Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Jun 25:2023.06.24.546372. [Version 2] doi: 10.1101/2023.06.24.546372

Histone chaperone HIRA, Promyelocytic Leukemia (PML) protein and p62/SQSTM1 coordinate to regulate inflammation during cell senescence

Nirmalya Dasgupta, Xue Lei, Christina Huan Shi, Rouven Arnold, Marcos G Teneche, Karl N Miller, Adarsh Rajesh, Andrew Davis, Valesca Anschau, Alexandre R Campos, Rebecca Gilson, Aaron Havas, Shanshan Yin, Zong Ming Chua, Tianhui Liu, Jessica Proulx, Michael Alcaraz, Mohammed Iqbal Rather, Josue Baeza, David C Schultz, Kevin Y Yip, Shelley L Berger, Peter D Adams
PMCID: PMC11230268  PMID: 38979156

Summary

Cellular senescence, a stress-induced stable proliferation arrest associated with an inflammatory Senescence-Associated Secretory Phenotype (SASP), is a cause of aging. In senescent cells, Cytoplasmic Chromatin Fragments (CCFs) activate SASP via the anti-viral cGAS/STING pathway. PML protein organizes PML nuclear bodies (NBs), also involved in senescence and anti-viral immunity. The HIRA histone H3.3 chaperone localizes to PML NBs in senescent cells. Here, we show that HIRA and PML are essential for SASP expression, tightly linked to HIRA’s localization to PML NBs. Inactivation of HIRA does not directly block expression of NF-κB target genes. Instead, an H3.3-independent HIRA function activates SASP through a CCF-cGAS-STING-TBK1-NF-κB pathway. HIRA physically interacts with p62/SQSTM1, an autophagy regulator and negative SASP regulator. HIRA and p62 co-localize in PML NBs, linked to their antagonistic regulation of SASP, with PML NBs controlling their spatial configuration. These results outline a role for HIRA and PML in regulation of SASP.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES