 (16) 0.0555 (8)
H22 0.849573 0.390617 0.300053 0.067*
C23 0.7765 (3) 0.5349 (2) 0.29771 (15) 0.0519 (7)
H23 0.855142 0.562503 0.316873 0.062*
C24 0.6613 (3) 0.5953 (2) 0.27886 (14) 0.0470 (6)
H24 0.663814 0.664509 0.285689 0.056*
C25 0.3019 (3) 0.75430 (18) 0.46657 (11) 0.0312 (5)
C26 0.4121 (3) 0.6987 (2) 0.42594 (12) 0.0388 (6)
H26 0.404769 0.697817 0.382954 0.047*
C27 0.5282 (3) 0.6468 (2) 0.44870 (12) 0.0435 (6)
H27 0.599206 0.611244 0.420730 0.052*
C28 0.5450 (3) 0.6448 (2) 0.51415 (12) 0.0402 (6)
C29 0.4400 (3) 0.70200 (19) 0.55394 (11) 0.0361 (5)
H29 0.450440 0.703967 0.596623 0.043*
C30 0.3186 (3) 0.75706 (17) 0.53179 (11) 0.0314 (5)
C31 0.2053 (3) 0.81444 (18) 0.57144 (11) 0.0313 (5)
C32 0.0798 (3) 0.85298 (18) 0.54550 (11) 0.0336 (5)
H32 0.001934 0.887326 0.570944 0.040*
C33 0.0682 (3) 0.84097 (17) 0.48098 (11) 0.0318 (5)
C34A 0.7695 (5) 0.5291 (3) 0.49221 (17) 0.0598 (4) 0.878 (4)
H34A 0.716880 0.495813 0.461332 0.072* 0.878 (4)
H34B 0.819456 0.477394 0.515525 0.072* 0.878 (4)
C35A 0.8880 (5) 0.5987 (3) 0.45924 (17) 0.0598 (4) 0.878 (4)
H35A 0.837950 0.651735 0.437884 0.090* 0.878 (4)
H35B 0.957178 0.561486 0.429056 0.090* 0.878 (4)
H35C 0.945156 0.627778 0.489612 0.090* 0.878 (4)
C34B 0.8079 (18) 0.5859 (16) 0.4945 (10) 0.0598 (4) 0.122 (4)
H34C 0.890775 0.589382 0.520309 0.072* 0.122 (4)
H34D 0.813426 0.644931 0.466687 0.072* 0.122 (4)
C35B 0.826 (3) 0.4903 (17) 0.4557 (9) 0.0598 (4) 0.122 (4)
H35D 0.828382 0.432266 0.483290 0.090* 0.122 (4)
H35E 0.920930 0.492781 0.427229 0.090* 0.122 (4)
H35F 0.741117 0.485305 0.431911 0.090* 0.122 (4)
C36 0.6734 (4) 0.5767 (2) 0.60222 (14) 0.0530 (7)
H36A 0.722257 0.511940 0.609811 0.064*
H36B 0.571034 0.576515 0.626112 0.064*
C37 0.7654 (5) 0.6594 (3) 0.62720 (18) 0.0799 (11)
H37A 0.863950 0.664467 0.601628 0.120*
H37B 0.779985 0.643394 0.670001 0.120*
H37C 0.710372 0.722741 0.625797 0.120*
C38 0.2191 (3) 0.83535 (18) 0.63866 (11) 0.0345 (5)
C39 0.3567 (3) 0.8713 (2) 0.65593 (12) 0.0405 (6)
H39 0.443295 0.876552 0.625739 0.049*
C40 0.3653 (4) 0.8991 (2) 0.71739 (14) 0.0514 (7)
H40 0.456951 0.924070 0.728097 0.062*
C41 0.2390 (4) 0.8900 (3) 0.76260 (14) 0.0613 (9)
H41 0.245125 0.908451 0.803944 0.074*
C42 0.1030 (4) 0.8535 (3) 0.74660 (14) 0.0589 (8)
H42 0.017851 0.846313 0.777370 0.071*
C43 0.0927 (3) 0.8274 (2) 0.68500 (13) 0.0456 (6)
H43 −0.000234 0.804239 0.674505 0.055*
C44 −0.0744 (3) 0.87005 (18) 0.45391 (12) 0.0338 (5)
C45 −0.2125 (3) 0.8899 (2) 0.49184 (13) 0.0416 (6)
H45 −0.215800 0.893448 0.535407 0.050*
C46 −0.3456 (3) 0.9044 (2) 0.46411 (15) 0.0480 (7)
H46 −0.439540 0.916770 0.488922 0.058*
C47 −0.3376 (3) 0.9002 (2) 0.39932 (15) 0.0495 (7)
H47 −0.425572 0.909121 0.379625 0.059*
C48 −0.1953 (3) 0.8826 (2) 0.36457 (14) 0.0486 (7)
H48 −0.189055 0.880983 0.320833 0.058*

Aqua-1κO-di-µ-chlorido-1:2κ4Cl:Cl-dichlorido-1κCl,2κCl-bis[6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0468 (2) 0.0371 (2) 0.0362 (2) 0.00307 (17) −0.01036 (17) −0.00673 (16)
Cl1A 0.0741 (13) 0.0631 (8) 0.0429 (6) 0.0085 (8) −0.0122 (7) 0.0016 (5)
Cl1B 0.0741 (13) 0.0631 (8) 0.0429 (6) 0.0085 (8) −0.0122 (7) 0.0016 (5)
O1 0.0712 (16) 0.0835 (19) 0.0555 (14) 0.0005 (14) −0.0230 (12) 0.0105 (13)
N1 0.0404 (11) 0.0364 (11) 0.0340 (10) 0.0031 (9) −0.0089 (9) −0.0066 (8)
C1 0.0423 (14) 0.0410 (14) 0.0331 (12) 0.0003 (11) −0.0100 (10) −0.0046 (10)
Mn2 0.0388 (2) 0.0400 (2) 0.0325 (2) 0.00306 (16) −0.00725 (15) −0.00383 (15)
Cl2 0.0467 (4) 0.0396 (3) 0.0439 (3) −0.0031 (3) −0.0039 (3) −0.0069 (3)
N2 0.0637 (17) 0.0703 (19) 0.0751 (19) 0.0021 (14) −0.0430 (15) −0.0104 (14)
C2 0.0512 (16) 0.0470 (16) 0.0492 (16) 0.0089 (13) −0.0165 (13) −0.0126 (13)
Cl3 0.0507 (4) 0.0526 (4) 0.0563 (4) −0.0139 (3) 0.0052 (3) −0.0198 (3)
N3 0.0409 (12) 0.0381 (12) 0.0386 (11) −0.0021 (9) −0.0085 (9) −0.0060 (9)
C3 0.0471 (16) 0.0583 (18) 0.0496 (16) 0.0115 (13) −0.0185 (13) −0.0098 (13)
Cl4 0.0548 (4) 0.0441 (4) 0.0592 (4) −0.0025 (3) 0.0015 (3) −0.0111 (3)
N4 0.0322 (10) 0.0324 (10) 0.0304 (10) 0.0026 (8) −0.0067 (8) −0.0021 (8)
C4 0.0497 (16) 0.0528 (17) 0.0427 (15) −0.0033 (13) −0.0154 (12) −0.0023 (12)
N5 0.0552 (15) 0.0649 (16) 0.0421 (13) 0.0296 (12) −0.0104 (11) −0.0019 (11)
C5 0.0550 (17) 0.0411 (15) 0.0457 (15) −0.0044 (12) −0.0185 (13) −0.0030 (12)
N6 0.0354 (11) 0.0375 (11) 0.0412 (12) 0.0032 (9) −0.0121 (9) −0.0008 (9)
C6 0.0451 (14) 0.0363 (13) 0.0331 (12) −0.0010 (11) −0.0083 (10) −0.0004 (10)
C7 0.0478 (15) 0.0351 (13) 0.0354 (13) −0.0021 (11) −0.0089 (11) 0.0007 (10)
C8 0.0441 (14) 0.0345 (13) 0.0405 (13) 0.0018 (11) −0.0110 (11) 0.0000 (10)
C9 0.0411 (13) 0.0367 (13) 0.0308 (12) −0.0019 (10) −0.0068 (10) −0.0013 (10)
C10 0.0467 (17) 0.077 (2) 0.0538 (18) −0.0056 (15) −0.0180 (14) 0.0053 (16)
C11 0.088 (3) 0.102 (3) 0.060 (2) −0.006 (2) −0.014 (2) 0.018 (2)
C12 0.088 (3) 0.093 (3) 0.087 (3) −0.010 (2) −0.054 (2) −0.003 (2)
C13 0.131 (5) 0.113 (4) 0.147 (5) −0.035 (4) −0.039 (4) 0.000 (4)
C14 0.0468 (15) 0.0362 (14) 0.0470 (15) −0.0014 (11) −0.0146 (12) −0.0023 (11)
C15 0.089 (2) 0.0436 (17) 0.0519 (17) 0.0053 (16) −0.0220 (16) −0.0061 (13)
C16 0.121 (3) 0.057 (2) 0.065 (2) 0.010 (2) −0.030 (2) −0.0248 (18)
C17 0.099 (3) 0.0407 (18) 0.095 (3) 0.0075 (18) −0.019 (2) −0.0166 (18)
C18 0.071 (2) 0.0390 (17) 0.087 (3) 0.0017 (15) −0.0154 (19) 0.0088 (16)
C19 0.0550 (17) 0.0434 (16) 0.0563 (17) −0.0001 (13) −0.0156 (14) 0.0044 (13)
C20 0.0344 (12) 0.0385 (13) 0.0320 (12) −0.0027 (10) −0.0028 (9) −0.0015 (10)
C21 0.0484 (16) 0.0419 (15) 0.0567 (17) 0.0026 (12) −0.0178 (13) −0.0021 (13)
C22 0.0441 (16) 0.0583 (19) 0.068 (2) 0.0048 (14) −0.0215 (14) −0.0008 (15)
C23 0.0396 (15) 0.0601 (19) 0.0588 (18) −0.0070 (13) −0.0156 (13) −0.0073 (14)
C24 0.0423 (15) 0.0476 (16) 0.0530 (16) −0.0033 (12) −0.0116 (12) −0.0087 (13)
C25 0.0295 (11) 0.0319 (12) 0.0323 (12) 0.0025 (9) −0.0050 (9) −0.0002 (9)
C26 0.0406 (14) 0.0460 (15) 0.0296 (12) 0.0077 (11) −0.0052 (10) −0.0033 (10)
C27 0.0388 (14) 0.0531 (16) 0.0383 (14) 0.0148 (12) −0.0051 (11) −0.0078 (12)
C28 0.0374 (13) 0.0424 (15) 0.0410 (14) 0.0091 (11) −0.0078 (11) −0.0003 (11)
C29 0.0380 (13) 0.0403 (14) 0.0303 (12) 0.0075 (10) −0.0069 (10) −0.0001 (10)
C30 0.0311 (11) 0.0303 (12) 0.0329 (12) 0.0011 (9) −0.0045 (9) 0.0002 (9)
C31 0.0313 (12) 0.0308 (12) 0.0317 (11) −0.0003 (9) −0.0039 (9) −0.0013 (9)
C32 0.0315 (12) 0.0345 (13) 0.0344 (12) 0.0051 (10) −0.0031 (9) −0.0053 (10)
C33 0.0314 (12) 0.0298 (12) 0.0346 (12) 0.0024 (9) −0.0061 (9) −0.0012 (9)
C34A 0.0741 (13) 0.0631 (8) 0.0429 (6) 0.0085 (8) −0.0122 (7) 0.0016 (5)
C35A 0.0741 (13) 0.0631 (8) 0.0429 (6) 0.0085 (8) −0.0122 (7) 0.0016 (5)
C34B 0.0741 (13) 0.0631 (8) 0.0429 (6) 0.0085 (8) −0.0122 (7) 0.0016 (5)
C35B 0.0741 (13) 0.0631 (8) 0.0429 (6) 0.0085 (8) −0.0122 (7) 0.0016 (5)
C36 0.0552 (17) 0.0551 (18) 0.0505 (17) 0.0177 (14) −0.0166 (13) 0.0058 (13)
C37 0.083 (3) 0.098 (3) 0.061 (2) −0.013 (2) −0.0170 (19) −0.004 (2)
C38 0.0393 (13) 0.0320 (12) 0.0321 (12) 0.0066 (10) −0.0055 (10) −0.0023 (9)
C39 0.0430 (14) 0.0402 (14) 0.0391 (13) 0.0027 (11) −0.0088 (11) −0.0007 (11)
C40 0.0636 (19) 0.0488 (17) 0.0466 (16) 0.0016 (14) −0.0248 (14) −0.0054 (13)
C41 0.093 (3) 0.0584 (19) 0.0349 (15) 0.0158 (18) −0.0183 (16) −0.0083 (13)
C42 0.064 (2) 0.070 (2) 0.0378 (15) 0.0162 (16) 0.0062 (14) −0.0025 (14)
C43 0.0440 (15) 0.0521 (17) 0.0399 (14) 0.0035 (12) −0.0023 (11) −0.0013 (12)
C44 0.0326 (12) 0.0291 (12) 0.0407 (13) 0.0011 (9) −0.0089 (10) −0.0025 (10)
C45 0.0365 (13) 0.0435 (15) 0.0446 (14) 0.0064 (11) −0.0055 (11) −0.0028 (11)
C46 0.0317 (13) 0.0477 (16) 0.0632 (18) 0.0058 (11) −0.0037 (12) 0.0046 (13)
C47 0.0352 (14) 0.0475 (16) 0.069 (2) 0.0007 (12) −0.0213 (13) 0.0081 (14)
C48 0.0457 (16) 0.0544 (17) 0.0487 (16) 0.0004 (13) −0.0179 (13) 0.0010 (13)

Aqua-1κO-di-µ-chlorido-1:2κ4Cl:Cl-dichlorido-1κCl,2κCl-bis[6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II) . Geometric parameters (Å, º)

Mn1—Cl1A 2.382 (2) C12—C13 1.437 (7)
Mn1—Cl1B 2.337 (4) C13—H13A 0.9600
Mn1—N1 2.286 (2) C13—H13B 0.9600
Mn1—Cl2 2.4974 (7) C13—H13C 0.9600
Mn1—Cl3 2.4501 (8) C14—C15 1.390 (4)
Mn1—N3 2.215 (2) C14—C19 1.392 (4)
C34Aa—H34A 0.9700 C15—H15 0.9300
C34Aa—H34B 0.9700 C15—C16 1.378 (5)
C34Aa—C35A 1.494 (6) C16—H16 0.9300
C35Aa—H35A 0.9600 C16—C17 1.387 (5)
C35Aa—H35B 0.9600 C17—H17 0.9300
C35Aa—H35C 0.9600 C17—C18 1.367 (5)
C34Bb—H34C 0.9700 C18—H18 0.9300
C34Bb—H34D 0.9700 C18—C19 1.382 (5)
C34Bb—C35B 1.520 (10) C19—H19 0.9300
C35Bb—H35D 0.9600 C20—C21 1.390 (4)
C35Bb—H35E 0.9600 C21—H21 0.9300
C35Bb—H35F 0.9600 C21—C22 1.381 (4)
O1—H1A 0.816 (10) C22—H22 0.9300
O1—H1B 0.832 (10) C22—C23 1.366 (4)
O1—Mn2 2.213 (2) C23—H23 0.9300
N1—C1 1.364 (3) C23—C24 1.373 (4)
N1—C9 1.328 (3) C24—H24 0.9300
C1—C2 1.418 (4) C25—C26 1.413 (3)
C1—C6 1.418 (4) C25—C30 1.423 (3)
Mn2—Cl2 2.6269 (8) C26—H26 0.9300
Mn2—Cl3 2.5838 (8) C26—C27 1.354 (4)
Mn2—Cl4 2.4354 (8) C27—H27 0.9300
Mn2—N4 2.3087 (19) C27—C28 1.426 (4)
Mn2—N6 2.257 (2) C28—C29 1.389 (4)
N2—C4 1.383 (4) C29—H29 0.9300
N2—C10 1.462 (4) C29—C30 1.406 (3)
N2—C12 1.521 (5) C30—C31 1.432 (3)
C2—H2 0.9300 C31—C32 1.380 (3)
C2—C3 1.360 (4) C31—C38 1.490 (3)
N3—C20 1.348 (3) C32—H32 0.9300
N3—C24 1.346 (3) C32—C33 1.409 (3)
C3—H3 0.9300 C33—C44 1.485 (3)
C3—C4 1.415 (4) C36—H36A 0.9700
N4—C25 1.371 (3) C36—H36B 0.9700
N4—C33 1.325 (3) C36—C37 1.515 (5)
C4—C5 1.387 (4) C37—H37A 0.9600
N5—C28 1.370 (3) C37—H37B 0.9600
N5—C34A 1.455 (4) C37—H37C 0.9600
N5—C34B 1.474 (10) C38—C39 1.398 (4)
N5—C36 1.456 (4) C38—C43 1.387 (4)
C5—H5 0.9300 C39—H39 0.9300
C5—C6 1.415 (4) C39—C40 1.383 (4)
N6—C44 1.345 (3) C40—H40 0.9300
N6—C48 1.339 (3) C40—C41 1.373 (5)
C6—C7 1.431 (4) C41—H41 0.9300
C7—C8 1.367 (4) C41—C42 1.379 (5)
C7—C14 1.489 (4) C42—H42 0.9300
C8—H8 0.9300 C42—C43 1.383 (4)
C8—C9 1.403 (4) C43—H43 0.9300
C9—C20 1.487 (3) C44—C45 1.386 (3)
C10—H10A 0.9700 C45—H45 0.9300
C10—H10B 0.9700 C45—C46 1.385 (4)
C10—C11 1.502 (5) C46—H46 0.9300
C11—H11A 0.9600 C46—C47 1.380 (4)
C11—H11B 0.9600 C47—H47 0.9300
C11—H11C 0.9600 C47—C48 1.380 (4)
C12—H12A 0.9700 C48—H48 0.9300
C12—H12B 0.9700
CL1Aa—Mn1—Cl2 99.12 (6) N2—C12—H12A 109.4
N1—Mn1—Cl1A 92.70 (8) N2—C12—H12B 109.4
CL1Bb—Mn1—Cl2 97.93 (15) H12A—C12—H12B 108.0
CL1Aa—Mn1—Cl3 132.16 (10) C13—C12—N2 111.0 (4)
N1—Mn1—Cl1B 95.38 (16) C13—C12—H12A 109.4
N1—Mn1—Cl2 165.37 (6) C13—C12—H12B 109.4
N1—Mn1—Cl3 92.21 (6) C12—C13—H13A 109.5
Cl3—Mn1—Cl2 86.25 (2) C12—C13—H13B 109.5
N3—Mn1—Cl1A 113.64 (12) C12—C13—H13C 109.5
N3—Mn1—Cl1B 125.41 (18) H13A—C13—H13B 109.5
N3—Mn1—N1 73.33 (8) H13A—C13—H13C 109.5
N3—Mn1—Cl2 93.91 (6) H13B—C13—H13C 109.5
N3—Mn1—Cl3 113.33 (6) C15—C14—C7 121.4 (2)
CL1Bb—Mn1—Cl3 120.46 (18) C15—C14—C19 118.2 (3)
H1A—O1—H1B 111 (5) C19—C14—C7 120.0 (2)
C35Aa—C34Aa—H34A 109.6 C14—C15—H15 119.7
H34Aa—C34Aa—H34B 108.1 C16—C15—C14 120.6 (3)
Mn2—O1—H1A 110 (4) C16—C15—H15 119.7
C35Aa—C34Aa—H34B 109.6 C15—C16—H16 119.8
C34Aa—C35Aa—H35A 109.5 C15—C16—C17 120.4 (4)
H35Aa—C35Aa—H35B 109.5 C17—C16—H16 119.8
C34Aa—C35Aa—H35B 109.5 C16—C17—H17 120.3
H35Ba—C35Aa—H35C 109.5 C18—C17—C16 119.5 (3)
H35Aa—C35Aa—H35C 109.5 C18—C17—H17 120.3
Mn2—O1—H1B 125 (3) C17—C18—H18 119.8
C1—N1—Mn1 125.31 (17) C17—C18—C19 120.5 (3)
C9—N1—Mn1 115.29 (16) C19—C18—H18 119.8
C9—N1—C1 118.7 (2) C14—C19—H19 119.6
N1—C1—C2 119.2 (2) C18—C19—C14 120.8 (3)
N1—C1—C6 123.0 (2) C18—C19—H19 119.6
C6—C1—C2 117.8 (2) N3—C20—C9 116.1 (2)
O1—Mn2—Cl2 91.02 (8) N3—C20—C21 121.2 (2)
O1—Mn2—Cl3 88.16 (8) C21—C20—C9 122.8 (2)
O1—Mn2—Cl4 87.81 (8) C20—C21—H21 120.4
O1—Mn2—N4 158.31 (9) C22—C21—C20 119.2 (3)
O1—Mn2—N6 86.49 (9) C22—C21—H21 120.4
Cl3—Mn2—Cl2 80.95 (2) C21—C22—H22 120.2
Cl4—Mn2—Cl2 89.05 (3) C23—C22—C21 119.7 (3)
Cl4—Mn2—Cl3 169.15 (3) C23—C22—H22 120.2
N4—Mn2—Cl2 110.53 (5) C22—C23—H23 120.8
N4—Mn2—Cl3 92.69 (5) C22—C23—C24 118.5 (3)
N4—Mn2—Cl4 94.77 (5) C24—C23—H23 120.8
N6—Mn2—Cl2 175.19 (6) N3—C24—C23 123.2 (3)
N6—Mn2—Cl3 94.86 (6) N3—C24—H24 118.4
N6—Mn2—Cl4 94.95 (6) C23—C24—H24 118.4
N6—Mn2—N4 71.83 (7) N4—C25—C26 118.3 (2)
Mn1—Cl2—Mn2 93.75 (2) N4—C25—C30 123.3 (2)
C34Aa—C35Aa—H35C 109.5 C26—C25—C30 118.4 (2)
C35Bb—C34Bb—H34C 109.7 C25—C26—H26 119.5
H34Cb—C34Bb—H34D 108.2 C27—C26—C25 120.9 (2)
C35Bb—C34Bb—H34D 109.7 C27—C26—H26 119.5
C34Bb—C35Bb—H35D 109.5 C26—C27—H27 118.9
H35Db—C35Bb—H35E 109.5 C26—C27—C28 122.1 (2)
C34Bb—C35Bb—H35E 109.5 C28—C27—H27 118.9
H35Db—C35Bb—H35F 109.5 N5—C28—C27 119.8 (2)
C34Bb—C35Bb—H35F 109.5 N5—C28—C29 123.0 (2)
H35Eb—C35Bb—H35F 109.5 C29—C28—C27 117.1 (2)
C34Aa—N5—C36 116.7 (2) C28—C29—H29 118.9
C4—N2—C10 122.0 (3) C28—C29—C30 122.1 (2)
C4—N2—C12 119.2 (3) C30—C29—H29 118.9
C10—N2—C12 116.8 (3) C25—C30—C31 116.8 (2)
C1—C2—H2 119.3 C29—C30—C25 119.2 (2)
C3—C2—C1 121.5 (3) C29—C30—C31 124.0 (2)
C3—C2—H2 119.3 C30—C31—C38 122.7 (2)
Mn1—Cl3—Mn2 95.97 (3) C32—C31—C30 118.1 (2)
C20—N3—Mn1 117.72 (16) C32—C31—C38 119.2 (2)
C24—N3—Mn1 124.00 (19) C31—C32—H32 119.6
C24—N3—C20 118.3 (2) C31—C32—C33 120.9 (2)
C2—C3—H3 119.1 C33—C32—H32 119.6
C2—C3—C4 121.8 (3) N4—C33—C32 122.1 (2)
C4—C3—H3 119.1 N4—C33—C44 116.2 (2)
C25—N4—Mn2 126.91 (15) C32—C33—C44 121.6 (2)
C33—N4—Mn2 113.09 (15) N5—C36—H36A 108.5
C33—N4—C25 118.2 (2) N5—C36—H36B 108.5
N2—C4—C3 120.9 (3) N5—C36—C37 115.2 (3)
N2—C4—C5 121.6 (3) H36A—C36—H36B 107.5
C5—C4—C3 117.6 (3) C37—C36—H36A 108.5
N5—C34Aa—H34A 109.6 C37—C36—H36B 108.5
N5—C34Aa—H34B 109.6 C36—C37—H37A 109.5
N5—C34Aa—C35A 110.2 (3) C36—C37—H37B 109.5
C28—N5—C34A 121.7 (2) C36—C37—H37C 109.5
C28—N5—C34B 115.0 (11) H37A—C37—H37B 109.5
C28—N5—C36 121.6 (2) H37A—C37—H37C 109.5
C36—N5—C34B 112.9 (10) H37B—C37—H37C 109.5
C4—C5—H5 119.1 C39—C38—C31 120.8 (2)
C4—C5—C6 121.9 (3) C43—C38—C31 120.9 (2)
C6—C5—H5 119.1 C43—C38—C39 118.1 (2)
C44—N6—Mn2 115.72 (15) C38—C39—H39 119.6
C48—N6—Mn2 125.71 (19) C40—C39—C38 120.8 (3)
C48—N6—C44 118.5 (2) C40—C39—H39 119.6
C1—C6—C7 117.1 (2) C39—C40—H40 119.9
C5—C6—C1 119.4 (2) C41—C40—C39 120.1 (3)
C5—C6—C7 123.5 (2) C41—C40—H40 119.9
C6—C7—C14 123.1 (2) C40—C41—H41 120.1
C8—C7—C6 117.9 (2) C40—C41—C42 119.9 (3)
C8—C7—C14 119.0 (2) C42—C41—H41 120.1
C7—C8—H8 119.2 C41—C42—H42 119.9
C7—C8—C9 121.6 (2) C41—C42—C43 120.3 (3)
C9—C8—H8 119.2 C43—C42—H42 119.9
N1—C9—C8 121.6 (2) C38—C43—H43 119.6
N1—C9—C20 117.1 (2) C42—C43—C38 120.8 (3)
C8—C9—C20 121.3 (2) C42—C43—H43 119.6
N2—C10—H10A 108.8 N6—C44—C33 116.4 (2)
N2—C10—H10B 108.8 N6—C44—C45 121.5 (2)
N2—C10—C11 113.6 (3) C45—C44—C33 121.8 (2)
H10A—C10—H10B 107.7 C44—C45—H45 120.4
C11—C10—H10A 108.8 C46—C45—C44 119.2 (3)
C11—C10—H10B 108.8 C46—C45—H45 120.4
C10—C11—H11A 109.5 C45—C46—H46 120.3
C10—C11—H11B 109.5 C47—C46—C45 119.4 (3)
C10—C11—H11C 109.5 C47—C46—H46 120.3
H11A—C11—H11B 109.5 C46—C47—H47 121.0
H11A—C11—H11C 109.5 C46—C47—C48 118.1 (3)
N5—C34Bb—H34C 109.7 C48—C47—H47 121.0
N5—C34Bb—H34D 109.7 N6—C48—C47 123.3 (3)
N5—C34Bb—C35B 109.7 (10) N6—C48—H48 118.4
H11B—C11—H11C 109.5 C47—C48—H48 118.4
Mn1—N1—C1—C2 −12.0 (3) C15—C14—C19—C18 0.0 (5)
Mn1—N1—C1—C6 167.64 (18) C15—C16—C17—C18 −0.2 (7)
Mn1—N1—C9—C8 −169.87 (18) C16—C17—C18—C19 0.5 (6)
Mn1—N1—C9—C20 8.1 (3) C17—C18—C19—C14 −0.4 (5)
Mn1—N3—C20—C9 2.2 (3) C19—C14—C15—C16 0.3 (5)
Mn1—N3—C20—C21 −177.6 (2) C20—N3—C24—C23 −0.5 (4)
Mn1—N3—C24—C23 177.8 (2) C20—C21—C22—C23 0.2 (5)
N1—C1—C2—C3 178.9 (3) C21—C22—C23—C24 0.1 (5)
N1—C1—C6—C5 −179.8 (2) C22—C23—C24—N3 0.0 (5)
N1—C1—C6—C7 0.6 (4) C24—N3—C20—C9 −179.3 (2)
N1—C9—C20—N3 −7.1 (3) C24—N3—C20—C21 0.8 (4)
N1—C9—C20—C21 172.8 (2) C25—N4—C33—C32 8.8 (3)
C1—N1—C9—C8 1.0 (4) C25—N4—C33—C44 −168.2 (2)
C1—N1—C9—C20 179.0 (2) C25—C26—C27—C28 0.4 (4)
C1—C2—C3—C4 −0.2 (5) C25—C30—C31—C32 7.1 (3)
C1—C6—C7—C8 2.2 (4) C25—C30—C31—C38 −171.8 (2)
C1—C6—C7—C14 −176.5 (2) C26—C25—C30—C29 −2.2 (3)
Mn2—N4—C25—C26 −24.3 (3) C26—C25—C30—C31 179.7 (2)
Mn2—N4—C25—C30 158.73 (17) C26—C27—C28—N5 175.5 (3)
Mn2—N4—C33—C32 −156.83 (18) C26—C27—C28—C29 −2.5 (4)
Mn2—N4—C33—C44 26.1 (2) C27—C28—C29—C30 2.2 (4)
Mn2—N6—C44—C33 −10.3 (3) C28—N5—C34Bb—C35Bb −101.4 (18)
Mn2—N6—C44—C45 175.29 (19) C28—N5—C34Aa—C35Aa 75.9 (4)
Mn2—N6—C48—C47 −176.6 (2) C28—N5—C36—C37 −84.6 (4)
N2—C4—C5—C6 177.2 (3) C28—C29—C30—C25 0.1 (4)
C2—C1—C6—C5 −0.1 (4) C28—C29—C30—C31 178.0 (2)
C2—C1—C6—C7 −179.7 (2) C29—C30—C31—C32 −170.8 (2)
C2—C3—C4—N2 −178.1 (3) C29—C30—C31—C38 10.3 (4)
C2—C3—C4—C5 2.0 (5) C30—C25—C26—C27 2.0 (4)
N3—C20—C21—C22 −0.7 (4) C30—C31—C32—C33 −3.5 (3)
C3—C4—C5—C6 −2.9 (4) C30—C31—C38—C39 48.1 (3)
N4—C25—C26—C27 −175.1 (2) C30—C31—C38—C43 −137.0 (3)
N4—C25—C30—C29 174.8 (2) C31—C32—C33—N4 −4.8 (4)
N4—C25—C30—C31 −3.3 (3) C31—C32—C33—C44 172.0 (2)
N4—C33—C44—N6 −11.2 (3) C31—C38—C39—C40 174.3 (2)
N4—C33—C44—C45 163.2 (2) C31—C38—C43—C42 −175.6 (3)
C4—N2—C10—C11 85.2 (4) C32—C31—C38—C39 −130.8 (3)
C4—N2—C12—C13 96.5 (5) C32—C31—C38—C43 44.1 (3)
C4—C5—C6—C1 2.0 (4) C32—C33—C44—N6 171.7 (2)
C4—C5—C6—C7 −178.4 (3) C32—C33—C44—C45 −13.9 (4)
N5—C28—C29—C30 −175.7 (3) C33—N4—C25—C26 172.3 (2)
C5—C6—C7—C8 −177.4 (3) C33—N4—C25—C30 −4.7 (3)
C5—C6—C7—C14 3.9 (4) C34Aa—N5—C28—C27 4.3 (5)
N6—C44—C45—C46 2.1 (4) C34Bb—N5—C28—C27 41.2 (9)
C6—C1—C2—C3 −0.8 (4) C34Aa—N5—C28—C29 −177.9 (3)
C6—C7—C8—C9 −3.4 (4) C34Bb—N5—C28—C29 −140.9 (8)
C6—C7—C14—C15 56.2 (4) C33—C44—C45—C46 −172.1 (2)
C6—C7—C14—C19 −130.4 (3) C36—N5—C34Bb—C35Bb 112.9 (17)
C7—C8—C9—N1 1.9 (4) C36—N5—C34Aa—C35Aa −103.5 (3)
C7—C8—C9—C20 −176.0 (2) C36—N5—C28—C27 −176.4 (3)
C7—C14—C15—C16 173.8 (3) C36—N5—C28—C29 1.5 (5)
C7—C14—C19—C18 −173.5 (3) C38—C31—C32—C33 175.4 (2)
C8—C7—C14—C15 −122.5 (3) C34Aa—N5—C36—C37 94.8 (4)
C8—C7—C14—C19 50.9 (4) C34Bb—N5—C36—C37 58.5 (9)
C8—C9—C20—N3 170.9 (2) C38—C39—C40—C41 1.2 (4)
C8—C9—C20—C21 −9.2 (4) C39—C38—C43—C42 −0.6 (4)
C9—N1—C1—C2 178.1 (2) C39—C40—C41—C42 −0.3 (5)
C9—N1—C1—C6 −2.2 (4) C40—C41—C42—C43 −1.0 (5)
C9—C20—C21—C22 179.4 (3) C41—C42—C43—C38 1.4 (5)
C10—N2—C4—C3 −3.1 (5) C43—C38—C39—C40 −0.7 (4)
C10—N2—C4—C5 176.8 (3) C44—N6—C48—C47 −0.1 (4)
C10—N2—C12—C13 −99.2 (4) C44—C45—C46—C47 −1.0 (4)
C12—N2—C4—C3 160.4 (3) C45—C46—C47—C48 −0.6 (4)
C12—N2—C4—C5 −19.8 (5) C46—C47—C48—N6 1.2 (5)
C12—N2—C10—C11 −78.6 (4) C48—N6—C44—C33 172.9 (2)
C14—C7—C8—C9 175.3 (2) C48—N6—C44—C45 −1.5 (4)
C14—C15—C16—C17 −0.2 (6)

Aqua-1κO-di-µ-chlorido-1:2κ4Cl:Cl-dichlorido-1κCl,2κCl-bis[6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II) . Hydrogen-bond geometry (Å, º)

Cg1Cg4 are the centroids of the C1–C6, C38–C43, N3/C20–C24 and C25–C30 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C12—H12A···Cl1Bi 0.97 2.81 3.734 (7) 158
C23—H23···Cl3ii 0.93 2.74 3.567 (3) 149
C45—H45···Cl4iii 0.93 2.69 3.563 (3) 157
C11—H11A···Cg1i 0.96 2.97 3.585 (4) 123
C21—H21···Cg2iv 0.93 2.89 3.642 (3) 139
C36—H36B···Cg3iv 0.97 2.96 3.845 (3) 153
C35B—H35D···Cg4iv 0.96 2.84 3.45 (2) 122

Symmetry codes: (i) −x, −y+1, −z; (ii) x+1, y, z; (iii) −x, −y+2, −z+1; (iv) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by Herculesstichting grant AKUL/09/0035 to Luc Van Meervelt.

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  2. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  3. Hojitsiriyanont, J., Chaibuth, P., Boonkitpatarakul, K., Ruangpornvisuti, V., Palaga, T., Chainok, K. & Sukwattanasinitt, M. (2021). J. Photochem. Photobiol. Chem.415, 113307.
  4. Hong, Y., Lam, J. W. Y. & Tang, B. Z. (2009). Chem. Commun. pp. 4332–4353. [DOI] [PubMed]
  5. Hu, K., Liu, C., Li, J. & Liang, F. (2018). Med. Chem. Commun.9, 1663–1672.
  6. Hussain, S., Muhammad Junaid, H., Tahir Waseem, M., Rauf, W., Jabbar Shaikh, A. & Anjum Shahzad, S. (2022). Spectrochim. Acta A Mol. Biomol. Spectrosc.272, 121021. [DOI] [PubMed]
  7. Jin, J., Xu, W., Jia, M.-J., Zhao, J.-J., Yu, J.-H. & Xu, J.-Q. (2011). Inorg. Chim. Acta, 378, 72–80.
  8. Konar, S., Jana, A., Das, K., Ray, S., Chatterjee, S., Golen, J. A., Rheingold, A. L. & Kar, S. K. (2011). Polyhedron, 30, 2801–2808.
  9. Li, G.-B., Liu, J.-M., Cai, Y.-P. & Su, C.-Y. (2011). Cryst. Growth Des.11, 276302772.
  10. Mohanasundaram, D., Bhaskar, R., Gangatharan Vinoth Kumar, G., Rajesh, J. & Rajagopal, G. (2021). Microchem. J.164, 106030.
  11. Pathaw, L., Maheshwaran, D., Nagendraraj, T., Khamrang, T., Velusamy, M. & Mayilmurugan, R. (2021). Inorg. Chim. Acta, 514, 119999.
  12. Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  13. Sääsk, V., Chen, Y.-A., Huang, T.-F., Ting, L.-Y., Luo, T.-A., Fujii, S., Põhako–Esko, K., Yoshida, M., Kato, M., Wu, T.-L. & Chou, H.-H. (2024). Eur. J. Inorg. Chem.27, e202300562.
  14. Sales, E. S., Schneider, J. M. F. M., Santos, M. J. L., Bortoluzzi, A. J., Cardoso, D. R., Santos, W. G. & Merlo, A. A. (2015). J. Braz. Chem. Soc.26, 562–571.
  15. Santos, G. C. dos, Servilha, R. O., de Oliveira, E. F., Lavarda, F. C., Ximenes, V. F. & da Silva-Filho, L. C. (2017). J. Fluoresc.27, 1709–1720. [DOI] [PubMed]
  16. Shakir, M., Hanif, S., Sherwani, M. A., Mohammad, O. & Al-Resayes, S. I. (2015). J. Mol. Struct.1092, 143–159.
  17. Sharghi, H., Aberi, M. & Aboonajmi, J. (2016). J. Iran. Chem. Soc.13, 2229–2237.
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Shen, Y., Li, M., Zhao, W., Wang, Y., Lu, H. & Chen, C. (2021). Mater. Chem. Front.5, 834–842.
  21. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  22. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  23. Wang, F.-Y., Xi, Q.-Y., Huang, K.-B., Tang, X.-M., Chen, Z.-F., Liu, Y.-C. & Liang, H. (2017). J. Inorg. Biochem.169, 23–31. [DOI] [PubMed]
  24. Wang, J.-T., Pei, Y.-Y., Yan, M.-Y., Li, Y.-G., Yang, G.-G., Qu, C.-H., Luo, W., Wang, J. & Li, Q.-F. (2020). Microchem. J., Part B, 160, 105776.
  25. Zhang, L., Wang, Y.-F., Li, M., Gaop, Q.-Y. & Chen, C.-F. (2019). Chin. Chem. Lett.32, 740–744.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024006042/wm5726sup1.cif

e-80-00795-sup1.cif (907KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024006042/wm5726Isup2.hkl

e-80-00795-Isup2.hkl (546.1KB, hkl)

ESI-MS, FT-IR and H-NMR spectra. DOI: 10.1107/S2056989024006042/wm5726sup3.pdf

e-80-00795-sup3.pdf (670.7KB, pdf)

CCDC reference: 2364423

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES