Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Jun 18;80(Pt 7):746–750. doi: 10.1107/S2056989024005747

Crystal structure of tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) tetra­fluoro­borate

Kelsey C Wong a, Eric W Reinheimer b, Chip Nataro a, Daniel R Griffith a,*
Editor: F Di Salvoc
PMCID: PMC11223705  PMID: 38974146

The crystal structure of tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) tetra­fluoro­borate is described. The two independent tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one] iron(0) cations and their corresponding anions form dimers, which constitute the asymmetric unit of the structure within the (100) plane.

Keywords: crystal structure; phosphine; undergraduate; iron carbon­yl; piano stool; η4-cyclo­hepta-2,4-dien-1-one

Abstract

The mol­ecular structure of tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) tetra­fluoro­borate di­chloro­methane hemisolvate, [Fe(C28H22O4)(CO)3]BF4·0.5CH2Cl2, as determined by single-crystal X-ray diffraction is reported. The two independent tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one] iron(0) cations and their corresponding anions form dimers, which constitute the asymmetric unit of the structure parallel to the (100) plane. Solid-state stability within that asymmetric unit as well as between neighboring dimeric units is afforded by C—H⋯O and C—H⋯F hydrogen bonds and C—H⋯π and YX⋯π (Y = B, C; X = F, O) inter­actions, which yield diperiodic sheets and a three-dimensional extended network.

1. Chemical context

This compound was prepared as part of a Course-based Undergraduate Research Experience (CURE) (Stone et al., 2020; Huang et al., 2019). The foundation of this CURE was to further examine addition reactions to tricarbon­yl(tropone)iron(0) (I) and tricarbon­yl(η5-keto­cyclo­hepta­dien­yl)iron(0) tetra­fluoro­borate (II) (Fig. 1). The research focus of one author lies in the synthesis of unique and diverse aza­polycyclic skeletons from common synthetic building blocks such as compound I due to the biological importance of such scaffolds. Although seven-membered carbocyclic rings are found in a number of biologically active natural products (Shoemaker & Griffith, 2021), their synthesis tends to present a greater challenge compared to similar five- or six-membered rings because of the increased enthalpic and entropic barriers associated with their formation (Phelan et al., 2020; Huang et al., 2018). The addition of a number of different nucleophiles to compound II has previously been reported, including amines (Phelan et al., 2020), azide, and cyanide (Eisenstadt, 1975). This raised the question as to whether or not tri­phenyl­phosphine would be sufficiently nucleophilic to react with compound II. Previously, the reaction of several phosphines (PEt3, PnPr3, PnBu3 or PMe2Ph) with tricarbon­yl(η5-cyclo­hepta­dien­yl)iron(II) tetra­fluoro­borate in methyl­ene chloride resulted in the formation of the corresponding tri­carbon­yl[η4-(5-exo-phosphine)cyclo­hepta­diene]iron(0) tetra­fluoro­borate (Brown et al., 1982). Similar to that system, the reaction of compound II and tri­phenyl­phosphine resulted in the formation of tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) tetra­fluoro­borate (III) (Fig. 1). Ultimately, this and similar phospho­nium salts could be a precursor for Wittig olefinations that would provide efficient access to tropone rings with diverse substituents.1.

Figure 1.

Figure 1

Tricarbon­yl(tropone)iron(0) (I), tricarbon­yl(η5-keto­cyclo­hepta­dien­yl)iron(II) tetra­fluoro­borate (II), and tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) tetra­fluoro­borate (III) and the procedure outlining the synthesis of III from I and II.

2. Structural commentary

The single crystal X-ray structure of III crystallizes in the centrosymmetric triclinic space group PInline graphic (Fig. 2). The asymmetric unit consists of two tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) cations, two tetra­fluoro­borate anions (to balance the charge), and an inter­stitial CH2Cl2 solvent mol­ecule lying in solvent-accessible voids of ∼101 Å3. The iron tricarbonyl moieties adopt piano stool orientations with the cyclo­hepta-2,4-dien-1-one group (Fig. 2). Closer analysis of the thermal parameters of the [BF4] anions and CH2Cl2 solvent mol­ecule within the asymmetric unit showed no qualitative evidence of disorder.

Figure 2.

Figure 2

Single-crystal structure of one tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) tetra­fluoro­borate (III) from the asymmetric unit with anisotropic displacement ellipsoids at the 50% probability level. The inter­stitial CH2Cl2 has been removed for the sake of clarity.

3. Supra­molecular features

Solid-state stability between the mol­ecules of III within the asymmetric unit is afforded by an array of C—H⋯O and C—H⋯F hydrogen bonds (Table 1) as determined through PLATON analysis (Spek, 2020). The two independent tri­carbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) cations from the asymmetric unit lie parallel to the (100) plane and are stabilized by inter­molecular C—H⋯O hydrogen bonds. The addition of C—H⋯F hydrogen bonding involving the [BF4] anions increases the dimensionality of the solid-state structure into both diperiodic sheets and extended 3D networks, which also contain C—H⋯π and YX⋯π (Y = B,C; X = F, O) inter­actions (Table 2) according to PLATON (Spek, 2020) (Figs. 3 and 4). The resulting 3D network was also found to contain solvent-accessible voids of ∼101 Å3 within which the inter­stitial CH2Cl2 was located (Fig. 5).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯F5 1.00 2.37 3.198 (3) 140
C43—H43⋯F6i 0.95 2.33 3.240 (3) 160
C44—H44⋯O8ii 0.95 2.56 3.467 (3) 159
C46—H46⋯F7iii 0.95 2.40 3.151 (3) 136
C49—H49⋯O7iv 0.95 2.60 3.339 (3) 135
C50—H50⋯F6iv 0.95 2.53 3.471 (3) 169
C52—H52⋯O1 0.95 2.37 3.286 (3) 161
C53—H53⋯F4iii 0.95 2.66 3.500 (3) 148
C56—H56⋯F6iv 0.95 2.48 3.362 (3) 155
C2—H2⋯F3v 1.00 2.50 3.493 (3) 170
C4—H4⋯F4iii 1.00 2.42 3.393 (3) 165
C7—H7⋯O5 1.00 2.34 3.192 (3) 143
C13—H13⋯F1v 0.95 2.41 3.232 (3) 144
C19—H19⋯O2vi 0.95 2.51 3.393 (3) 154
C28—H28⋯O5 0.95 2.41 3.319 (4) 161
C57A—H57A⋯F4 0.99 2.47 3.276 (4) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Table 2. Phenyl ring torsion angles (°).

Cation 1 Cation 2
Torsion angle Value Torsion angle Value
Ring 1      
P1—C11—C16—C15 175.9 (2) P2—C39—C40—C41 −176.5 (2)
C11—C16—C15—C14 −0.7 (4) C39—C40—C41—C42 1.0 (4)
C16—C15—C14—C13 −0.7 (4) C40—C41—C42—C43 1.2 (4)
C15—C14—C13—C12 1.2 (4) C41—C42—C43—C44 −2.2 (4)
C14—C13—C12—C11 −0.2 (4) C42—C43—C44—C39 0.9 (4)
C13—C12—C11—P1 −175.4 (2) C43—C44—C39—P2 175.6 (2)
       
Ring 2      
P1—C17—C18—C19 −175.5 (2) P2—C45—C50—C49 178.8 (2)
C17—C18—C19—C20 −0.1 (4) C45—C50—C49—C48 0.8 (4)
C18—C19—C20—C21 0.4 (4) C50—C49—C48—C47 −0.1 (4)
C19—C20—C21—C22 −0.2 (5) C49—C48—C47—C46 −1.5 (4)
C20—C21—C22—C17 −1.2 (4) C48—C47—C46—C45 2.3 (4)
C21—C22—C17—P1 176.0 (2) C47—C46—C45—P2 179.7 (2)
       
Ring 3      
P1—C23—C28—C27 −170.3 (2) P2—C51—C52—C53 176.9 (2)
C23—C28—C27—C26 −1.1 (4) C51—C52—C53—C54 0.1 (4)
C28—C27—C26—C25 1.1 (4) C52—C53—C54—C55 −0.5 (4)
C27—C26—C25—C24 0.1 (5) C53—C54—C55—C56 −0.1 (5)
C26—C25—C24—C23 −1.3 (5) C54—C55—C56—C51 1.2 (5)
C25—C24—C23—P1 171.4 (2) C55—C56—C51—P2 −177.7 (2)

Figure 3.

Figure 3

View of the C—H⋯O and C—H⋯F hydrogen bonds from the (101) plane of III. When coupled with the C—H⋯π and Y—X⋯π (Y = B, C; X = F, O) inter­actions, this repeat unit extends into a three-dimensional network. Anisotropic displacement ellipsoids have been set to the 50% probability level.

Figure 4.

Figure 4

Projection of the C—H⋯π and Y—X⋯π (Y = B, C; X = F, O) inter­actions in the ac plane of III. Their combination with the hydrogen bonds yields a three-dimensional extended network in the solid state. Anisotropic displacement ellipsoids have been set to the 50% probability level (Cg = ring centroids).

Figure 5.

Figure 5

View into the (120) plane showing the inter­stitial CH2Cl2 solvent mol­ecules lying within the solvent-accessible voids of III. These voids are generated from the packing supported by the C—H⋯O and C—H⋯F hydrogen bonds and C—H⋯π and Y—X⋯π (Y = B, C; X = F, O) inter­actions. The anisotropic displacement ellipsoids for CH2Cl2 have been set to the 50% probability level.

The Z′ > 1 nature of the structural model for III suggests the presence of structural differences between mol­ecules within the asymmetric unit. Barring differences in the thermal parameters for the various atoms within the independent components, overlaying the tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) cations and [BF4] anions showed that the anions had better alignment while differences in the some of the constituent torsion angles within phenyl rings from the tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) cations were more pronounced visually (Fig. 6). Table 3 summarizes the torsion angles from the phenyl rings of the tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) cations.

Figure 6.

Figure 6

Mol­ecular overlay of between both cations constituting the symmetric unit of III demonstrating that the greatest disparity between them exists within the torsion angles of the the phenyl rings. The first tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) tetra­fluor­r­borate is in black while the second is in yellow. Anisotropic displacement ellipsoids have been set to the 50% probability level.

Table 3. XY⋯π inter­actions (Å,°).

Cg1–Cg5 are the centroids of the C11–C16, C17–C22, C39–C44 and C45–C50 rings, respectively.

XYCg YCg XCg X—H⋯Cg
C54—H54⋯Cg2i 2.99 3.929 (3) 171
B1—F1⋯Cg1ii 3.429 (2) 4.790 (3) 165.56 (17)
B2—F6⋯Cg3iii 3.653 (2) 4.913 (3) 150.99 (17)
C9—O3⋯Cg2iv 3.393 (2) 3.858 (3) 105.37 (19)
C38—08⋯Cg4v 3.467 (2) 3.925 (3) 105.10 (18)

Symmetry codes: (i) −1 + x, 1 + y, z; (ii) x, 1 + y, z; (iii) 1 + x, −1 + y, z; (iv) 2 − x, 1 − y, 1 − z; (v) 1 − x, 1 − y, 2 − z.

4. Database survey

The structure of this report is not found in the Cambridge Structural Database (CSD version 5.43; Groom et al., 2016). To date, the structures of six tricarbon­yl(η4-tropone derivative)iron(0) compounds have been reported. In addition to the structure of compound I (Dodge, 1964), three of the remaining reports have one additional substituent in the 6-position, H (Sotokawa et al., 1987), t-Bu (Coquerel et al., 2002) and morpholi-4-yl (Huang et al., 2018). From the various reports, comparison of their structural features suggested that the presence of the formally cationic phospho­rous had minimal impact on the bond lengths.

5. Synthesis and crystallization

All chemicals were purchased from commercial vendors and used as is. Compounds I and II were prepared according to literature procedures (Huang et al., 2019). NMR spectra were obtained in d3-aceto­nitrile using a Bruker Avance III HD 400 FT-NMR spectrometer. The synthesis was performed using standard Schlenk conditions as outlined in Fig. 1, but all subsequent manipulations of the product were conducted in air. Compound II (0.0054 g, 0.016 mmol) and tri­phenyl­phosphine (0.0043 g, 0.016 mmol) were added to a 50 mL round-bottom flask along with a stir bar. Methyl­ene chloride (12 mL) was added, and the reaction mixture was stirred at room temperature for 30 minutes. A color change from pastel yellow to a darker yellow was observed. The solution was reduced in vacuo to approximately 5 mL and the resulting solution was layered with diethyl ether (7 mL) before being placed in the freezer for 48 h. The sample formed a pastel yellow solid and was filtered via cannula. The solid was dried in vacuo to give the desired product (0.0085 g, 88% yield). Crystals were grown by slow vapor diffusion of diethyl ether at room temperature into a solution of the compound in methyl­ene chloride. 1H NMR (400 MHz, CD3CN): δ 7.87 (m, 9H, Hmeta, Hpara), 7.75 (m, 6H, Hortho), 5.80 (t, J = 6.2 Hz, 1H, H4), 5.20 (t, J = 7.0 Hz, 1H, H1), 4.86 (td, J = 12.7, 4.7 Hz, 1H, H7), 3.21 (dd, J = 13.0, 7.5 Hz, 1H, H3), 3.16 (d, J = 6.6 Hz, 1H, H2), 2.18 (m, 1H, H6A/B), 1.99 (q, J = 12.2 Hz, 1H, H6A/B); 31P{1H} NMR (162 MHz, CD3CN): δ 23.3 (s); 13C{1H} NMR (100 MHz, CD3CN): δ 207.9 (s, No DEPT, C8–10), 202.6 (d, J = 15.4 Hz, No DEPT, C5), 135.9 (d, J = 3.2 Hz, DEPT +, Cpara), 134.8 (d, J = 9.5 Hz, DEPT +, Cmeta), 131.1 (d, J = 12.7 Hz, DEPT +, Cortho), 117.2 (d, J = 81.6 Hz, No DEPT, Cipso), 94.6 (s, DEPT +, C4), 89.8 (s, DEPT +, C1), 56.7 (s, DEPT +, C2), 49.5 (d, J = 7.4 Hz, DEPT +, C3), 41.2 (d, J = 31.8 Hz, DEPT +, C7), 37.2 (s, DEPT –, C6). Peaks were assigned using COSY, HMBC and HSQC NMR spectra. Protons of the tropone ring are labeled by the number of the carbon atom to which they are bonded. IR (cm−1, CH3CN): 2059 (m, Fe—C≡O), 2014 (m, Fe—C≡O), 1966 (vs, Fe—C≡O), 1710 (m, C=O), 1609 (m, C=C).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. All non-hydrogen atoms were refined anisotropically. H atoms bound to carbon were positioned geometrically and constrained to ride on their parent atoms. Uiso(H) values were set to a multiple of Ueq(C) with 1.2 times all CH and CH2 groups.

Table 4. Experimental details.

Crystal data
Chemical formula [Fe(C28H22O4)(CO)3]BF4·0.5CH2Cl2
M r 638.57
Crystal system, space group Triclinic, PInline graphic
Temperature (K) 100
a, b, c (Å) 9.9343 (2), 10.9767 (3), 26.4168 (6)
α, β, γ (°) 86.993 (2), 82.468 (2), 77.300 (2)
V3) 2785.09 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.76
Crystal size (mm) 0.3 × 0.14 × 0.08
 
Data collection
Diffractometer Rigaku Oxford Diffraction XtaLAB Mini II
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2023)
Tmin, Tmax 0.841, 0.969
No. of measured, independent and observed [I > 2σ(I)] reflections 59046, 9882, 7785
R int 0.054
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.03
No. of reflections 9882
No. of parameters 730
No. of restraints 9
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.43

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024005747/vu2002sup1.cif

e-80-00746-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024005747/vu2002Isup2.hkl

e-80-00746-Isup2.hkl (784.1KB, hkl)

CCDC reference: 2362680

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Tricarbonyl[η4-6-exo-(triphenylphosphino)cyclohepta-2,4-dien-1-one]\ iron(0) tetrafluoroborate dichloromethane hemisolvate . Crystal data

[Fe(C28H22O4)(CO)3]BF4·0.5CH2Cl2 Z = 4
Mr = 638.57 F(000) = 1300
Triclinic, P1 Dx = 1.523 Mg m3
a = 9.9343 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.9767 (3) Å Cell parameters from 14608 reflections
c = 26.4168 (6) Å θ = 2.3–25.9°
α = 86.993 (2)° µ = 0.76 mm1
β = 82.468 (2)° T = 100 K
γ = 77.300 (2)° Block, yellow
V = 2785.09 (12) Å3 0.3 × 0.14 × 0.08 mm

Tricarbonyl[η4-6-exo-(triphenylphosphino)cyclohepta-2,4-dien-1-one]\ iron(0) tetrafluoroborate dichloromethane hemisolvate . Data collection

Rigaku Oxford Diffraction XtaLAB Mini II diffractometer 9882 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source 7785 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.054
Detector resolution: 10.0000 pixels mm-1 θmax = 25.1°, θmin = 2.0°
ω scans h = −11→11
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2023) k = −13→13
Tmin = 0.841, Tmax = 0.969 l = −31→31
59046 measured reflections

Tricarbonyl[η4-6-exo-(triphenylphosphino)cyclohepta-2,4-dien-1-one]\ iron(0) tetrafluoroborate dichloromethane hemisolvate . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.9998P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
9882 reflections Δρmax = 0.54 e Å3
730 parameters Δρmin = −0.43 e Å3
9 restraints

Tricarbonyl[η4-6-exo-(triphenylphosphino)cyclohepta-2,4-dien-1-one]\ iron(0) tetrafluoroborate dichloromethane hemisolvate . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Tricarbonyl[η4-6-exo-(triphenylphosphino)cyclohepta-2,4-dien-1-one]\ iron(0) tetrafluoroborate dichloromethane hemisolvate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P2 0.49890 (7) 0.80234 (6) 0.85505 (2) 0.01236 (16)
Fe2 0.76338 (4) 0.40071 (4) 0.89551 (2) 0.01306 (11)
O5 0.8797 (2) 0.49399 (18) 0.75394 (7) 0.0214 (5)
O6 0.6413 (2) 0.28814 (19) 0.81779 (7) 0.0266 (5)
O7 0.9804 (2) 0.18494 (18) 0.92305 (7) 0.0231 (5)
O8 0.5743 (2) 0.3482 (2) 0.98587 (7) 0.0285 (5)
C29 0.6417 (3) 0.5823 (2) 0.89315 (10) 0.0145 (6)
H29 0.556816 0.593076 0.918838 0.017*
C30 0.7655 (3) 0.5796 (2) 0.91661 (10) 0.0149 (6)
H30 0.756979 0.598566 0.953652 0.018*
C31 0.8961 (3) 0.5230 (2) 0.89111 (10) 0.0159 (6)
H31 0.977935 0.502297 0.910803 0.019*
C32 0.9086 (3) 0.4713 (3) 0.84151 (10) 0.0160 (6)
H32 0.997745 0.409752 0.832129 0.019*
C33 0.8442 (3) 0.5353 (3) 0.79735 (10) 0.0155 (6)
C34 0.7409 (3) 0.6599 (2) 0.80507 (10) 0.0165 (6)
H34A 0.713284 0.694001 0.771616 0.020*
H34B 0.786063 0.719880 0.819411 0.020*
C35 0.6098 (3) 0.6455 (2) 0.84144 (9) 0.0136 (6)
H35 0.556541 0.595660 0.824317 0.016*
C36 0.6867 (3) 0.3314 (3) 0.84864 (10) 0.0175 (6)
C37 0.8977 (3) 0.2693 (3) 0.91181 (10) 0.0173 (6)
C38 0.6482 (3) 0.3682 (3) 0.95096 (10) 0.0173 (6)
C39 0.5932 (3) 0.8834 (2) 0.89063 (9) 0.0122 (6)
C40 0.6901 (3) 0.9485 (2) 0.86506 (10) 0.0166 (6)
H40 0.702505 0.953906 0.828798 0.020*
C41 0.7676 (3) 1.0048 (3) 0.89304 (10) 0.0192 (6)
H41 0.832112 1.049971 0.875878 0.023*
C42 0.7511 (3) 0.9952 (3) 0.94643 (11) 0.0200 (7)
H42 0.803154 1.035219 0.965383 0.024*
C43 0.6592 (3) 0.9277 (3) 0.97171 (10) 0.0157 (6)
H43 0.650592 0.919132 1.007893 0.019*
C44 0.5792 (3) 0.8722 (2) 0.94406 (10) 0.0139 (6)
H44 0.515241 0.826836 0.961476 0.017*
C45 0.3386 (3) 0.7855 (2) 0.89292 (10) 0.0134 (6)
C46 0.3015 (3) 0.6696 (3) 0.90128 (10) 0.0169 (6)
H46 0.361384 0.596876 0.886685 0.020*
C47 0.1768 (3) 0.6603 (3) 0.93104 (11) 0.0205 (7)
H47 0.153518 0.581082 0.937688 0.025*
C48 0.0867 (3) 0.7676 (3) 0.95092 (11) 0.0201 (7)
H48 0.000884 0.761797 0.970466 0.024*
C49 0.1227 (3) 0.8837 (3) 0.94208 (10) 0.0183 (6)
H49 0.060856 0.956466 0.955709 0.022*
C50 0.2479 (3) 0.8940 (3) 0.91362 (10) 0.0160 (6)
H50 0.272247 0.973078 0.908149 0.019*
C51 0.4586 (3) 0.8938 (2) 0.79783 (9) 0.0142 (6)
C52 0.4425 (3) 0.8367 (3) 0.75349 (10) 0.0169 (6)
H52 0.456999 0.748360 0.752392 0.020*
C53 0.4047 (3) 0.9112 (3) 0.71075 (10) 0.0218 (7)
H53 0.393439 0.873265 0.680526 0.026*
C54 0.3839 (3) 1.0399 (3) 0.71241 (11) 0.0262 (7)
H54 0.359061 1.089691 0.683175 0.031*
C55 0.3990 (3) 1.0971 (3) 0.75671 (11) 0.0268 (7)
H55 0.384692 1.185501 0.757477 0.032*
C56 0.4353 (3) 1.0245 (3) 0.79987 (10) 0.0199 (7)
H56 0.444019 1.063075 0.830287 0.024*
P1 0.94285 (7) 0.20756 (6) 0.64553 (2) 0.01226 (16)
O1 0.5518 (2) 0.53885 (18) 0.72809 (7) 0.0245 (5)
Fe1 0.70408 (4) 0.60845 (4) 0.59115 (2) 0.01357 (11)
C1 0.8213 (3) 0.4256 (2) 0.60006 (9) 0.0126 (6)
H1 0.913470 0.411913 0.578387 0.015*
C2 0.7095 (3) 0.4278 (2) 0.57052 (10) 0.0160 (6)
H2 0.731133 0.405510 0.533685 0.019*
O2 0.4934 (2) 0.81613 (18) 0.55330 (8) 0.0254 (5)
C3 0.5726 (3) 0.4871 (3) 0.58972 (11) 0.0185 (6)
H3 0.499787 0.506083 0.565967 0.022*
O3 0.9219 (2) 0.6536 (2) 0.50941 (8) 0.0273 (5)
C4 0.5435 (3) 0.5435 (3) 0.63893 (10) 0.0174 (6)
H4 0.453410 0.606242 0.643897 0.021*
O4 0.7946 (2) 0.73153 (19) 0.67411 (8) 0.0272 (5)
C5 0.5929 (3) 0.4868 (3) 0.68714 (10) 0.0174 (6)
C6 0.6918 (3) 0.3593 (3) 0.68483 (10) 0.0171 (6)
H6A 0.649606 0.299488 0.668921 0.021*
H6B 0.707112 0.328216 0.719929 0.021*
C7 0.8327 (3) 0.3667 (2) 0.65366 (9) 0.0130 (6)
H7 0.880827 0.416729 0.672986 0.016*
C8 0.5753 (3) 0.7365 (3) 0.56836 (10) 0.0173 (6)
C9 0.8363 (3) 0.6373 (3) 0.54088 (11) 0.0186 (6)
C10 0.7618 (3) 0.6834 (3) 0.64182 (11) 0.0181 (6)
C11 0.8592 (3) 0.1224 (2) 0.60744 (10) 0.0125 (6)
C12 0.8886 (3) 0.1261 (2) 0.55398 (10) 0.0133 (6)
H12 0.957399 0.168329 0.538081 0.016*
C13 0.8167 (3) 0.0676 (2) 0.52443 (10) 0.0159 (6)
H13 0.836029 0.070149 0.488247 0.019*
C14 0.7169 (3) 0.0058 (3) 0.54771 (10) 0.0186 (6)
H14 0.669280 −0.035317 0.527338 0.022*
C15 0.6853 (3) 0.0030 (3) 0.60082 (10) 0.0177 (6)
H15 0.615918 −0.039006 0.616404 0.021*
C16 0.7559 (3) 0.0620 (2) 0.63085 (10) 0.0150 (6)
H16 0.734259 0.061266 0.666957 0.018*
C17 1.1110 (3) 0.2205 (2) 0.61364 (9) 0.0139 (6)
C18 1.2036 (3) 0.1120 (3) 0.59409 (9) 0.0155 (6)
H18 1.175348 0.034497 0.595495 0.019*
C19 1.3374 (3) 0.1205 (3) 0.57264 (10) 0.0189 (7)
H19 1.400826 0.047994 0.559412 0.023*
C20 1.3790 (3) 0.2337 (3) 0.57043 (11) 0.0221 (7)
H20 1.470133 0.238330 0.555546 0.026*
C21 1.2875 (3) 0.3400 (3) 0.58992 (11) 0.0236 (7)
H21 1.316252 0.417319 0.588198 0.028*
C22 1.1544 (3) 0.3338 (3) 0.61191 (10) 0.0188 (6)
H22 1.092670 0.406478 0.625785 0.023*
C23 0.9730 (3) 0.1234 (3) 0.70496 (10) 0.0157 (6)
C24 0.9921 (3) −0.0070 (3) 0.70735 (11) 0.0226 (7)
H24 0.976679 −0.050371 0.679188 0.027*
C25 1.0334 (3) −0.0724 (3) 0.75100 (12) 0.0298 (8)
H25 1.044555 −0.160654 0.753021 0.036*
C26 1.0588 (3) −0.0089 (3) 0.79202 (11) 0.0272 (8)
H26 1.087283 −0.054269 0.821806 0.033*
C27 1.0425 (3) 0.1197 (3) 0.78950 (10) 0.0253 (7)
H27 1.061477 0.162045 0.817316 0.030*
C28 0.9983 (3) 0.1875 (3) 0.74612 (10) 0.0194 (6)
H28 0.985532 0.275874 0.744555 0.023*
B1 1.1632 (3) 0.7161 (3) 0.59857 (12) 0.0190 (7)
F1 1.06555 (19) 0.81871 (17) 0.58349 (7) 0.0392 (5)
F2 1.09598 (19) 0.62678 (16) 0.62366 (7) 0.0344 (5)
F3 1.25338 (19) 0.66298 (17) 0.55619 (6) 0.0332 (5)
F4 1.24188 (19) 0.75704 (18) 0.63210 (7) 0.0371 (5)
B2 1.2845 (4) 0.2994 (3) 0.90769 (14) 0.0241 (8)
F5 1.2026 (2) 0.3128 (2) 0.86803 (8) 0.0563 (6)
F6 1.3542 (2) 0.17533 (15) 0.91095 (6) 0.0358 (5)
F7 1.38046 (19) 0.37573 (18) 0.89795 (8) 0.0454 (5)
F8 1.1993 (2) 0.33346 (18) 0.95371 (7) 0.0453 (5)
Cl1A 1.25733 (10) 0.41520 (8) 0.72180 (3) 0.0411 (2)
Cl2A 1.18892 (9) 0.61367 (8) 0.79693 (3) 0.0331 (2)
C57A 1.1926 (4) 0.5766 (3) 0.73249 (11) 0.0316 (7)
H57A 1.251916 0.624921 0.710549 0.038*
H57B 1.097398 0.601362 0.722659 0.038*

Tricarbonyl[η4-6-exo-(triphenylphosphino)cyclohepta-2,4-dien-1-one]\ iron(0) tetrafluoroborate dichloromethane hemisolvate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P2 0.0146 (4) 0.0111 (4) 0.0105 (3) −0.0010 (3) −0.0010 (3) −0.0018 (3)
Fe2 0.0128 (2) 0.0127 (2) 0.0132 (2) −0.00214 (16) −0.00068 (16) −0.00078 (15)
O5 0.0223 (11) 0.0224 (12) 0.0170 (10) −0.0010 (9) 0.0020 (9) −0.0053 (8)
O6 0.0321 (13) 0.0305 (13) 0.0221 (11) −0.0144 (10) −0.0070 (10) −0.0037 (10)
O7 0.0209 (11) 0.0180 (12) 0.0293 (11) −0.0023 (10) −0.0039 (9) 0.0023 (9)
O8 0.0297 (13) 0.0345 (14) 0.0203 (11) −0.0111 (11) 0.0054 (10) 0.0043 (10)
C29 0.0149 (15) 0.0135 (15) 0.0123 (13) −0.0005 (12) 0.0044 (11) −0.0014 (11)
C30 0.0204 (15) 0.0107 (14) 0.0149 (13) −0.0050 (12) −0.0041 (12) −0.0002 (11)
C31 0.0180 (15) 0.0121 (15) 0.0194 (14) −0.0062 (12) −0.0051 (12) 0.0019 (11)
C32 0.0106 (14) 0.0142 (15) 0.0230 (15) −0.0035 (12) 0.0009 (12) −0.0011 (12)
C33 0.0137 (14) 0.0141 (15) 0.0185 (14) −0.0059 (12) 0.0034 (12) −0.0006 (11)
C34 0.0195 (15) 0.0147 (15) 0.0128 (13) −0.0009 (12) 0.0029 (11) −0.0003 (11)
C35 0.0151 (14) 0.0111 (14) 0.0127 (13) 0.0011 (11) −0.0014 (11) −0.0019 (11)
C36 0.0163 (15) 0.0162 (16) 0.0181 (15) −0.0027 (12) 0.0015 (12) 0.0036 (12)
C37 0.0190 (16) 0.0166 (16) 0.0171 (14) −0.0066 (13) 0.0003 (12) −0.0024 (12)
C38 0.0187 (16) 0.0125 (15) 0.0204 (15) −0.0002 (12) −0.0075 (13) 0.0006 (12)
C39 0.0112 (14) 0.0103 (14) 0.0140 (13) 0.0010 (11) −0.0025 (11) −0.0017 (10)
C40 0.0203 (15) 0.0146 (15) 0.0132 (13) −0.0024 (12) 0.0013 (12) −0.0007 (11)
C41 0.0157 (15) 0.0205 (16) 0.0219 (15) −0.0079 (13) 0.0039 (12) −0.0027 (12)
C42 0.0164 (15) 0.0222 (17) 0.0215 (15) −0.0020 (13) −0.0035 (12) −0.0089 (12)
C43 0.0154 (15) 0.0174 (16) 0.0122 (13) 0.0011 (12) −0.0009 (11) −0.0029 (11)
C44 0.0146 (14) 0.0104 (14) 0.0149 (13) −0.0006 (11) 0.0022 (11) −0.0018 (11)
C45 0.0139 (14) 0.0151 (15) 0.0121 (13) −0.0029 (12) −0.0055 (11) −0.0006 (11)
C46 0.0157 (15) 0.0161 (16) 0.0189 (14) −0.0025 (12) −0.0023 (12) −0.0042 (12)
C47 0.0202 (16) 0.0203 (17) 0.0241 (15) −0.0091 (13) −0.0076 (13) 0.0030 (12)
C48 0.0120 (15) 0.0276 (18) 0.0216 (15) −0.0054 (13) −0.0027 (12) −0.0015 (13)
C49 0.0144 (15) 0.0215 (17) 0.0170 (14) 0.0016 (12) −0.0022 (12) −0.0040 (12)
C50 0.0192 (15) 0.0127 (15) 0.0164 (14) −0.0019 (12) −0.0055 (12) −0.0021 (11)
C51 0.0151 (14) 0.0132 (15) 0.0126 (13) −0.0005 (12) −0.0003 (11) −0.0002 (11)
C52 0.0161 (15) 0.0173 (16) 0.0174 (14) −0.0041 (12) 0.0000 (12) −0.0042 (12)
C53 0.0190 (16) 0.0320 (19) 0.0136 (14) −0.0036 (14) −0.0025 (12) −0.0015 (13)
C54 0.0269 (18) 0.033 (2) 0.0160 (15) −0.0023 (15) −0.0049 (13) 0.0083 (13)
C55 0.0343 (19) 0.0172 (17) 0.0269 (17) −0.0002 (14) −0.0066 (14) 0.0023 (13)
C56 0.0286 (17) 0.0125 (15) 0.0175 (14) −0.0005 (13) −0.0050 (13) −0.0004 (12)
P1 0.0142 (4) 0.0106 (4) 0.0114 (3) −0.0015 (3) −0.0006 (3) −0.0023 (3)
O1 0.0242 (12) 0.0230 (12) 0.0231 (11) −0.0030 (9) 0.0086 (9) −0.0082 (9)
Fe1 0.0123 (2) 0.0118 (2) 0.0157 (2) −0.00230 (16) 0.00080 (16) −0.00029 (16)
C1 0.0148 (14) 0.0106 (14) 0.0109 (12) −0.0016 (11) 0.0028 (11) −0.0023 (10)
C2 0.0225 (16) 0.0093 (14) 0.0171 (14) −0.0055 (12) −0.0020 (12) −0.0013 (11)
O2 0.0208 (12) 0.0184 (12) 0.0360 (12) −0.0016 (10) −0.0063 (10) 0.0042 (10)
C3 0.0164 (15) 0.0165 (16) 0.0246 (15) −0.0080 (12) −0.0049 (12) 0.0059 (12)
O3 0.0255 (12) 0.0338 (14) 0.0228 (11) −0.0115 (10) 0.0045 (10) 0.0023 (9)
C4 0.0087 (14) 0.0159 (16) 0.0258 (15) −0.0025 (12) 0.0033 (12) 0.0025 (12)
O4 0.0359 (13) 0.0264 (13) 0.0219 (11) −0.0117 (10) −0.0031 (10) −0.0035 (10)
C5 0.0112 (14) 0.0169 (16) 0.0230 (15) −0.0059 (12) 0.0066 (12) 0.0000 (12)
C6 0.0187 (15) 0.0176 (16) 0.0130 (13) −0.0031 (12) 0.0047 (12) −0.0009 (11)
C7 0.0158 (14) 0.0106 (14) 0.0122 (13) −0.0021 (11) 0.0004 (11) −0.0031 (11)
C8 0.0152 (15) 0.0172 (16) 0.0205 (15) −0.0087 (13) 0.0038 (12) −0.0022 (12)
C9 0.0209 (16) 0.0161 (16) 0.0191 (15) −0.0027 (13) −0.0057 (13) −0.0001 (12)
C10 0.0178 (15) 0.0135 (15) 0.0193 (15) −0.0012 (12) 0.0058 (12) 0.0038 (12)
C11 0.0132 (14) 0.0097 (14) 0.0139 (13) −0.0005 (11) −0.0018 (11) −0.0017 (11)
C12 0.0123 (14) 0.0115 (15) 0.0148 (13) −0.0017 (11) 0.0019 (11) −0.0012 (11)
C13 0.0170 (15) 0.0168 (15) 0.0124 (13) 0.0002 (12) −0.0016 (11) −0.0026 (11)
C14 0.0190 (16) 0.0179 (16) 0.0205 (14) −0.0052 (13) −0.0044 (12) −0.0058 (12)
C15 0.0163 (15) 0.0154 (15) 0.0209 (14) −0.0053 (12) 0.0025 (12) −0.0011 (12)
C16 0.0185 (15) 0.0134 (15) 0.0126 (13) −0.0026 (12) −0.0010 (11) −0.0014 (11)
C17 0.0146 (14) 0.0155 (15) 0.0111 (13) −0.0011 (12) −0.0026 (11) −0.0019 (11)
C18 0.0174 (15) 0.0162 (15) 0.0139 (13) −0.0036 (12) −0.0045 (11) −0.0028 (11)
C19 0.0129 (15) 0.0249 (17) 0.0161 (14) 0.0047 (13) −0.0049 (12) −0.0039 (12)
C20 0.0118 (15) 0.0287 (18) 0.0256 (16) −0.0050 (13) −0.0007 (12) −0.0007 (13)
C21 0.0170 (16) 0.0215 (17) 0.0341 (17) −0.0074 (13) −0.0035 (13) −0.0022 (14)
C22 0.0169 (15) 0.0156 (16) 0.0242 (15) −0.0025 (12) −0.0038 (12) −0.0055 (12)
C23 0.0139 (14) 0.0177 (15) 0.0126 (13) 0.0000 (12) 0.0023 (11) 0.0015 (11)
C24 0.0269 (17) 0.0185 (17) 0.0221 (15) −0.0032 (13) −0.0052 (13) −0.0004 (12)
C25 0.0345 (19) 0.0215 (18) 0.0311 (18) −0.0018 (15) −0.0054 (15) 0.0066 (14)
C26 0.0226 (17) 0.038 (2) 0.0151 (15) 0.0037 (15) −0.0015 (13) 0.0095 (14)
C27 0.0242 (17) 0.034 (2) 0.0129 (14) 0.0034 (14) 0.0005 (12) −0.0068 (13)
C28 0.0185 (16) 0.0220 (17) 0.0156 (14) −0.0003 (13) −0.0004 (12) −0.0040 (12)
B1 0.0183 (18) 0.0163 (18) 0.0203 (17) 0.0000 (14) −0.0015 (14) −0.0007 (14)
F1 0.0316 (11) 0.0366 (12) 0.0390 (11) 0.0082 (9) 0.0001 (9) 0.0159 (9)
F2 0.0425 (12) 0.0244 (10) 0.0363 (10) −0.0137 (9) 0.0039 (9) 0.0046 (8)
F3 0.0360 (11) 0.0324 (11) 0.0274 (10) −0.0036 (9) 0.0068 (8) −0.0092 (8)
F4 0.0352 (11) 0.0458 (13) 0.0344 (10) −0.0141 (9) −0.0067 (9) −0.0093 (9)
B2 0.0226 (19) 0.0179 (19) 0.0313 (19) −0.0027 (15) −0.0054 (16) 0.0039 (15)
F5 0.0337 (12) 0.0883 (18) 0.0516 (13) −0.0204 (12) −0.0224 (10) 0.0308 (12)
F6 0.0588 (13) 0.0175 (10) 0.0240 (9) 0.0039 (9) −0.0005 (9) 0.0003 (7)
F7 0.0285 (11) 0.0290 (12) 0.0799 (16) −0.0121 (9) 0.0014 (10) −0.0064 (11)
F8 0.0466 (13) 0.0345 (12) 0.0496 (12) −0.0045 (10) 0.0119 (10) −0.0154 (10)
Cl1A 0.0475 (6) 0.0249 (5) 0.0523 (5) −0.0028 (4) −0.0173 (4) −0.0064 (4)
Cl2A 0.0452 (5) 0.0323 (5) 0.0239 (4) −0.0120 (4) −0.0065 (4) 0.0026 (3)
C57A 0.041 (2) 0.0278 (15) 0.0252 (14) −0.0055 (15) −0.0040 (14) 0.0010 (13)

Tricarbonyl[η4-6-exo-(triphenylphosphino)cyclohepta-2,4-dien-1-one]\ iron(0) tetrafluoroborate dichloromethane hemisolvate . Geometric parameters (Å, º)

P2—C35 1.853 (3) Fe1—C2 2.071 (3)
P2—C39 1.799 (3) Fe1—C3 2.065 (3)
P2—C45 1.807 (3) Fe1—C4 2.127 (3)
P2—C51 1.810 (3) Fe1—C8 1.816 (3)
Fe2—C29 2.094 (3) Fe1—C9 1.809 (3)
Fe2—C30 2.074 (3) Fe1—C10 1.822 (3)
Fe2—C31 2.068 (3) C1—H1 1.0000
Fe2—C32 2.134 (3) C1—C2 1.434 (4)
Fe2—C36 1.815 (3) C1—C7 1.533 (3)
Fe2—C37 1.812 (3) C2—H2 1.0000
Fe2—C38 1.808 (3) C2—C3 1.412 (4)
O5—C33 1.234 (3) O2—C8 1.149 (3)
O6—C36 1.150 (3) C3—H3 1.0000
O7—C37 1.149 (3) C3—C4 1.436 (4)
O8—C38 1.145 (3) O3—C9 1.145 (3)
C29—H29 1.0000 C4—H4 1.0000
C29—C30 1.442 (4) C4—C5 1.482 (4)
C29—C35 1.538 (3) O4—C10 1.144 (3)
C30—H30 1.0000 C5—C6 1.522 (4)
C30—C31 1.408 (4) C6—H6A 0.9900
C31—H31 1.0000 C6—H6B 0.9900
C31—C32 1.435 (4) C6—C7 1.544 (4)
C32—H32 1.0000 C7—H7 1.0000
C32—C33 1.475 (4) C11—C12 1.404 (3)
C33—C34 1.524 (4) C11—C16 1.402 (4)
C34—H34A 0.9900 C12—H12 0.9500
C34—H34B 0.9900 C12—C13 1.390 (4)
C34—C35 1.546 (4) C13—H13 0.9500
C35—H35 1.0000 C13—C14 1.384 (4)
C39—C40 1.405 (4) C14—H14 0.9500
C39—C44 1.401 (3) C14—C15 1.397 (4)
C40—H40 0.9500 C15—H15 0.9500
C40—C41 1.388 (4) C15—C16 1.393 (4)
C41—H41 0.9500 C16—H16 0.9500
C41—C42 1.399 (4) C17—C18 1.411 (4)
C42—H42 0.9500 C17—C22 1.400 (4)
C42—C43 1.383 (4) C18—H18 0.9500
C43—H43 0.9500 C18—C19 1.396 (4)
C43—C44 1.396 (4) C19—H19 0.9500
C44—H44 0.9500 C19—C20 1.389 (4)
C45—C46 1.399 (4) C20—H20 0.9500
C45—C50 1.413 (4) C20—C21 1.388 (4)
C46—H46 0.9500 C21—H21 0.9500
C46—C47 1.399 (4) C21—C22 1.388 (4)
C47—H47 0.9500 C22—H22 0.9500
C47—C48 1.393 (4) C23—C24 1.402 (4)
C48—H48 0.9500 C23—C28 1.403 (4)
C48—C49 1.398 (4) C24—H24 0.9500
C49—H49 0.9500 C24—C25 1.386 (4)
C49—C50 1.390 (4) C25—H25 0.9500
C50—H50 0.9500 C25—C26 1.397 (4)
C51—C52 1.400 (4) C26—H26 0.9500
C51—C56 1.405 (4) C26—C27 1.384 (4)
C52—H52 0.9500 C27—H27 0.9500
C52—C53 1.401 (4) C27—C28 1.400 (4)
C53—H53 0.9500 C28—H28 0.9500
C53—C54 1.384 (4) B1—F1 1.394 (4)
C54—H54 0.9500 B1—F2 1.396 (4)
C54—C55 1.397 (4) B1—F3 1.404 (3)
C55—H55 0.9500 B1—F4 1.406 (4)
C55—C56 1.397 (4) B2—F5 1.392 (4)
C56—H56 0.9500 B2—F6 1.389 (4)
P1—C7 1.853 (3) B2—F7 1.393 (4)
P1—C11 1.799 (3) B2—F8 1.405 (4)
P1—C17 1.801 (3) Cl1A—C57A 1.771 (3)
P1—C23 1.805 (3) Cl2A—C57A 1.765 (3)
O1—C5 1.229 (3) C57A—H57A 0.9900
Fe1—C1 2.106 (3) C57A—H57B 0.9900
C39—P2—C35 107.22 (12) C3—Fe1—C1 72.32 (11)
C39—P2—C45 109.80 (12) C3—Fe1—C2 39.93 (11)
C39—P2—C51 108.45 (12) C3—Fe1—C4 40.04 (10)
C45—P2—C35 109.27 (12) C8—Fe1—C1 159.35 (11)
C45—P2—C51 109.02 (12) C8—Fe1—C2 119.34 (12)
C51—P2—C35 113.05 (12) C8—Fe1—C3 90.88 (12)
C29—Fe2—C32 85.14 (10) C8—Fe1—C4 89.74 (11)
C30—Fe2—C29 40.48 (10) C8—Fe1—C10 101.08 (12)
C30—Fe2—C32 72.09 (10) C9—Fe1—C1 89.05 (11)
C31—Fe2—C29 72.52 (11) C9—Fe1—C2 95.78 (12)
C31—Fe2—C30 39.75 (10) C9—Fe1—C3 127.05 (12)
C31—Fe2—C32 39.90 (10) C9—Fe1—C4 167.04 (12)
C36—Fe2—C29 98.70 (11) C9—Fe1—C8 91.88 (12)
C36—Fe2—C30 136.74 (11) C9—Fe1—C10 96.79 (12)
C36—Fe2—C31 134.13 (11) C10—Fe1—C1 99.29 (11)
C36—Fe2—C32 95.62 (11) C10—Fe1—C2 137.07 (11)
C37—Fe2—C29 160.40 (12) C10—Fe1—C3 134.26 (11)
C37—Fe2—C30 120.23 (12) C10—Fe1—C4 95.51 (11)
C37—Fe2—C31 92.41 (12) Fe1—C1—H1 112.0
C37—Fe2—C32 91.19 (11) C2—C1—Fe1 68.62 (15)
C37—Fe2—C36 100.82 (12) C2—C1—H1 112.0
C38—Fe2—C29 88.42 (11) C2—C1—C7 125.5 (2)
C38—Fe2—C30 95.26 (11) C7—C1—Fe1 119.90 (17)
C38—Fe2—C31 126.49 (11) C7—C1—H1 112.0
C38—Fe2—C32 166.34 (12) Fe1—C2—H2 119.4
C38—Fe2—C36 97.26 (12) C1—C2—Fe1 71.24 (15)
C38—Fe2—C37 90.87 (12) C1—C2—H2 119.4
Fe2—C29—H29 111.9 C3—C2—Fe1 69.78 (15)
C30—C29—Fe2 69.04 (15) C3—C2—C1 119.7 (2)
C30—C29—H29 111.9 C3—C2—H2 119.4
C30—C29—C35 125.5 (2) Fe1—C3—H3 118.9
C35—C29—Fe2 119.85 (17) C2—C3—Fe1 70.29 (15)
C35—C29—H29 111.9 C2—C3—H3 118.9
Fe2—C30—H30 119.5 C2—C3—C4 120.8 (2)
C29—C30—Fe2 70.48 (15) C4—C3—Fe1 72.34 (16)
C29—C30—H30 119.5 C4—C3—H3 118.9
C31—C30—Fe2 69.88 (15) Fe1—C4—H4 114.0
C31—C30—C29 119.4 (2) C3—C4—Fe1 67.62 (15)
C31—C30—H30 119.5 C3—C4—H4 114.0
Fe2—C31—H31 118.8 C3—C4—C5 126.6 (2)
C30—C31—Fe2 70.37 (16) C5—C4—Fe1 111.10 (18)
C30—C31—H31 118.8 C5—C4—H4 114.0
C30—C31—C32 121.2 (2) O1—C5—C4 121.2 (3)
C32—C31—Fe2 72.50 (15) O1—C5—C6 120.7 (3)
C32—C31—H31 118.8 C4—C5—C6 118.0 (2)
Fe2—C32—H32 114.1 C5—C6—H6A 109.4
C31—C32—Fe2 67.59 (15) C5—C6—H6B 109.4
C31—C32—H32 114.1 C5—C6—C7 111.0 (2)
C31—C32—C33 125.5 (2) H6A—C6—H6B 108.0
C33—C32—Fe2 112.39 (18) C7—C6—H6A 109.4
C33—C32—H32 114.1 C7—C6—H6B 109.4
O5—C33—C32 121.1 (2) P1—C7—H7 108.6
O5—C33—C34 119.6 (2) C1—C7—P1 106.93 (17)
C32—C33—C34 119.1 (2) C1—C7—C6 114.4 (2)
C33—C34—H34A 109.3 C1—C7—H7 108.6
C33—C34—H34B 109.3 C6—C7—P1 109.73 (18)
C33—C34—C35 111.5 (2) C6—C7—H7 108.6
H34A—C34—H34B 108.0 O2—C8—Fe1 178.8 (3)
C35—C34—H34A 109.3 O3—C9—Fe1 178.6 (3)
C35—C34—H34B 109.3 O4—C10—Fe1 178.2 (3)
P2—C35—H35 108.9 C12—C11—P1 119.8 (2)
C29—C35—P2 107.10 (17) C16—C11—P1 119.85 (19)
C29—C35—C34 113.7 (2) C16—C11—C12 120.1 (2)
C29—C35—H35 108.9 C11—C12—H12 120.1
C34—C35—P2 109.12 (18) C13—C12—C11 119.8 (2)
C34—C35—H35 108.9 C13—C12—H12 120.1
O6—C36—Fe2 177.8 (2) C12—C13—H13 120.0
O7—C37—Fe2 178.2 (3) C14—C13—C12 120.0 (2)
O8—C38—Fe2 179.3 (3) C14—C13—H13 120.0
C40—C39—P2 120.3 (2) C13—C14—H14 119.6
C44—C39—P2 119.8 (2) C13—C14—C15 120.8 (3)
C44—C39—C40 119.7 (2) C15—C14—H14 119.6
C39—C40—H40 120.2 C14—C15—H15 120.1
C41—C40—C39 119.7 (2) C16—C15—C14 119.8 (3)
C41—C40—H40 120.2 C16—C15—H15 120.1
C40—C41—H41 119.9 C11—C16—H16 120.2
C40—C41—C42 120.3 (3) C15—C16—C11 119.6 (2)
C42—C41—H41 119.9 C15—C16—H16 120.2
C41—C42—H42 119.9 C18—C17—P1 118.9 (2)
C43—C42—C41 120.3 (3) C22—C17—P1 120.9 (2)
C43—C42—H42 119.9 C22—C17—C18 120.0 (2)
C42—C43—H43 120.0 C17—C18—H18 120.6
C42—C43—C44 120.0 (2) C19—C18—C17 118.8 (3)
C44—C43—H43 120.0 C19—C18—H18 120.6
C39—C44—H44 120.0 C18—C19—H19 119.6
C43—C44—C39 120.1 (3) C20—C19—C18 120.7 (3)
C43—C44—H44 120.0 C20—C19—H19 119.6
C46—C45—P2 122.0 (2) C19—C20—H20 119.9
C46—C45—C50 119.8 (3) C21—C20—C19 120.2 (3)
C50—C45—P2 118.2 (2) C21—C20—H20 119.9
C45—C46—H46 119.9 C20—C21—H21 119.9
C47—C46—C45 120.3 (3) C22—C21—C20 120.3 (3)
C47—C46—H46 119.9 C22—C21—H21 119.9
C46—C47—H47 120.1 C17—C22—H22 120.0
C48—C47—C46 119.8 (3) C21—C22—C17 120.0 (3)
C48—C47—H47 120.1 C21—C22—H22 120.0
C47—C48—H48 120.0 C24—C23—P1 120.0 (2)
C47—C48—C49 119.9 (3) C24—C23—C28 120.2 (3)
C49—C48—H48 120.0 C28—C23—P1 119.0 (2)
C48—C49—H49 119.6 C23—C24—H24 120.2
C50—C49—C48 120.9 (3) C25—C24—C23 119.7 (3)
C50—C49—H49 119.6 C25—C24—H24 120.2
C45—C50—H50 120.4 C24—C25—H25 119.9
C49—C50—C45 119.2 (3) C24—C25—C26 120.2 (3)
C49—C50—H50 120.4 C26—C25—H25 119.9
C52—C51—P2 121.0 (2) C25—C26—H26 119.8
C52—C51—C56 120.5 (2) C27—C26—C25 120.4 (3)
C56—C51—P2 118.3 (2) C27—C26—H26 119.8
C51—C52—H52 120.3 C26—C27—H27 119.9
C51—C52—C53 119.3 (3) C26—C27—C28 120.2 (3)
C53—C52—H52 120.3 C28—C27—H27 119.9
C52—C53—H53 119.9 C23—C28—H28 120.4
C54—C53—C52 120.2 (3) C27—C28—C23 119.3 (3)
C54—C53—H53 119.9 C27—C28—H28 120.4
C53—C54—H54 119.7 F1—B1—F2 110.1 (3)
C53—C54—C55 120.6 (3) F1—B1—F3 110.7 (2)
C55—C54—H54 119.7 F1—B1—F4 108.4 (3)
C54—C55—H55 120.0 F2—B1—F3 109.8 (2)
C56—C55—C54 120.1 (3) F2—B1—F4 109.3 (2)
C56—C55—H55 120.0 F3—B1—F4 108.6 (2)
C51—C56—H56 120.4 F5—B2—F7 109.7 (3)
C55—C56—C51 119.3 (3) F5—B2—F8 109.4 (3)
C55—C56—H56 120.4 F6—B2—F5 108.6 (3)
C11—P1—C7 107.74 (12) F6—B2—F7 109.7 (3)
C11—P1—C17 110.56 (12) F6—B2—F8 109.9 (3)
C11—P1—C23 109.76 (13) F7—B2—F8 109.5 (3)
C17—P1—C7 108.54 (12) Cl1A—C57A—H57A 109.2
C17—P1—C23 106.44 (12) Cl1A—C57A—H57B 109.2
C23—P1—C7 113.81 (12) Cl2A—C57A—Cl1A 112.05 (17)
C1—Fe1—C4 84.95 (10) Cl2A—C57A—H57A 109.2
C2—Fe1—C1 40.14 (10) Cl2A—C57A—H57B 109.2
C2—Fe1—C4 72.30 (11) H57A—C57A—H57B 107.9
P2—C39—C40—C41 −176.5 (2) P1—C11—C12—C13 −175.4 (2)
P2—C39—C44—C43 175.57 (19) P1—C11—C16—C15 175.9 (2)
P2—C45—C46—C47 179.7 (2) P1—C17—C18—C19 −175.46 (19)
P2—C45—C50—C49 178.8 (2) P1—C17—C22—C21 176.0 (2)
P2—C51—C52—C53 176.9 (2) P1—C23—C24—C25 171.4 (2)
P2—C51—C56—C55 −177.7 (2) P1—C23—C28—C27 −170.3 (2)
Fe2—C29—C30—C31 51.8 (2) O1—C5—C6—C7 −116.4 (3)
Fe2—C29—C35—P2 179.24 (13) Fe1—C1—C2—C3 −52.1 (2)
Fe2—C29—C35—C34 −60.1 (3) Fe1—C1—C7—P1 179.98 (13)
Fe2—C30—C31—C32 53.9 (2) Fe1—C1—C7—C6 58.3 (3)
Fe2—C31—C32—C33 102.3 (3) Fe1—C2—C3—C4 −53.9 (2)
Fe2—C32—C33—O5 −115.5 (2) Fe1—C3—C4—C5 −100.3 (3)
Fe2—C32—C33—C34 69.6 (3) Fe1—C4—C5—O1 109.3 (3)
O5—C33—C34—C35 121.2 (3) Fe1—C4—C5—C6 −73.2 (3)
C29—C30—C31—Fe2 −52.0 (2) C1—C2—C3—Fe1 52.8 (2)
C29—C30—C31—C32 1.9 (4) C1—C2—C3—C4 −1.1 (4)
C30—C29—C35—P2 −96.3 (3) C2—C1—C7—P1 96.1 (3)
C30—C29—C35—C34 24.3 (4) C2—C1—C7—C6 −25.6 (4)
C30—C31—C32—Fe2 −53.0 (2) C2—C3—C4—Fe1 53.0 (2)
C30—C31—C32—C33 49.3 (4) C2—C3—C4—C5 −47.4 (4)
C31—C32—C33—O5 166.8 (3) C3—C4—C5—O1 −173.5 (3)
C31—C32—C33—C34 −8.1 (4) C3—C4—C5—C6 4.0 (4)
C32—C33—C34—C35 −63.8 (3) C4—C5—C6—C7 66.0 (3)
C33—C34—C35—P2 173.40 (18) C5—C6—C7—P1 −173.67 (18)
C33—C34—C35—C29 53.9 (3) C5—C6—C7—C1 −53.5 (3)
C35—P2—C39—C40 85.3 (2) C7—P1—C11—C12 89.3 (2)
C35—P2—C39—C44 −88.9 (2) C7—P1—C11—C16 −85.0 (2)
C35—P2—C45—C46 −10.1 (3) C7—P1—C17—C18 −167.5 (2)
C35—P2—C45—C50 171.1 (2) C7—P1—C17—C22 17.9 (3)
C35—P2—C51—C52 33.2 (3) C7—P1—C23—C24 149.2 (2)
C35—P2—C51—C56 −150.7 (2) C7—P1—C23—C28 −40.5 (3)
C35—C29—C30—Fe2 −112.4 (2) C7—C1—C2—Fe1 112.2 (2)
C35—C29—C30—C31 −60.7 (4) C7—C1—C2—C3 60.1 (4)
C39—P2—C35—C29 57.4 (2) C11—P1—C7—C1 −59.7 (2)
C39—P2—C35—C34 −66.1 (2) C11—P1—C7—C6 64.9 (2)
C39—P2—C45—C46 −127.4 (2) C11—P1—C17—C18 −49.5 (2)
C39—P2—C45—C50 53.8 (2) C11—P1—C17—C22 135.9 (2)
C39—P2—C51—C52 151.9 (2) C11—P1—C23—C24 28.4 (3)
C39—P2—C51—C56 −32.0 (3) C11—P1—C23—C28 −161.3 (2)
C39—C40—C41—C42 1.0 (4) C11—C12—C13—C14 −0.2 (4)
C40—C39—C44—C43 1.3 (4) C12—C11—C16—C15 1.6 (4)
C40—C41—C42—C43 1.2 (4) C12—C13—C14—C15 1.2 (4)
C41—C42—C43—C44 −2.1 (4) C13—C14—C15—C16 −0.7 (4)
C42—C43—C44—C39 0.9 (4) C14—C15—C16—C11 −0.7 (4)
C44—C39—C40—C41 −2.2 (4) C16—C11—C12—C13 −1.2 (4)
C45—P2—C35—C29 −61.5 (2) C17—P1—C7—C1 60.1 (2)
C45—P2—C35—C34 174.99 (17) C17—P1—C7—C6 −175.37 (18)
C45—P2—C39—C40 −156.1 (2) C17—P1—C11—C12 −29.1 (2)
C45—P2—C39—C44 29.7 (2) C17—P1—C11—C16 156.6 (2)
C45—P2—C51—C52 −88.5 (2) C17—P1—C23—C24 −91.3 (2)
C45—P2—C51—C56 87.5 (2) C17—P1—C23—C28 79.0 (2)
C45—C46—C47—C48 2.3 (4) C17—C18—C19—C20 −0.1 (4)
C46—C45—C50—C49 0.0 (4) C18—C17—C22—C21 1.4 (4)
C46—C47—C48—C49 −1.5 (4) C18—C19—C20—C21 0.4 (4)
C47—C48—C49—C50 −0.1 (4) C19—C20—C21—C22 0.3 (4)
C48—C49—C50—C45 0.8 (4) C20—C21—C22—C17 −1.2 (4)
C50—C45—C46—C47 −1.5 (4) C22—C17—C18—C19 −0.8 (4)
C51—P2—C35—C29 176.90 (17) C23—P1—C7—C1 178.39 (18)
C51—P2—C35—C34 53.4 (2) C23—P1—C7—C6 −57.1 (2)
C51—P2—C39—C40 −37.1 (2) C23—P1—C11—C12 −146.3 (2)
C51—P2—C39—C44 148.7 (2) C23—P1—C11—C16 39.5 (2)
C51—P2—C45—C46 113.9 (2) C23—P1—C17—C18 69.6 (2)
C51—P2—C45—C50 −64.9 (2) C23—P1—C17—C22 −105.0 (2)
C51—C52—C53—C54 0.1 (4) C23—C24—C25—C26 −1.3 (5)
C52—C51—C56—C55 −1.6 (4) C24—C23—C28—C27 0.0 (4)
C52—C53—C54—C55 −0.5 (4) C24—C25—C26—C27 0.1 (5)
C53—C54—C55—C56 −0.1 (5) C25—C26—C27—C28 1.1 (4)
C54—C55—C56—C51 1.2 (5) C26—C27—C28—C23 −1.1 (4)
C56—C51—C52—C53 1.0 (4) C28—C23—C24—C25 1.2 (4)

Tricarbonyl[η4-6-exo-(triphenylphosphino)cyclohepta-2,4-dien-1-one]\ iron(0) tetrafluoroborate dichloromethane hemisolvate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C32—H32···F5 1.00 2.37 3.198 (3) 140
C43—H43···F6i 0.95 2.33 3.240 (3) 160
C44—H44···O8ii 0.95 2.56 3.467 (3) 159
C46—H46···F7iii 0.95 2.40 3.151 (3) 136
C49—H49···O7iv 0.95 2.60 3.339 (3) 135
C50—H50···F6iv 0.95 2.53 3.471 (3) 169
C52—H52···O1 0.95 2.37 3.286 (3) 161
C53—H53···F4iii 0.95 2.66 3.500 (3) 148
C56—H56···F6iv 0.95 2.48 3.362 (3) 155
C2—H2···F3v 1.00 2.50 3.493 (3) 170
C4—H4···F4iii 1.00 2.42 3.393 (3) 165
C7—H7···O5 1.00 2.34 3.192 (3) 143
C13—H13···F1v 0.95 2.41 3.232 (3) 144
C19—H19···O2vi 0.95 2.51 3.393 (3) 154
C28—H28···O5 0.95 2.41 3.319 (4) 161
C57A—H57A···F4 0.99 2.47 3.276 (4) 139

Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+1, −y+1, −z+2; (iii) x−1, y, z; (iv) x−1, y+1, z; (v) −x+2, −y+1, −z+1; (vi) x+1, y−1, z.

Funding Statement

This work was funded by McCutchen Foundation .

References

  1. Brown, D. A., Chawla, S. K., Glass, W. K. & Hussein, F. M. (1982). Inorg. Chem.21, 2726–2732.
  2. Coquerel, Y., Deprés, J.-P., Greene, A. E. & Philouze, C. (2002). J. Organomet. Chem.659, 176–185.
  3. Dodge, R. P. (1964). J. Am. Chem. Soc.86, 5429–5431.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  5. Eisenstadt, A. (1975). J. Organomet. Chem.97, 443–451.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Huang, Z., Phelan, Z. K., Tritt, R. L., Valent, S. D. & Griffith, D. R. (2018). Tetrahedron Lett.59, 3432–3434.
  8. Huang, Z., Phelan, Z. K., Tritt, R. L., Valent, S. D., Guan, Z., He, Y., Weiss, P. S. & Griffith, D. R. (2019). J. Vis. Exp.150, e60050. [DOI] [PubMed]
  9. Phelan, Z. K., Weiss, P. S., He, Y., Guan, Z., Thamattoor, D. M. & Griffith, D. R. (2020). J. Org. Chem.85, 2202–2212. [DOI] [PubMed]
  10. Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  11. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  12. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  13. Shoemaker, A. H. & Griffith, D. R. (2021). Synthesis, 53, 65–78.
  14. Sotokawa, H., Tajiri, A., Morita, N., Kabuto, C., Hatano, M. & Asao, T. (1987). Tetrahedron Lett.28, 5873–5876.
  15. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  16. Stone, K. L., Kissel, D. S., Shaner, S. E., Grice, K. A. & Van Opstal, M. T. (2020). ACS Symp. Ser.1371, 35–55.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024005747/vu2002sup1.cif

e-80-00746-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024005747/vu2002Isup2.hkl

e-80-00746-Isup2.hkl (784.1KB, hkl)

CCDC reference: 2362680

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES