Skip to main content
EFSA Journal logoLink to EFSA Journal
. 2024 Jul 10;22(7):e8888. doi: 10.2903/j.efsa.2024.8888

Pest categorisation of Ceroplastes rubens

EFSA Panel on Plant Health (PLH), Claude Bragard, Paula Baptista, Elisavet Chatzivassiliou, Francesco Di Serio, Paolo Gonthier, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Christer Sven Magnusson, Panagiotis Milonas, Juan A Navas‐Cortes, Stephen Parnell, Roel Potting, Philippe Lucien Reignault, Emilio Stefani, Hans‐Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera, Jonathan Yuen, Lucia Zappalà, Jean‐Claude Grégoire, Chris Malumphy, Virag Kertesz, Dimitrios Papachristos, Oresteia Sfyra, Alan MacLeod
PMCID: PMC11236529  PMID: 38993592

Abstract

The European Commission requested the EFSA Panel on Plant Health to conduct a pest categorisation of Ceroplastes rubens Maskell (Hemiptera: Coccidae), following the commodity risk assessments of Acer palmatum plants grafted on A. davidii and Pinus parviflora bonsai plants grafted on P. thunbergii from China, in which C. rubens was identified as a pest of possible concern to the European Union (EU). The pest, which is commonly known as the pink, red or ruby wax scale, originates in Africa and is highly polyphagous attacking plants from more than 193 genera in 84 families. It has been present in Germany since 2010 in a single tropical glasshouse. It is known to attack primarily tropical and subtropical plants, but also other host plants commonly found in the EU, such as Malus sylvestris, Prunus spp., Pyrus spp. and ornamentals. It is considered an important pest of Citrus spp. The pink wax scale reproduces mainly parthenogenetically, and it has one or two generations per year. Fecundity ranges from 5 to 1178 eggs. Crawlers settle usually on young twigs and later stages are sessile. All life stages of C. rubens egest honeydew on which sooty mould grows. Host availability and climate suitability suggest that parts of the EU would be suitable for establishment. Plants for planting and cut branches provide the main pathways for entry. Crawlers could spread over short distances naturally through wind, animals, humans or machinery. C. rubens could be dispersed more rapidly and over long distances via infested plants for planting for trade. The introduction of C. rubens into the EU could lead to outbreaks causing damage to orchards, amenity ornamental trees and shrubs. Phytosanitary measures are available to inhibit the entry and spread of this species. C. rubens satisfies the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.

Keywords: citrus, Coccidae, pest risk, plant health, plant pest, quarantine, ruby wax scale

1. INTRODUCTION

1.1. Background and Terms of Reference as provided by the requestor

1.1.1. Background

The new Plant Health Regulation (EU) 2016/2031, on the protective measures against pests of plants, is applying from 14 December 2019. Conditions are laid down in this legislation in order for pests to qualify for listing as Union quarantine pests, protected zone quarantine pests or Union regulated non‐quarantine pests. The lists of the EU regulated pests together with the associated import or internal movement requirements of commodities are included in Commission Implementing Regulation (EU) 2019/2072. Additionally, as stipulated in the Commission Implementing Regulation 2018/2019, certain commodities are provisionally prohibited to enter in the EU (high risk plants, HRP). EFSA is performing the risk assessment of the dossiers submitted by exporting to the EU countries of the HRP commodities, as stipulated in Commission Implementing Regulation 2018/2018. Furthermore, EFSA has evaluated a number of requests from exporting to the EU countries for derogations from specific EU import requirements.

In line with the principles of the new plant health law, the European Commission with the Member States are discussing monthly the reports of the interceptions and the outbreaks of pests notified by the Member States. Notifications of an imminent danger from pests that may fulfil the conditions for inclusion in the list of the Union quarantine pest are included. Furthermore, EFSA has been performing horizon scanning of media and literature.

As a follow‐up of the above‐mentioned activities (reporting of interceptions and outbreaks, HRP, derogation requests and horizon scanning), a number of pests of concern have been identified. EFSA is requested to provide scientific opinions for these pests, in view of their potential inclusion by the risk manager in the lists of Commission Implementing Regulation (EU) 2019/2072 and the inclusion of specific import requirements for relevant host commodities, when deemed necessary by the risk manager.

1.1.2. Terms of Reference

EFSA is requested, pursuant to Article 29(1) of Regulation (EC) No 178/2002, to provide scientific opinions in the field of plant health.

EFSA is requested to deliver 53 pest categorisations for the pests listed in Annex 1A, 1B, 1D and 1E (for more details see mandate M‐2021‐00027 on the Open.EFSA portal). Additionally, EFSA is requested to perform pest categorisations for the pests so far not regulated in the EU, identified as pests potentially associated with a commodity in the commodity risk assessments of the HRP dossiers (Annex 1C; for more details see mandate M‐2021‐00027 on the Open.EFSA portal). Such pest categorisations are needed in the case where there are not available risk assessments for the EU.

When the pests of Annex 1A are qualifying as potential Union quarantine pests, EFSA should proceed to phase 2 risk assessment. The opinions should address entry pathways, spread, establishment, impact and include a risk reduction options analysis.

Additionally, EFSA is requested to develop further the quantitative methodology currently followed for risk assessment, in order to have the possibility to deliver an express risk assessment methodology. Such methodological development should take into account the EFSA Plant Health Panel Guidance on quantitative pest risk assessment and the experience obtained during its implementation for the Union candidate priority pests and for the likelihood of pest freedom at entry for the commodity risk assessment of High Risk Plants.

1.2. Interpretation of the Terms of Reference

Ceroplastes rubens is one of a number of pests covered by Annex 1C to the terms of reference (ToR) to be subject to pest categorisation to determine whether it fulfils the criteria of a potential Union quarantine pest for the area of the EU excluding Ceuta, Melilla and the outermost regions of Member States referred to in Article 355(1) of the Treaty on the Functioning of the European Union (TFEU), other than Madeira and the Azores, and so inform EU decision‐making as to its appropriateness for potential inclusion in the lists of pests of Commission Implementing Regulation (EU) 2019/ 2072. If a pest fulfils the criteria to be potentially listed as a Union quarantine pest, risk reduction options will be identified.

1.3. Additional information

This pest categorisation was initiated following the commodity risk assessments of Acer palmatum plants grafted on A. davidii from China (EFSA PLH Panel, 2022a) and of bonsai plants from China consisting of Pinus parviflora grafted on P. thunbergii (EFSA PLH Panel, 2022b), in which C. rubens was identified as a relevant non‐regulated pest which could potentially enter the EU on Acer spp. and Pinus spp. plants for planting.

2. DATA AND METHODOLOGIES

2.1. Data

2.1.1. Information on pest status from NPPOs

In the context of the current mandate, EFSA is preparing pest categorisations for new/emerging pests that are not yet regulated in the EU. When official pest status is not available in the European and Mediterranean Plant Protection Organization (EPPO) Global Database (EPPO, online), EFSA consults the NPPO of any relevant MS. To obtain information on the official pest status for C. rubens, EFSA contacted the NPPOs of Germany and Hungary in February and March 2024.

2.1.2. Literature search

A literature search on C. rubens was conducted at the beginning of the categorisation in the ISI Web of Science bibliographic database, using the scientific name of the pest as search term. Papers relevant for the pest categorisation were reviewed, and further references and information were obtained from experts, as well as from citations within the references and grey literature.

2.1.3. Database search

Pest information, on host(s) and distribution, was retrieved from the European and Mediterranean Plant Protection Organization (EPPO) Global Database (EPPO, online), the CABI databases and scientific literature databases as referred above in Section 2.1.1.

Data about the import of commodity types that could potentially provide a pathway for the pest to enter the EU and about the area of hosts grown in the EU were obtained from EUROSTAT (Statistical Office of the European Communities).

The Europhyt and TRACES databases were consulted for pest‐specific notifications on interceptions and outbreaks. Europhyt is a web‐based network run by the Directorate General for Health and Food Safety (DG SANTÉ) of the European Commission as a subproject of PHYSAN (Phyto‐Sanitary Controls) specifically concerned with plant health information. TRACES is the European Commission's multilingual online platform for sanitary and phytosanitary certification required for the importation of animals, animal products, food and feed of non‐animal origin and plants into the European Union, and the intra‐EU trade and EU exports of animals and certain animal products. Up until May 2020, the Europhyt database managed notifications of interceptions of plants or plant products that do not comply with EU legislation, as well as notifications of plant pests detected in the territory of the Member States and the phytosanitary measures taken to eradicate or avoid their spread. The recording of interceptions switched from Europhyt to TRACES in May 2020.

GenBank was searched to determine whether it contained any nucleotide sequences for Ceroplastes rubens which could be used as reference material for molecular diagnosis. GenBank® (www.ncbi.nlm.nih.gov/genbank/) is a comprehensive publicly available database that as of August 2019 (release version 227) contained over 6.25 trillion base pairs from over 1.6 billion nucleotide sequences for 450,000 formally described species (Sayers et al., 2020).

2.2. Methodologies

The Panel performed the pest categorisation for C. rubens, following guiding principles and steps presented in the EFSA guidance on quantitative pest risk assessment (EFSA PLH Panel, 2018), the EFSA guidance on the use of the weight of evidence approach in scientific assessments (EFSA Scientific Committee, 2017) and the International Standards for Phytosanitary Measures No. 11 (FAO, 2013).

The criteria to be considered when categorising a pest as a potential Union quarantine pest (QP) is given in Regulation (EU) 2016/2031 Article 3 and Annex I, Section 1 of the Regulation. Table 1 presents the Regulation (EU) 2016/2031 pest categorisation criteria on which the Panel bases its conclusions. In judging whether a criterion is met the Panel uses its best professional judgement (EFSA Scientific Committee, 2017) by integrating a range of evidence from a variety of sources (as presented above in Section 2.1) to reach an informed conclusion as to whether or not a criterion is satisfied.

TABLE 1.

Pest categorisation criteria under evaluation, as derived from Regulation (EU) 2016/2031 on protective measures against pests of plants (the number of the relevant sections of the pest categorisation is shown in brackets in the first column).

Criterion of pest categorisation Criterion in regulation (EU) 2016/2031 regarding union quarantine pest (article 3)
Identity of the pest (Section 3.1 ) Is the identity of the pest clearly defined, or has it been shown to produce consistent symptoms and to be transmissible?
Absence/presence of the pest in the EU territory (Section 3.2 )

Is the pest present in the EU territory?

If present, is the pest in a limited part of the EU or is it scarce, irregular, isolated or present infrequently? If so, the pest is considered to be not widely distributed.

Pest potential for entry, establishment and spread in the EU territory (Section 3.4 ) Is the pest able to enter into, become established in, and spread within, the EU territory? If yes, briefly list the pathways for entry and spread
Potential for consequences in the EU territory (Section 3.5 ) Would the pests' introduction have an economic or environmental impact on the EU territory?
Available measures (Section 3.6 ) Are there measures available to prevent pest entry, establishment, spread or impacts?
Conclusion of pest categorisation (Section 4 ) A statement as to whether (1) all criteria assessed by EFSA above for consideration as a potential quarantine pest were met and (2) if not, which one(s) were not met

The Panel's conclusions are formulated respecting its remit and particularly with regard to the principle of separation between risk assessment and risk management (EFSA founding regulation (EU) No 178/2002); therefore, instead of determining whether the pest is likely to have an unacceptable impact, deemed to be a risk management decision, the Panel will present a summary of the observed impacts in the areas where the pest occurs, and make a judgement about potential likely impacts in the EU. While the Panel may quote impacts reported from areas where the pest occurs in monetary terms, the Panel will seek to express potential EU impacts in terms of yield and quality losses and not in monetary terms, in agreement with the EFSA guidance on quantitative pest risk assessment (EFSA PLH Panel, 2018). Article 3 (d) of Regulation (EU) 2016/2031 refers to unacceptable social impact as a criterion for quarantine pest status. Assessing social impact is outside the remit of the Panel.

3. PEST CATEGORISATION

3.1. Identity and biology of the pest

3.1.1. Identity and taxonomy

Is the identity of the pest clearly defined, or has it been shown to produce consistent symptoms and/or to be transmissible?

Yes, the identity of the species is established and Ceroplastes rubens Maskell is the accepted name.

Ceroplastes rubens Maskell (1893) is an insect within the order Hemiptera and family Coccidae, commonly known as the pink, red or ruby wax scale (EPPO, online; García Morales et al., 2016).

C. rubens was originally described by Maskell (1893), from material collected from Mangifera indica (mango) and Ficus sp. in Queensland, Australia (García Morales et al., 2016). Ceroplastes rubens minor Maskell (1897) is a synonym (García Morales et al., 2016).

The EPPO code 1 (EPPO, 2019; Griessinger & Roy, 2015) for this species is CERPRB (EPPO, online).

3.1.2. Biology of the pest

C. rubens completes its life cycle in three developmental stages (egg, nymph and adult). The female passes through four nymphal instars and the male through five (Malumphy, 2014). Adult females deposit their eggs in a mass beneath their concave ventral surface (Waterhouse & Sands, 2001). First‐instar nymphs, known as crawlers, usually settle at or near the leaf veins (Blumberg, 1935; Waterhouse & Sands, 2001), however, in a study of Citrus unshiu in Japan, crawlers showed a preference for settling on new season twigs (Itioka & Inoue, 1991). At the end of the first‐instar stage, a wax shell cover is formed on their body. This wax shell becomes larger and thicker with the subsequent growth of the nymph, protecting it against predators, parasitoids and desiccation (Itioka, 1993; Itioka & Inoue, 1991; Sands, 1984). C. rubens egests honeydew throughout its lifetime, attracting some ant species for foraging, and rarely wasps and flies (Malumphy, 2014). Honeydew droplets accumulate on leaves, twigs and on the scale colonies (Itioka & Inoue, 1996). This honeydew provides a medium for the growth of sooty mould fungus (Hodges et al., 2001).

Table 2 summarises key features of the biology of each life stage.

TABLE 2.

Important features of the life history strategy of Ceroplastes rubens.

Life stage Phenology and relation to host Other relevant information
Egg Fecundity ranged from 5 to 1178 eggs in Australia, and from 500 to 800 in China (Loch & Zalucki, 1997; Lu & Jiang, 2015). Hatching occurs after 2–3 days of oviposition (Itioka & Inoue, 1991)
Nymph Found on twigs, usually young twigs (0–1‐year‐old) and leaves (especially the upper surface across or on the leaf veins) (Waterhouse & Sands, 2001). In southern New South Wales of Australia and China, first emergence of crawlers occurs during late spring, in Japan in early summer and in South Africa and northern New South Wales and Queensland of Australia early spring (Bi et al., 2022; Itioka & Inoue, 1996; Prinsloo & Uys, 2015; Waterhouse & Sands, 2001). In Japan, second‐ and third‐instar nymphs emerge in mid‐summer and late summer, respectively (Itioka & Inoue, 1996) The crawlers have well‐developed legs and are mobile. After hatching the crawlers settle to feed within 6 h. After settling, they do not move further than this point and tend to form aggregations around the adult female (Waterhouse & Sands, 2001)
Adult Adults are found on leaves, branches and stems of host plants (Malumphy, 2014). Hill (2008) reported that C. rubens may cover shoots, fruit stalks and parts of the fruits. In Japan, adult females overwinter and begin to oviposit from early to mid‐July for a 20 day‐period (Itioka & Inoue, 1996). Reproduction is mainly parthenogenic (Waterhouse & Sands, 2001). However, in Shanghai where males are more common, it is reported that the pest reproduces sexually and overwinter as fertilised females (Lu & Jiang, 2015; Xia et al., 2005) Males were rarely identified in Japan and never in Australia (Hamon & Williams, 1984; Itioka & Inoue, 1996; Qin & Gullan, 1994)

The pest is either univoltine (e.g. in China, Japan and southern New South Wales of Australia) or bivoltine (e.g. in South Africa, northern New South Wales and Queensland of Australia) (Berry, 2014; Itioka & Inoue, 1996; Malumphy et al., 2018; Smith, 1976). The duration of the life cycle varies based on the season. In Australia, summer generation can last from 4 to 6 months, while in winter from 6 to 8 months (Blumberg, 1935). According to Blumberg (1935), newly hatched nymphs do not survive after 4 or 5 days without food, while adults can produce eggs after 40–46 days of starvation.

3.1.3. Host range/species affected

C. rubens is a highly polyphagous pest, feeding on plants in more than 193 genera in 84 plant families (García Morales et al., 2016). It attacks primarily tropical and subtropical plants but additionally Malus sylvestris, Prunus spp., Pyrus spp. and ornamentals (Malumphy, 2010). The insect has also been reported as a pest of Pinus spp., specifically found on seedlings in nurseries (Waterhouse & Sands, 2001) and in seed orchards (Merrifield & Howcroft, 1975). According to Summerville (1935), C. rubens is an important pest of Citrus spp., mainly mandarin (Citrus reticulata) and Washington navel orange (Citrus × aurantium var. sinensis, CRC 1241A). It is occasionally found on other Citrus species, while rarely on grapefruit (Citrus × aurantium var. paradisi) and lemon (Citrus × limon). The full host list is presented in Appendix A.

3.1.4. Intraspecific diversity

No intraspecific diversity is reported for this species.

3.1.5. Detection and identification of the pest

Are detection and identification methods available for the pest?

Yes, there are methods available for detection and morphological identification of C. rubens.

Symptoms and Detection

Symptoms of infestation include deposition of sugary honeydew, which fouls plant surfaces (usually leaves and fruits). This honeydew provides a medium for the growth of sooty mould fungus on leaves, reducing the active photosynthetic area (Hodges et al., 2001). Heavy infestations of wax scales can cause leaf discoloration and premature drop, branch dieback and even plant death. Therefore, they cause loss of production and reduce the aesthetic value of the crop or the produce (Malumphy, 2014; Vithana et al., 2019). Symptoms on Pinus spp. are more distinctive, C. rubens affects mainly the upper crown needles leading to sparse and dark foliage covered by sooty‐mould and reduced height (Merrifield & Howcroft, 1975). Scales can be detected by visual inspection on leaves by their thick wax layer forming a pentagonal or amorphous shape (CABI, online). Usually, they settle on the upper side along the leaf‐veins and stems (Malumphy, 2014).

Identification

The identification of C. rubens requires microscopic examination and verification of the presence of key morphological characteristics. Detailed morphological descriptions, illustrations and keys to adult and nymphal instars of C. rubens can be found in Borchsenius (1957), Gimpel et al. (1974), Hodgson (1994), Qin and Gullan (1994), Tang (1991) and Ben‐Dov et al. (2000).

Molecular diagnostic protocols for C. rubens identification such as sequences from the DNA barcode region of the mitochondrial COI gene have been suggested by Deng et al. (2012), Wang et al. (2015) and Lu et al. (2023).

When Genbank was searched on 22 March 2024, there were 126 gene nucleotide sequences of C. rubens (https://www.ncbi.nlm.nih.gov/datasets/taxonomy/536005/).

Description
Eggs

Eggs are pink, usually found in masses in a cavity under the female body, protected by the waxy test (Vithana et al., 2019; Waterhouse & Sands, 2001).

Nymphs

First‐instar nymphs are mobile and pink, with three pairs of legs, eyespots and antennae (Prinsloo & Uys, 2015; Vithana et al., 2019). Within 24 h after settling, two pairs of white marginal points of wax appear. Within a week, a thick wax layer covers the general body surface and turns purple. After 15 days from settling, the dorsum appears purple producing small amounts of powdery white wax (Blumberg, 1935). Secretion of clumps of wax also occurs on the second‐ and third‐instar nymphs which appear star‐shaped (Vithana et al., 2019). The fourth‐instar nymphs usually do not migrate further (Waterhouse & Sands, 2001). A detailed morphological description and illustration of all four instars is provided by Blumberg (1935).

Adults

Adult females are covered in a dense layer of watery wax which varies in colour from white, cream, pink (Figure 1A), reddish or even brownish. It is strongly convex, longer than wide, pentagonal in dorsal view, and with two conspicuous pairs of white bands that extend dorsally from the anterior margin and halfway along the body; female wax cover length 3.5–4.5 mm. Adult C. rubens can usually be recognised in life by the presence of these white bands, particularly by the anterior bands which often almost touch each other. Immature males form a whitish translucent, elongate, oval scale (Malumphy & Eyre, 2011; Figure 1B).

FIGURE 1.

FIGURE 1

Ceroplastes rubens (A) Adult female (©Kondo, 2008) and (B) Male cover on Aglaonema from Sri Lanka (©Fera).

3.2. Pest distribution

3.2.1. Pest distribution outside the EU

C. rubens is of African origin (Waterhouse & Sands, 2001). It is widely distributed in south Asia, Australia (except Tasmania), India, South Pacific, East Africa and the Carribean (Figure 2). It has also been reported from the USA, from Florida and Hawaii. Usually when found in temperate climates, it is present in protected environment, e.g. greenhouses or tropical gardens (Hodgson, 1994). The list of countries where the presence of C. rubens is reported is shown in detail in Appendix B.

FIGURE 2.

FIGURE 2

Global distribution of Ceroplastes rubens (Source: EPPO Global Database (EPPO, online), CABI CPC (CABI, online) and García Morales et al. (2016) accessed on 3 January 2024 and literature; for details, see Appendix B. In EU (Germany) one location point appears in the map, as C. rubens was found in a tropical indoor garden and has not been established further.

3.2.2. Pest distribution in the EU

Is the pest present in the EU territory?

Yes, C. rubens is present at one location in Germany.

If present, is the pest in a limited part of the EU or is it scarce, irregular, isolated or present infrequently? If so, the pest is considered to be not widely distributed.

C. rubens has restricted distribution in the EU; It has only been reported in a tropical greenhouse in Germany (Brandenburg) in 2010 and is still considered to be present but has not established further.

In Germany, C. rubens was collected from a tropical greenhouse in Brandenburg from Aglaonema sp. plants in 2010 (Schönfeld, 2015). According to the official reply by the German NPPO ‘The finding of Ceroplastes rubens on Aglaonema sp. in a Tropical Hall in the federal state of Brandenburg in 2010 has remained unique for Germany and no official measures against this pest have been considered.’ The pest status in Germany has been declared as ‘Present, at one location’.

In Hungary, C. rubens was collected from Schefflera sp. in a botanical garden in Budapest, in 2012 (Fetyko & Kozar, 2012). The Hungarian NPPO has declared its status as: ‘Absent, confirmed by survey’.

3.3. Regulatory status

3.3.1. Commission Implementing Regulation 2019/2072

C. rubens is not listed in Annex II of Commission Implementing Regulation (EU) 2019/2072, an implementing act of Regulation (EU) 2016/2031. It is not known to be in any emergency EU plant health legislation either.

3.3.2. Hosts or species affected that are prohibited from entering the union from third countries

A number of C. rubens hosts are prohibited from entering the EU (Table 3).

TABLE 3.

List of plants, plant products and other objects that are Ceroplastes rubens hosts whose introduction into the Union from certain third countries is prohibited (Source: Commission Implementing Regulation (EU) 2019/2072, Annex VI).

List of plants, plant products and other objects whose introduction into the union from certain third countries is prohibited
Description CN code Third country, group of third countries or specific area of third country
1. Plants of […]., Cedrus Trew, […] Pinus L., […] other than fruit and seeds

ex 0602 20 20

ex 0602 20 80

ex 0602 90 41

ex 0602 90 45

ex 0602 90 46

ex 0602 90 47

ex 0602 90 50

ex 0602 90 70

ex 0602 90 99

ex 0604 20 20

ex 0604 20 40

Third countries other than Albania, Andorra, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Canary Islands, Faeroe Islands, Georgia, Iceland, Liechtenstein, Moldova, Monaco, Montenegro, North Macedonia, Norway, Russia (only the following parts: Central Federal District (Tsentralny federalny okrug), Northwestern Federal District (Severo‐ Zapadny federalny okrug), Southern Federal District (Yuzhny federalny okrug), North Caucasian Federal District (Severo‐Kavkazsky federalny okrug) and Volga Federal District (Privolzhsky federalny okrug)), San Marino, Serbia, Switzerland, Türkiye, Ukraine and the United Kingdom
2. Plants of […] Quercus L., with leaves, other than fruit and seeds

ex 0602 10 90

ex 0602 20 20

ex 0602 20 80

ex 0602 90 41

ex 0602 90 45

ex 0602 90 46

ex 0602 90 48

ex 0602 90 50

ex 0602 90 70

ex 0602 90 99

ex 0604 20 90

ex 1404 90 00

Third countries other than Albania, Andorra, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Canary Islands, Faeroe Islands, Georgia, Iceland, Liechtenstein, Moldova, Monaco, Montenegro, North Macedonia, Norway, Russia (only the following parts: Central Federal District (Tsentralny federalny okrug), Northwestern Federal District (Severo‐ Zapadny federalny okrug), Southern Federal District (Yuzhny federalny okrug), North Caucasian Federal District (Severo‐Kavkazsky federalny okrug) and Volga Federal District (Privolzhsky federalny okrug)), San Marino, Serbia, Switzerland, Türkiye, Ukraine and the United Kingdom
8. Plants for planting of Chaenomeles Ldl., […] Malus Mill., Prunus L., Pyrus L. […] other than dormant plants free from leaves, flowers and fruits

ex 0602 10 90

ex 0602 20 20

ex 0602 20 80

ex 0602 40 00

ex 0602 90 41

ex 0602 90 45

ex 0602 90 46

ex 0602 90 47

ex 0602 90 48

ex 0602 90 50

ex 0602 90 70

ex 0602 90 91

ex 0602 90 99

Third countries other than Albania, Andorra, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Canary Islands, Faeroe Islands, Georgia, Iceland, Liechtenstein, Moldova, Monaco, Montenegro, North Macedonia, Norway, Russia (only the following parts: Central Federal District (Tsentralny federalny okrug), Northwestern Federal District (Severo‐ Zapadny federalny okrug), Southern Federal District (Yuzhny federalny okrug), North Caucasian Federal District (Severo‐Kavkazsky federalny okrug) and Volga Federal District (Privolzhsky federalny okrug)), San Marino, Serbia, Switzerland, Türkiye, Ukraine and the United Kingdom
9. Plants for planting of […] Malus Mill., Prunus L. and Pyrus L. and their hybrids, and […] other than seeds

ex 0602 10 90

ex 0602 20 20

ex 0602 90 30

ex 0602 90 41

ex 0602 90 45

ex 0602 90 46

ex 0602 90 48

ex 0602 90 50

ex 0602 90 70

ex 0602 90 91

ex 0602 90 99

Third countries other than Albania, Algeria, Andorra, Armenia, Australia, Azerbaijan, Belarus, Bosnia and Herzegovina, Canada, Canary Islands, Egypt, Faeroe Islands, Georgia, Iceland, Israel, Jordan, Lebanon, Libya, Liechtenstein, Moldova, Monaco, Montenegro, Morocco, New Zealand, North Macedonia, Norway, Russia (only the following parts: Central Federal District (Tsentralny federalny okrug), Northwestern Federal District (Severo‐Zapadny federalny okrug), Southern Federal District (Yuzhny federalny okrug), North Caucasian Federal District (Severo‐ Kavkazsky federalny okrug) and Volga Federal District (Privolzhsky federalny okrug)), San Marino, Serbia, Switzerland, Syria, Tunisia, Türkiye, Ukraine, the United Kingdom (1) and United States other than Hawaii
11. Plants of Citrus L., […] Poncirus Raf., and their hybrids, other than fruits and seeds

ex 0602 10 90

ex 0602 20

200,602 20 30

ex 0602 20 80

ex 0602 90 45

ex 0602 90 46

ex 0602 90 47

ex 0602 90 50

ex 0602 90 70

ex 0602 90 91

ex 0602 90 99

ex 0604 20 90

ex 1404 90 00

All third countries
12. Plants for planting of Photinia Ldl., other than dormant plants free from leaves, flowers and fruits

ex 0602 10 90

ex 0602 90 41

ex 0602 90 45

ex 0602 90 46

ex 0602 90 47

ex 0602 90 48

ex 0602 90 50

ex 0602 90 70

ex 0602 90 91

ex 0602 90 99

China, Democratic People's Republic of Korea, Japan, Republic of Korea and United States
18. Plants for planting of Solanaceae other than seeds and the plants covered by entries 15, 16 or 17

ex 0602 10 90

ex 0602 90 30

ex 0602 90 45

ex 0602 90 46

ex 0602 90 48

ex 0602 90 50

ex 0602 90 70

ex 0602 90 91

ex 0602 90 99

Third countries other than: Albania, Algeria, Andorra, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Canary Islands, Egypt, Faeroe Islands, Georgia, Iceland, Israel, Jordan, Lebanon, Libya, Liechtenstein, Moldova, Monaco, Montenegro, Morocco, North Macedonia, Norway, Russia (only the following parts: Central Federal District (Tsentralny federalny okrug), Northwestern Federal District (Severo‐Zapadny federalny okrug), Southern Federal District (Yuzhny federalny okrug), North Caucasian Federal District (Severo‐Kavkazsky federalny okrug) and Volga Federal District (Privolzhsky federalny okrug)), San Marino, Serbia, Switzerland, Syria, Tunisia, Türkiye, Ukraine and the United Kingdom

Points to note from Table 3: Although a number of host genera are prohibited from entering into the EU, some are permitted from the United States and Egypt (i.e. item 9, Plants for planting of Malus Mill., Prunus L. and Pyrus L.) where C. rubens occurs. However, Malus Mill. and Prunus L. fall under the high risk plant legislation (Regulation (EU) 2018/2019; see below), excluding Pyrus L. Also, Photinia spp. (i.e. item 12) and Solanaceae (i.e. item 18) are permitted from several countries where C. rubens is present.

The following C. rubens host genera are listed in Commission Implementing Regulation (EU) 2018/2019 as high‐risk plants for planting, whose introduction into the Union is prohibited pending risk assessment other than as seeds, in vitro material or naturally or artificially dwarfed woody plants: Acacia Mill., Acer L., Annona L., Bauhinia L., Diospyros L., Ficus carica L., Ligustrum L., Malus Mill., Persea Mill., Prunus L., Quercus L.

3.4. Entry, establishment and spread in the EU

3.4.1. Entry

Is the pest able to enter into the EU territory? If yes, identify and list the pathways.

Yes, C. rubens could re‐enter the EU via the import of host plants for planting (excluding seed and pollen) or on cut branches and occasionally on fruits.

Comment on plants for planting as a pathway.

Plants for planting provide the most likely pathway for entry into, and spread within, the EU.

Table 4 provides broad descriptions of potential pathways for the entry of C. rubens into the EU.

TABLE 4.

Potential pathways for Ceroplastes rubens into the EU.

Pathways Description (e.g. host/intended use/source) Life stage Relevant mitigations [e.g. prohibitions (Annex VI), special requirements (Annex VII) or phytosanitary certificates (Annex XI) within Implementing Regulation 2019/2072]
Plants for planting (dormant/without leaves) (excluding seed) All life stages

Plants for planting that are hosts of C. rubens and are prohibited from third countries (Regulation 2019/2072, Annex VI) are listed in Table 3

Some hosts are considered high‐risk plants (Regulation EU 2018/2019) for the EU and their import is prohibited subject to risk assessment

Plants for planting (with buds or leaves; excluding seed) All life stages

Plants for planting that are hosts of C. rubens and are prohibited from third countries (Regulation 2019/2072, Annex VI) are listed in Table 3

Some hosts are considered high‐risk plants (Regulation EU 2018/2019) for the EU and their import is prohibited subject to risk assessment

Cut branches All life stages

Annex XI (Part A) prohibitions apply for several host plants on foliage, branches and other parts of plants without flowers or flower buds, being goods of a kind suitable for bouquets or for ornamental purposes, fresh

Fruits All life stages Fruits from third countries require a phytosanitary certificate to be imported into the EU (2019/2072, Annex XI, Part A)

When host plants are heavily infested, fruits can also be affected but considered as a rare pathway. At this level of infestation, the fruit would be highly deteriorated due to sooty mould formation and would be rejected. The most likely pathway for the scale is plants for planting as first instars are found on leaves, buds or twigs, feeding on the phloem. The detection is difficult at this stage, especially when the insect density is low (Malumphy, 2011). Appendix A lists the hosts of C. rubens. Some hosts are prohibited from entering the EU (see Section 3.3.2).

Annual imports of C. rubens hosts from countries where the pest is known to occur are provided in Table 5 and in details in Appendix C.

TABLE 5.

EU annual imports of some Ceroplastes rubens host plants from countries where C. rubens is present, 2018–2022 (tonnes) Source: Eurostat accessed on 3 April 2024

Commodity HS code 2018 2019 2020 2021 2022
Citrus fruit, fresh or dried 0805 10,253,519.58 9,715,660.50 11,947,564.03 12,146,801.25 11,022,256.45
Dates, figs, pineapples, avocados, guavas, mangoes and mangosteens, fresh or dried 0804 1,908,286.43 1,770,016.69 2,150,888.07 2,457,622.93 2,275,588.71
Indoor rooted cuttings and young plants (excl. cacti) 06029070 73,129.84 99,021.59 73249.58 85,712.39 41,868.17
Fresh persimmons 081070 212.05 7858.49 4991.91 5596.43 11,192.33

Notifications of interceptions of harmful organisms began to be compiled in Europhyt in May 1994 and in TRACES in May 2020. As of 05 January 2024, there were two interceptions of Ceroplastes sp., in 2012 and 2014, on Ficus macrocarpa (bonsai plants for planting or already planted) originating from China. In 2018, one interception of C. rubens was recorded on bonsai Ilex sp. plants for planting also from China. According to Jansen (1995), C. rubens was intercepted in the Netherlands in 1978 on Aglaonema plants imported from Sri Lanka, and on Podocarpus plants from Taiwan.

In the UK, C. rubens has been intercepted several times throughout the years, from 1984 until 2007 on various host plants, mainly ornamentals, from Thailand and the USA (Malumphy, 2011). Between 1995 and 2012, C. rubens was intercepted 2321 times in the USA (Miller et al., 2014). A summary of the different interceptions recorded in the EU and UK is presented in Table 6.

TABLE 6.

Summary of interceptions of Ceroplastes rubens and Ceroplastes sp. in the EU and the UK in 1978–2018.*

Year Host plant Country of entry Country of origin Reference
1978 Aglaonema sp. Netherlands Sri Lanka Jansen (1995)
1978 Podocarpus sp. Netherlands Taiwan Jansen (1995)
1984 1 Cycas sp. United Kingdom Thailand Malumphy (2011)
1999 Dimocarpus longan 2 United Kingdom Thailand Malumphy (2010)
2002 Rhaphidophora sp. United Kingdom USA Malumphy (2011)
2005 Citrus hystrix 2 United Kingdom Thailand Malumphy (2011)
2005 Aglaonema sp. United Kingdom USA Malumphy (2011)
2006 Various objects 3 United Kingdom New Zealand Europhyt (online); TRACES (online)
2007 Unspecified aquatic plant United Kingdom Thailand Malumphy (2010)
2012 Ficus macrocarpa 3 Italy China Europhyt (online); TRACES (online)
2014 Ficus macrocarpa 3 Spain China Europhyt (online); TRACES (online)
2018 Ilex sp. Spain China Europhyt (online); TRACES (online)
*

No interceptions were reported after this year.

1

Intercepted eight times that year.

2

Found on foliage.

3

Ceroplastes sp.

3.4.2. Establishment

Is the pest able to become established in the EU territory?

Yes, biotic factors (host availability) and abiotic factors (climate suitability) suggest that parts of the EU would be suitable for establishment. Climate types found in countries where C. rubens occurs are also found in the EU.

Based on climate matching and host availability, large parts of the EU correspond to climate types that occur in countries where C. rubens occurs.

Climatic mapping is the principal method for identifying areas that could provide suitable conditions for the establishment of a pest taking key abiotic factors into account (Baker, 2002; Baker et al., 2000). Availability of hosts is considered in Section 3.4.2.1. Climatic factors are considered in Section 3.4.2.2.

3.4.2.1. EU distribution of main host plants

Many genera and species of C. rubens host plants are present or widely grown across the EU (e.g. Citrus spp., Ficus spp., Olea sp., Pinus spp. and Prunus sp.; Table 7, Figure 3). Its polyphagous nature (Appendix A) and wide host availability in the EU would support establishment in the EU.

TABLE 7.

Harvested area (1000 ha) of main host plants of Ceroplastes rubens in the EU. Source Eurostat (accessed on 4 January 2024).

Crops Code 2018 2019 2020 2021 2022
Olives O1000 5098.62 5071.59 5104 5008 4987
Oranges T1000 273.64 271.97 275.27 274.88 277
Yellow lemons T3100 78.06 76.37 80.76 82.17 84.21
Figs F2100 24.99 25.59 27.64 25.81 26.28
Avocados F2300 13.22 17.50 19.58 22.86 25.05
Bananas F2400 17.94 18.27 22.12 22.01 21.26
Satsumas T2100 8.45 7.69 7.10 7.04 6.30
Pomelos and grapefruit T4000 3.49 3.68 3.87 4.06 4.49
FIGURE 3.

FIGURE 3

European citrus‐growing areas based on data of crop area at NUTS 2 level (from EFSA PLH Panel, 2019). Areas with lines indicate regions with no data. Areas in light grey are neighbouring countries not included in the analysis.

3.4.2.2. Climatic conditions affecting establishment

C. rubens is most frequently reported from tropical and subtropical areas of Asia, the Caribbean, Africa and Oceania. Figure 4 shows the world distribution of seven Köppen–Geiger climate types (Kottek et al., 2006) that occur in the EU and in countries where C. rubens has been reported. In northern EU, establishment may be possible in greenhouses, especially where heated.

FIGURE 4.

FIGURE 4

World distribution of the seven Köppen–Geiger climate types that occur in the EU and in countries where Ceroplastes rubens occurs (Red dots represent specific coordinate locations where C. rubens was reported).

3.4.3. Spread

Describe how the pest would be able to spread within the EU territory following establishment?

Natural spread by first instar nymphs crawling or being carried by wind, or by hitchhiking on other animals, humans or machinery, will occur locally. All stages may be moved over long distances in trade of infested plant material specifically plants for planting, cut branches and fruits.

Comment on plants for planting as a mechanism of spread.

C. rubens could be dispersed more rapidly and over long‐distances via infested plants for planting for trade.

In Japan, adult females usually overwinter in the lower parts of twigs and branches and can spread over long distances via infested plants for trade. Newly hatched nymphs usually settle on green parts of the tree and few of them disperse through the wind (Noda et al., 1982). C. rubens crawlers can spread in shorter distances through human movements, ants and animals. As they barely move naturally, they have limited dispersal activity (Malumphy, 2014). All stages are likely to disperse more rapidly and over longer distances with the movement of infested plants via trade (Malumphy et al., 2018). Dispersal can be increased by waste material, e.g. discarding whole rotten fruits via household compost (MAF Biosecurity NZ, 2007).

3.5. Impacts

Would the pests' introduction have an economic or environmental impact on the EU territory?

Yes, the introduction of C. rubens into the EU could most probably have an economic impact on orchards, amenity ornamental trees and shrubs.

C. rubens is regarded as one of the major coccid pests in tropical and subtropical areas of the world (Gill & Kosztarab, 1997). It attacks many plant species, but it is a particularly damaging pest of Citrus spp. in Australia, Hawaii, Korea, China and Japan (Malumphy, 2014). In Japan, C. rubens became a serious pest of citrus and persimmons (Diospyros kaki) following its introduction in about 1897; however, it was controlled effectively after the release of the parasitoid Anicetus beneficus Ishii & Yamumatsu (Hymenopetra: Encyrtidae) in 1948–1952 (Swirski et al., 1997). Nowadays, C. rubens may be found on citrus trees along roads which are covered with dust that protects it from parasitoid attacks (Swirski et al., 1997). Recently, C. rubens is reported as a major pest of tea plantations in northeast India, West Bengal and Sri Lanka (Kakoti et al., 2023; Sammani et al., 2023). In a recent outbreak of the pest in Sri Lanka, it was recorded infesting plant species belonging to 28 families with higher infestation densities recorded for plant species in the families Araceae (mean infestation level 9.74 ± 2.6 insects/10 cm2) and Myrtaceae (mean infestation level 9.29 ± 1.5 insects/10 cm2) (Vithana et al., 2019). It has also been reported as a pest on Pinus caribaea and P. taeda in Australia and Papua New Guinea (Merrifield & Howcroft, 1975). Adult females and nymphs feed on phloem sap causing direct damage. The production of sugary honeydew causes indirect damage on leaves and twigs, developing a layer of sooty mould fungus (Capnophaeum fuliginoides in Japan; Itioka & Inoue, 1991). This leads to low photosynthetic ability and diminished growth. Heavy infestations can result to leaf loss, necrosis of foliage, leaf discoloration, dieback and even death of susceptible host plants (Malumphy et al., 2018; Vithana et al., 2019). Fruits are also affected leading to reduced marketing value (Malumphy, 2014).

C. rubens has been recorded in the EU, in Germany (2010) in a tropical greenhouse on Aglaonema sp. (Kozár et al., 2013; Schönfeld, 2015). No impact has been officially reported after this record.

3.6. Available measures and their limitations

Are there measures available to prevent pest entry, establishment, spread or impacts such that the risk becomes mitigated?

Yes, some hosts are already prohibited from entering the EU (see Section 3.3.2). Hosts that are permitted entry require a phytosanitary certificate and a proportion of consignments is inspected. Additional options are available to reduce the likelihood of pest entry, establishment and spread into the EU (Section 3.6.1).

3.6.1. Identification of potential additional measures

Phytosanitary measures are currently applied to several host genera (e.g. prohibitions – see Section 3.3.2).

Additional potential risk reduction options and supporting measures are shown in Sections 3.6.1.1 and 3.6.1.2.

3.6.1.1. Additional potential risk reduction options

Potential additional risk reduction and control measures are listed in Table 8.

TABLE 8.

Selected control measures (a full list is available in EFSA PLH Panel, 2018) for pest entry/establishment/spread/impact in relation to currently unregulated hosts and pathways. Control measures are measures that have a direct effect on pest abundance.

Control measure/risk reduction option (blue underline = Zenodo doc, Blue = WIP) RRO summary Risk element targeted (entry/establishment/spread/impact)
Require pest freedom Pest‐free place of production (e.g. place of production and its immediate vicinity is free from pest over an appropriate time period, e.g. since the beginning of the last complete cycle of vegetation, or past two or three cycles) Entry/Spread
Growing plants in isolation Place of production is insect proof originate in a place of production with complete physical isolation Entry/Spread
Managed growing conditions Plants should be grown in officially registered nurseries, which are subject to an officially supervised control regime Entry/Spread
Crop rotation, associations and density, weed/volunteer control Removal of weeds around host plants is a great cultural control, as weeds are usually colonised by ants, which disturb parasitoid populations (Kabashima & Drelstadt, 2014). Crop rotation is not applicable to C. rubens host plants Establishment/Impact
Use of resistant and tolerant plant species/varieties A study by Hodges et al. (2001) showed that certain species of hollies (Illex spp.) have demonstrated a degree of resistance to Florida wax scales (C. floridensis). No studies are available targeting specifically C. rubens Establishment/Impact
Roguing and pruning Roguing (removal of infested plants) and pruning (removal of infested plant parts only without affecting the viability of the plant) can reduce the population density of the pest. During nursery inspections, any symptoms on twigs or branches of plants detected could be pruned, when feasible Entry/Establishment/Spread/Impact
Biological control and behavioural manipulation

The encyrtid parasitoid, Anicetus beneficus, a parasitoid of C. rubens with high host specificity, was released in Japan in 1948 (Yasumatsu, 1951)

Successful control of C. rubens was achieved ~ 2.5 years after release of A. beneficus, reaching 60%–80% parasitism in Queensland (Smith, 1986).

Noda et al. (1982) give a detailed description on the parasitisation of A. beneficus on C. rubens

Apart from A. beneficus, several parasitoids have been reported

In Japan, C. rubens was found on Citrus to be parasitised by Microterys speciosus, Ishii, and Coccophagus japonicus, Comp. (Smith, 1986)

According to Prinsloo and Uys (2015), in South Africa, six parasitic wasps have been recorded from C. rubens on mango trees: Aprostocetus sp. prob. ceroplastae (Girault) (Eulophidae), Cheiloneurus sp. prob. cyanonotus Waterston, Metaphycus sp., Metaphycus sp. near capensis Annecke & Mynhard (all Encyrtidae), Coccophagus flaviceps Compere (Aphelinidae), Scutellista sp. (Pteromalidae) and a predatory thrip; Aleurodothrips fasciapennis (Franklin) (Daneel et al., 1994)

In Florida, Scutellista cyanea is recorded as a parasite of C. rubens while in Bermuda, Microterys kotinskyi (Hamon & Williams, 1984). While using parasitoids, the control of ants is crucial, as ants are attracted by honeydew, and might suppress the number of parasitoids. Lasuis niger (common black ant) is known to attack A. beneficus in Japan (Encyrtidae, Hymenoptera) (Itioka & Inoue, 1996)

Establishment/Spread/Impact
Chemical treatments on crops including reproductive material The effectiveness of contact insecticide applications against C. rubens may be reduced by the protective wax cover over the scale. Most vulnerable is the crawler‐stage. Systemic pesticides could be effective, while contact wide range pesticides might disrupt natural enemies (Talhouk, 1978). Lu and Jiang (2015) have tested spraying with various active substances against larvae at the initial nymph stage resulting to more than 80% control (Kabashima & Drelstadt, 2014) Entry/Establishment/Spread/Impact
Physical treatments on consignments or during processing

This control measure deals with the following categories of physical treatments: irradiation/ionisation; mechanical cleaning (brushing, washing); sorting and grading, and removal of plant parts

Irradiation against C. rubens is reported as postharvest control on fruits by Follett et al. (2007)

Entry/Spread
Cleaning and disinfection of facilities, tools and machinery The physical and chemical cleaning and disinfection of facilities, tools, machinery, transport means, facilities and other accessories (e.g. boxes, pots, hand tools) Entry/Spread
Waste management Treatment of the waste (deep burial, composting, incineration, chipping, production of bio‐energy…) in authorised facilities and official restriction on the movement of waste Establishment/Spread
Heat and cold treatments Controlled temperature treatments aimed to kill or inactivate pests without causing any unacceptable prejudice to the treated material itself. Vapour heat treatment, specifically, 45.2°C for 2 h is proposed by MAF Biosecurity New Zealand (2017) on imported Litchi chinensis (Litchi) fresh fruits Entry/Spread
Post‐entry quarantine and other restrictions of movement in the importing country Plants in PEQ are held in conditions that prevent the escape of pests; they can be carefully inspected and tested to verify they are of sufficient plant health status to be released, or may be treated, re‐exported or destroyed. Tests on plants are likely to include laboratory diagnostic assays and bioassays on indicator hosts to check whether the plant material is infected with pests Entry/Spread
3.6.1.2. Additional supporting measures

Potential additional supporting measures are listed in Table 9.

TABLE 9.

Selected supporting measures (a full list is available in EFSA PLH Panel, 2018) in relation to currently unregulated hosts and pathways. Supporting measures are organisational measures or procedures supporting the choice of appropriate risk reduction options that do not directly affect pest abundance.

Supporting measure Summary Risk element targeted (entry/establishment/spread/impact)
Inspection and trapping

Inspection is defined as the official visual examination of plants, plant products or other regulated articles to determine if pests are present or to determine compliance with phytosanitary regulations (ISPM 5; FAO, 2023)

For Ceroplastes spp., female scales, nymphs, honeydew, sooty mould and ants can be detected during visual inspections

Honeydew drippings from plants can be efficiently monitored using water‐sensitive paper, which is commonly used for monitoring insecticide droplets and calibrating (Kabashima & Drelstadt, 2014)

Entry/Spread/Establishment
Laboratory testing

Required to confirm diagnosis and identification of the pest

Examination, other than visual, to determine if pests are present using official diagnostic protocols. Diagnostic protocols describe the minimum requirements for reliable diagnosis of regulated pests

Entry/Spread
Sampling

According to ISPM 31, it is usually not feasible to inspect entire consignments, so phytosanitary inspection is performed mainly on samples obtained from a consignment. It is noted that the sampling concepts presented in this standard may also apply to other phytosanitary procedures, notably selection of units for testing

For inspection, testing and/or surveillance purposes the sample may be taken according to a statistically based or a non‐statistical based sampling methodology

Entry/Spread
Phytosanitary certificate and plant passport

Required to attest that a consignment meets phytosanitary import requirements

a) phytosanitary certificate (imports)

b) plant passport (EU internal trade)

Entry/Spread
Certified and approved premises Certification of premises to ensure the phytosanitary compliance of consignments; for example, to enable traceability and provide access to information that can help prove the compliance of consignments with phytosanitary requirements of importing countries Entry/Spread
Delimitation of Buffer zones ISPM 5 defines a buffer zone as ‘an area surrounding or adjacent to an area officially delimited for phytosanitary purposes in order to minimise the probability of spread of the target pest into or out of the delimited area, and subject to phytosanitary or other control measures, if appropriate’ (ISPM 5). The objectives for delimiting a buffer zone can be to prevent spread from the outbreak area and to maintain a pest‐free production place (PFPP), site (PFPS) or area (PFA) Spread
Surveillance Surveillance for early detection of outbreaks Entry/Establishment/Spread
3.6.1.3. Biological or technical factors limiting the effectiveness of measures
  • Wide range of host plants (e.g. making inspection of buffer zones very difficult).

  • Limited effectiveness of contact insecticides due to the presence of protective wax cover.

  • C. rubens may not be easily detected at low densities.

3.7. Uncertainty

No key uncertainties have been identified in the assessment.

4. CONCLUSIONS

Ceroplastes rubens satisfies all the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest (Table 10).

TABLE 10.

The Panel's conclusions on the pest categorisation criteria defined in Regulation (EU) 2016/2031 on protective measures against pests of plants (the number of the relevant sections of the pest categorisation is shown in brackets in the first column).

Criterion of pest categorisation Panel's conclusions against criterion in regulation (EU) 2016/2031 regarding union quarantine pest Key uncertainties (casting doubt on the conclusion)
Identity of the pest (Section 3.1 ) The identity of the species is established and Ceroplastes rubens Maskell is the accepted name None
Absence/presence of the pest in the EU (Section 3.2 ) C. rubens has been recorded in Germany, but only in a protected indoor environment (tropical greenhouse) None
Pest potential for entry, establishment and spread in the EU (Section 3.4 ) C. rubens could further enter the EU mainly via the import of host plants for planting (excluding seed) or on cut branches. Biotic factors (host availability) and abiotic factors (climate suitability) suggest that large parts of the EU would be suitable for establishment. Natural spread by first instar nymphs crawling or being carried by wind, or by hitchhiking on other animals, humans or machinery, will occur locally. C. rubens could be dispersed more rapidly and over long‐distances via infested plants for planting for trade None
Potential for consequences in the EU (Section 3.5 ) Further introduction of C. rubens into the EU could lead to outbreaks causing damage to orchard, forest, amenity ornamental trees and shrubs None
Available measures (Section 3.6 ) Some hosts are already prohibited from entering the EU. There are measures available to prevent entry, establishment and spread of C. rubens in the EU None
Conclusion (Section 4 ) C. rubens satisfies all the criteria assessed by EFSA for consideration as a potential Union quarantine pest None
Aspects of assessment to focus on/scenarios to address in future if appropriate:

GLOSSARY

Containment (of a pest)

Application of phytosanitary measures in and around an infested area to prevent spread of a pest (FAO, 2023).

Control (of a pest)

Suppression, containment or eradication of a pest population (FAO, 2023).

Entry (of a pest)

Movement of a pest into an area where it is not yet present, or present but not widely distributed and being officially controlled (FAO, 2023).

Eradication (of a pest)

Application of phytosanitary measures to eliminate a pest from an area (FAO, 2023).

Establishment (of a pest)

Perpetuation, for the foreseeable future, of a pest within an area after entry (FAO, 2023).

Greenhouse

A walk‐in, static, closed place of crop production with a usually translucent outer shell, which allows controlled exchange of material and energy with the surroundings and prevents release of plant protection products (PPPs) into the environment.

Hitchhiker

An organism sheltering or transported accidentally via inanimate pathways including with machinery, shipping containers and vehicles; such organisms are also known as contaminating pests or stowaways (Toy and Newfield, 2010).

Impact (of a pest)

The impact of the pest on the crop output and quality and on the environment in the occupied spatial units.

Introduction (of a pest)

The entry of a pest resulting in its establishment (FAO, 2023).

Pathway

Any means that allows the entry or spread of a pest (FAO, 2023).

Phytosanitary measures

Any legislation, regulation or official procedure having the purpose to prevent the introduction or spread of quarantine pests, or to limit the economic impact of regulated non‐quarantine pests (FAO, 2023).

Quarantine pest

A pest of potential economic importance to the area endangered thereby and not yet present there, or present but not widely distributed and being officially controlled (FAO, 2023).

Risk reduction option (RRO)

A measure acting on pest introduction and/or pest spread and/or the magnitude of the biological impact of the pest should the pest be present. A RRO may become a phytosanitary measure, action or procedure according to the decision of the risk manager.

Spread (of a pest)

Expansion of the geographical distribution of a pest within an area (FAO, 2023).

ABBREVIATIONS

EPPO

European and Mediterranean Plant Protection Organization

FAO

Food and Agriculture Organization

IPPC

International Plant Protection Convention

ISPM

International Standards for Phytosanitary Measures

MS

Member State

PLH

EFSA Panel on Plant Health

PZ

Protected Zone

TFEU

Treaty on the Functioning of the European Union

ToR

Terms of Reference

CONFLICT OF INTEREST

If you wish to access the declaration of interests of any expert contributing to an EFSA scientific assessment, please contact interestmanagement@efsa.europa.eu.

REQUESTOR

European Commission

QUESTION NUMBER

EFSA‐Q‐2024‐00040

COPYRIGHT FOR NON‐EFSA CONTENT

EFSA may include images or other content for which it does not hold copyright. In such cases, EFSA indicates the copyright holder and users should seek permission to reproduce the content from the original source. Figure 1a: Courtesy of Kondo (2008); Figure 1b: Courtesy of Fera.

PANEL MEMBERS

Claude Bragard, Paula Baptista, Elisavet Chatzivassiliou, Francesco Di Serio, Paolo Gonthier, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Alan MacLeod, Christer Sven Magnusson, Panagiotis Milonas, Juan A. Navas‐Cortes, Stephen Parnell, Roel Potting, Philippe L. Reignault, Emilio Stefani, Hans‐Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera, Jonathan Yuen, and Lucia Zappalà.

MAP DISCLAIMER

The designations employed and the presentation of material on any maps included in this scientific output do not imply the expression of any opinion whatsoever on the part of the European Food Safety Authority concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

APPENDIX A. Ceroplastes rubens host plants/species affected

A.1.

Source: CABI CPC (CABI, online), García Morales et al. (2016) and literature.

Scientific name Family Common name Reference
Acacia Fabaceae Qin and Gullan (1994)
Acca sellowiana Myrtaceae Pineapple guava García Morales et al. (2016)
Acer buergerianum Sapindaceae Trident maple García Morales et al. (2016)
Acer palmatum Sapindaceae Japanese maple García Morales et al. (2016)
Acer tataricum Sapindaceae Tartar maple García Morales et al. (2016)
Acrostichum aureum Pteridaceae Golden leather fern; heart fern; leather fern; mangrove fern; swamp fern CABI (online)
Agathis lanceolata Araucariaceae Koghis kauri CABI (online)
Aglaonema commutatum Araceae Chinese evergreen; silver queen aglaonema Moghaddam and Nematian (2021)
Aglaonema costatum Araceae Chinese evergreen; Fox's aglaonema; spotted evergreen CABI (online)
Aglaonema crispum Araceae Painted droptongue CABI (online)
Aglaonema marantifolium Araceae Vithana et al. (2019)
Aglaonema modestum Araceae Nakahara (1981)
Aglaonema nitidum Araceae Burmese evergreen Vithana et al. (2019)
Aglaonema pictum Araceae Indonesian evergreen Gimpel et al. (1974)
Aglaonema tricolor Araceae Hamon and Williams (1984)
Agonis flexuosa Myrtaceae Sweet willow myrtle García Morales et al. (2016)
Allamanda cathartica Apocynaceae Butter cup; common trumpetvine Nakahara (1981)
Alpinia purpurata Zingiberaceae Red ginger CABI (online)
Alstonia scholaris Apocynaceae Devil tree; dita bark; Indian pulai; milk wood; scholar tree Gimpel et al. (1974)
Alternanthera dentata Amaranthaceae Purple‐leaved chaff flower Vithana et al. (2019)
Alyxia gynopogon Apocynaceae CABI (online)
Alyxia stellata Apocynaceae CABI (online)
Anacardium occidentale Anacardiaceae Cashew; cashew apple; cashew nut CABI (online)
Annona squamosa Annonaceae Cuban sugar apple García Morales et al. (2016)
Anthurium andraeanum Araceae Flamingo flower Nakahara (1981)
Antidesma bunius Phyllanthaceae China laurel Vithana et al. (2019)
Aralia Araliaceae Qin and Gullan (1994)
Ardisia humilis Primulaceae Low shoebutton CABI (online)
Ardisia japonica Primulaceae Japanese ardisia García Morales et al. (2016)
Arillastrum gummiferum Lithomyrtus CABI (online)
Artemisia vulgaris Asteraceae Common mugwort García Morales et al. (2016)
Arthropteris palisotii Tectariaceae Lesser creeping fern CABI (online)
Artocarpus altilis Moraceae Breadfruit CABI (online)
Artocarpus heterophyllus Moraceae Jackfruit García Morales et al. (2016)
Artocarpus integer Moraceae Champedak CABI (online)
Aspidotis Pteridaceae Qin and Gullan (1994)
Asplenium australasicum Aspleniaceae Qin and Gullan (1994)
Asplenium nidus Aspleniaceae Bird's‐nest fern CABI (online)
Astronidium robustum Melastomataceae García Morales et al. (2016)
Asystasia gangetica Acanthaceae Chinese violet; coromandel; creeping foxglove CABI (online)
Atractocarpus fitzalanii Rubiaceae García Morales et al. (2016)
Atractocarpus tahitiensis Rubiaceae CABI (online)
Barringtonia asiatica Lecythidaceae Barringtonia; bishop's cap; fish poison tree CABI (online)
Barringtonia racemosa Lecythidaceae Cassowary pine; China pine; common putat CABI (online)
Bauhinia Fabaceae Camel's foot Suh and Bombay (2015)
Belvisia Pteridaceae CABI (online)
Bischofia javanica Phyllanthaceae Java bishopwood García Morales et al. (2016)
Bixa orellana Bixaceae Lipstick tree Nakahara (1981)
Blechnum orientale Blechnaceae Centipede fern García Morales et al. (2016)
Bougainvillea Nyctaginaceae Nakahara (1981)
Bruguiera sexangula Rhizophoraceae Six‐angled orange mangrove; upriver orange mangrove CABI (online)
Buxus microphylla Buxaceae Little‐leaf box Gimpel et al. (1974)
Cajanus cajan Fabaceae Bengal pea; cajan pea; Congo pea CABI (online)
Callistemon viminalis Myrtaceae Weeping bottlebrush Qin and Gullan (1994)
Calophyllum inophyllum Clusiaceae Alexandrian laurel; beach calophyllum; beauty leaf CABI (online)
Calophyllum tomentosum Calophyllaceae García Morales et al. (2016)
Calyptranthes kiaerskovii Myrtaceae Malumphy et al. (2019)
Calyptranthes thomasiana Myrtaceae Malumphy et al. (2019)
Camellia japonica Theaceae Japanese camellia Gimpel et al. (1974)
Camellia sasanqua Theaceae Christmas camellia Gimpel et al. (1974)
Camellia sinensis Theaceae Tea; tea plant CABI (online)
Carissa macrocarpa Apocynaceae Natal plum Vithana et al. (2019)
Cascabela thevetia Apocynaceae Trumpet flower Qin and Gullan (1994)
Cedrus deodara Pinaceae Himalayan cedar Vithana et al. (2019)
Ceiba pentandra Bombacaceae Giant kapok; God's tree; kapok tree CABI (online)
Celosia argentea Amaranthaceae Celosia; cock's‐comb; crimson cockscomb; fireweed García Morales et al. (2016)
Celtis Ulmaceae Nettle tree Gimpel et al. (1974)
Centipeda minima Asteraceae Spreading sneezeweed Suh (2020)
Cephalotaxus Cephalotaxaceae Gimpel et al. (1974)
Chaenomeles Rosaceae Gimpel et al. (1974)
Chrysanthemum morifolium Asteraceae Chrysanthemum García Morales et al. (2016)
Chrysophyllum caniote Sapotaceae Star apple Vithana et al. (2019)
Cibotium Cibotiaceae Nakahara (1981)
Cinnamomum camphora Lauraceae Camphor; camphor laurel; camphor tree; Japanese camphor tree Deng et al. (2012)
Cinnamomum japonicum Lauraceae Japanese cinnamon García Morales et al. (2016)
Cinnamomum loureiroi Lauraceae Suh (2020)
Cinnamomum verum Lauraceae Ceylon cinnamon; cinnamon bark tree CABI (online)
Citrus aurantiifolia Rutaceae Key lime García Morales et al. (2016)
Citrus deliciosa Rutaceae Mediterranean mandarin Gimpel et al. (1974)
Citrus glauca Rutaceae Australian desert lime García Morales et al. (2016)
Citrus junos Rutaceae Yuzu CABI (online)
Citrus limon Rutaceae Lemon CABI (online)
Citrus maxima Rutaceae Bali lemon; pummelo CABI (online)
Citrus paradisi Rutaceae Grapefruit García Morales et al. (2016)
Citrus reticulata Rutaceae Clementine; mandarin; tangerine CABI (online)
Citrus sinensis Rutaceae Sweet orange CABI (online)
Citrus trifoliata Rutaceae Golden apple García Morales et al. (2016)
Citrus unshiu Rutaceae Satsuma CABI (online)
Citrus x paradisi Rutaceae Grapefruit CABI (online)
Cleyera japonica Pentaphylacaceae Japanese cleyera García Morales et al. (2016)
Coccoloba uvifera Polygonaceae Common sea grape; Jamaica kino; platter leaf; sea grape CABI (online)
Cocos nucifera Arecaceae Coconut; coco palm; common coconut palm CABI (online)
Coffea arabica Rubiaceae Arabian coffee; coffee tree CABI (online)
Coffea liberica Rubiaceae Liberian coffee CABI (online)
Coprosma laevigata Rubiaceae CABI (online)
Cryptocarya triplinervis Lauraceae Qin and Gullan (1994)
Cupaniopsis serrata Sapindaceae García Morales et al. (2016)
Cycas circinalis Cycadaceae Fern palm Vithana et al. (2019)
Cycas media Cycadaceae Australian nut palm Vithana et al. (2019)
Cycas revoluta Cycadaceae Japanese fern palm García Morales et al. (2016)
Cycas thouarsii Cycadaceae CABI (online)
Cytisus scoparius Fabaceae Scottish broom García Morales et al. (2016)
Daphne odora Thymelaeaceae Winter daphne García Morales et al. (2016)
Davallia Polypodiaceae CABI (online)
Denhamia cunninghamii Celastraceae Qin and Gullan (1994)
Dicranopteris flexuosa Gleicheniaceae Forked fern Nakahara and Miller (1981)
Dicranopteris linearis Gleicheniaceae Old World forked fern; scrambling fern CABI (online)
Dieffenbachia seguine Araceae Dumb cane; mother‐in‐law plant; poison arum CABI (online)
Dieffenbachia Araceae Nakahara (1981)
Dimocarpus longan Sapindaceae Dragon's eye; longan Wen et al. (2002)
Dioclea violacea Fabaceae Nakahara (1981)
Diospyros digyna Ebenaceae Qin and Gullan (1994)
Diospyros kaki Ebenaceae Chinese date plum; Chinese persimmon; Japanese persimmon; kaki CABI (online)
Distylium racemosum Hamamelidaceae Isu tree Suh (2020)
Dizygotheca elegantissima Araliaceae False aralia CABI (online)
Dracaena Agavaceae Suh and Bombay (2015)
Elaeocarpus bifidus Elaeocarpaceae Nakahara (1981)
Elaeocarpus sylvestris Elaeocarpaceae Suh (2020)
Elaeodendron Celastraceae Qin and Gullan (1994)
Elaphoglossum crassifolium Dryopteridaceae Nakahara (1981)
Epipremnum pinnatum Araceae Centipede tonga vine; devil's ivy; golden pothos; hunter's robe; marble queen CABI (online)
Eriobotrya japonica Rosaceae Japanese medlar

García Morales et al. (2016)

Eucalyptus globulus Myrtaceae Southern blue gum García Morales et al. (2016)
Eugenia uniflora Myrtaceae Surinam cherry García Morales et al. (2016)
Eugenia luehmanni Myrtaceae Lillipilly Hackman and Trikojus (1952)
Euonymus alatus Celastraceae Burning bush García Morales et al. (2016)
Euonymus europaeus Celastraceae Common spindle García Morales et al. (2016)
Euonymus japonicus Celastraceae Japanese spindle García Morales et al. (2016)
Euphorbia heterophylla Euphorbiaceae Mexican fire plant García Morales et al. (2016)
Euphorbia pulcherrima Euphorbiaceae Christmas flower; Christmas star; common poinsettia CABI (online)
Euphorbia pulcherrima Euphorbiaceae Mexican fire plant García Morales et al. (2016)
Eurya emarginata Pentaphylacaceae García Morales et al. (2016)
Eurya japonica Pentaphylacaceae García Morales et al. (2016)
Exocarpos phyllanthoides Santalaceae García Morales et al. (2016)
Fatsia japonica Araliaceae Fatsia; Formosa rice tree Deng et al. (2012)
Feijoa Myrtaceae CABI (online)
Ficus amplissima Moraceae García Morales et al. (2016)
Ficus benjamina Moraceae Benjamin's fig

García Morales et al. (2016)

Ficus carica Moraceae Common fig; fig García Morales et al. (2016)
Ficus citrifolia Moraceae García Morales et al. (2016)
Ficus elastica Moraceae Assam rubber tree; Indian rubber fig CABI (online)
Ficus glandifera Moraceae CABI (online)
Ficus microcarpa Moraceae Indian laurel García Morales et al. (2016)
Ficus montana Moraceae Williams and Miller (2010)
Ficus prolixa Moraceae CABI (online)
Fitchia Asteraceae CABI (online)
Flindersia australis Rutaceae Australian teak García Morales et al. (2016)
Flindersia bennettii Rutaceae García Morales et al. (2016)
Flindersia bourjotiana Rutaceae Queensland silver ash García Morales et al. (2016)
Flindersia brayleyana Rutaceae Queensland maple García Morales et al. (2016)
Flindersia schottiana Rutaceae Cudgerie García Morales et al. (2016)
Garcinia amplexicaulis Clusiaceae CABI (online)
Garcinia gummi‐gutta Clusiaceae Basavaraju et al. (2021)
Garcinia indica Clusiaceae Basavaraju et al. (2021)
Garcinia mangostana Clusiaceae Mangosteen Vithana et al. (2019)
Garcinia morella Clusiaceae Ceylon gamboge Vithana et al. (2019)
Garcinia myrtifolia Clusiaceae

CABI (online)

Garcinia spicata Clusiaceae

García Morales et al. (2016)

Garcinia subelliptica Clusiaceae García Morales et al. (2016)
Gardenia jasminoides Rubiaceae Cape jasmine; Cape jessamine; common gardenia CABI (online)
Gardenia taitensis Rubiaceae Tahitian gardenia Nakahara (1981)
Gerbera jamesonii Asteraceae African daisy García Morales et al. (2016)
Gleichenia Gleicheniaceae CABI (online)
Grammatophyllum Orchidaceae Gimpel et al. (1974)
Hedera helix Araliaceae Common ivy; English ivy CABI (online)
Hedera rhombea Araliaceae Japanese ivy Suh (2020)
Helianthus Asteraceae Sunflower CABI (online)
Heliconia Heliconiaceae CABI (online)
Heptapleurum actinophyllum Araliaceae Nakahara (1981)
Hernandia nymphaeifolia Hernandiaceae Sea hearse CABI (online)
Hibiscus mutabilis Malvaceae Confederate rose mallow Vithana et al. (2019)
Hibiscus rosa‐sinensis Malvaceae China rose; Chinese hibiscus; Chinese rose; Hawaiian hibiscus CABI (online)
Hibiscus tiliaceus Malvaceae Coast hibiscus; cottonwood; hau tree; linden hibiscus CABI (online)
Hydrangea paniculata Hydrangeaceae Panicle hydrangea Vithana et al. (2019)
Ilex aquifolium Aquifoliaceae Panicle hydrangea Nakahara (1981)
Ilex chinensis Aquifoliaceae Kashi holly García Morales et al. (2016)
Ilex cornuta Aquifoliaceae Chinese holly; horned holly Deng et al. (2012)
Ilex crenata Aquifoliaceae Japanese holly Suh (2020)
Ilex integra Aquifoliaceae Mochi García Morales et al. (2016)
Ilex latifolia Aquifoliaceae Tarajo García Morales et al. (2016)
Ilex pedunculosa Aquifoliaceae Long‐stalk holly García Morales et al. (2016)
Ilex rotunda Aquifoliaceae Round‐leaf holly García Morales et al. (2016)
Ilex serrata Aquifoliaceae Japanese winterberry García Morales et al. (2016)
Illicium anisatum Schisandraceae Japanese star anise García Morales et al. (2016)
Impatiens balsamina Balsaminaceae Garden balsam Vithana et al. (2019)
Inocarpus fagifer Fabaceae Otaheite chestnut; Polynesian chestnut; Tahiti chestnut CABI (online)
Iris domestica Iridaceae Blackberry lily Vithana et al. (2019)
Ixora chinensis Rubiaceae Flame of the woods Vithana et al. (2019)
Ixora coccinea Rubiaceae Jungle flame García Morales et al. (2016)
Kadsura japonica Schisandraceae Evergreen magnolia vine Gimpel et al. (1974)
Lagerstroemia indica Lythraceae Cannonball; carrion tree; crepe myrtle CABI (online)
Laurus nobilis Lauraceae Apollo laurel; bay; Greek laurel CABI (online)
Leucopogon Ericaceae CABI (online)
Ligustrum japonicum Oleaceae Japanese privet García Morales et al. (2016)
Ligustrum obtusifolium Oleaceae Border privet CABI (online)
Lindera citriodora Lauraceae García Morales et al. (2016)
Litchi chinensis Sapindaceae Litchee; litchi Malumphy et al. (2018)
Lophostemon confertus Myrtaceae Brisbane box Qin and Gullan (1994)
Loranthus Loranthaceae Gimpel et al. (1974)
Machilus thunbergii Lauraceae Makko García Morales et al. (2016)
Maclura cochinchinensis Moraceae Cockspur‐thorn Gimpel et al. (1974)
Macropiper excelsum Piperaceae Kawakawa García Morales et al. (2016)
Magnolia denudata Magnoliaceae Magnolia yulan; yulan CABI (online)
Magnolia salicifolia Magnoliaceae Willow‐leaved magnolia Gimpel et al. (1974)
Mallotus japonicus Euphorbiaceae Food wrapper plant Suh (2020)
Malus sylvestris Rosaceae Wild apple García Morales et al. (2016)
Mangifera indica Anacardiaceae Mango Vithana et al. (2019)
Manilkara bidentata Sapotaceae Bullet tree; bulletwood; cherry mahogany Merrifield and Howcroft (1975)
Melaleuca bracteata Myrtaceae Black tea tree Qin and Gullan (1994)
Melaleuca leucadendra Myrtaceae Weeping paperbark Qin and Gullan (1994)
Melaleuca nodosa Myrtaceae García Morales et al. (2016)
Melaleuca quinquenervia Myrtaceae Paperbark tea tree Qin and Gullan (1994)
Melaleuca viridiflora Myrtaceae Broad‐leaved paperbark Qin and Gullan (1994)
Melampodium leucanthum Asteraceae Blackfoot daisy Vithana et al. (2019)
Melicope littoralis Rutaceae García Morales et al. (2016)
Melodinus baueri Apocynaceae CABI (online)
Meryta angustifolia Araliaceae CABI (online)
Meryta latifolia Araliaceae CABI (online)
Mesua ferrea Calophyllaceae Indian rose chestnut Vithana et al. (2019)
Metrosideros collina Myrtaceae Nakahara (1981)
Miconia gigantea Melastomataceae Gimpel et al. (1974)
Miconia prasina Melastomataceae Merrifield and Howcroft (1975)
Microsorum scolopendria Polypodiaceae Green wave

García Morales et al. (2016)

Mimusops Sapotaceae

CABI (online)

Molineria capitulata Hypoxidaceae Palm‐grass

CABI (online)

Monstera deliciosa Araceae Breadfruit vine; ceriman; hurricane plant

CABI (online)

Montrouziera cauliflora Clusiaceae

CABI (online)

Morus alba Moraceae Silkworm mulberry; white mulberry

García Morales et al. (2016)

Musa acuminata Musaceae Dwarf banana

García Morales et al. (2016)

Musa x paradisiaca Musaceae Common banana; plantain

CABI (online)

Myristica cagayanensis Myristicaceae

García Morales et al. (2016)

Myristica fragrans Myristicaceae Mace; nutmeg

CABI (online)

Myrsine ralstoniae Primulaceae

García Morales et al. (2016)

Nageia nagi Podocarpaceae Broad‐leaf podocarpus

García Morales et al. (2016)

Nandina domestica Berberidaceae Heavenly bamboo; sacred bamboo

García Morales et al. (2016)

Neolitsea sericea Lauraceae Suh (2020)
Nephelium lappaceum Sapindaceae Rambutan

CABI (online)

Nephelium ramboutan‐ake Sapindaceae Pulasan

García Morales et al. (2016)

Nephrolepis exaltata Nephrolepidaceae Boston fern; common sword fern Qin and Gullan (1994)
Nephthytis afzelii Araceae CABI (online)
Nerium oleander Apocynaceae Common oleander; oleander; rose bay

CABI (online)

Olea europaea subsp. cuspidata Oleaceae Wild olive

CABI (online)

Olea europaea Oleaceae Common olive

García Morales et al. (2016)

Osmanthus fragrans Oleaceae Fragrant olive; sweet olive Li et al. (2014)
Paederia foetida Rubiaceae Skunk vine

García Morales et al. (2016)

Palaquium formosanum Sapotaceae

García Morales et al. (2016)

Pellaea Pteridaceae Gimpel et al. (1974)
Peperomia Piperaceae Nakahara (1981)
Persea americana Lauraceae Alligator pear; avocado

CABI (online)

Philodendron giganteum Araceae Gimpel et al. (1974)
Photinia glabra Rosaceae

García Morales et al. (2016)

Pimenta dioica Lithomyrtus Allspice; Jamaican sweet pepper

CABI (online)

Pinus caribaea Pinaceae Caribbean pine; Cuban pine Merrifield and Howcroft (1975)
Pinus cubensis Pinaceae Merrifield and Howcroft (1975)
Pinus densiflora Pinaceae Japanese red pine

García Morales et al. (2016)

Pinus elliottii Pinaceae American pitch pine

García Morales et al. (2016)

Pinus kesiya Pinaceae Benguet pine Merrifield and Howcroft (1975)
Pinus michoacana Pinaceae Michoacan pine Merrifield and Howcroft (1975)
Pinus montezumae Pinaceae Montezuma pine

García Morales et al. (2016)

Pinus oocarpa Pinaceae Nicaraguan pitch pine; ocote pine Merrifield and Howcroft (1975)
Pinus parviflora Pinaceae Japanese white pine Gimpel et al. (1974)
Pinus patula Pinaceae Mexican weeping pine; Mexican yellow pine Merrifield and Howcroft (1975)
Pinus pseudostrobus Pinaceae False Weymouth pine; smooth‐bark Mexican pine Merrifield and Howcroft (1975)
Pinus radiata Pinaceae Insignis pine; Monterey pine Merrifield and Howcroft (1975)
Pinus tabuliformis Pinaceae Chinese red pine

García Morales et al. (2016)

Pinus taeda Pinaceae Loblolly pine Merrifield and Howcroft (1975)
Pinus thunbergii Pinaceae Japanese black pine

García Morales et al. (2016)

Piper excelsum Piperaceae Kawakawa CABI (online)
Pittosporum bracteolatum Pittosporaceae

CABI (online)

Pittosporum tobira Pittosporaceae Japanese pittosporum

García Morales et al. (2016)

Pittosporum undulatum Pittosporaceae Australian boxwood

García Morales et al. (2016)

Platycerium Polypodiaceae Staghorn‐fern

CABI (online)

Platycerium bifurcatum Polypodiaceae Common staghorn fern

García Morales et al. (2016)

Plerandra elegantissima Araliaceae False aralia Hamon and Williams (1984)
Plumeria alba Apocynaceae White frangipani

CABI (online)

Plumeria rubra Apocynaceae Frangipani; red frangipani; temple tree

CABI (online)

Plumeria rubra var. acutifolia Apocynaceae Mexican frangipani

CABI (online)

Podocarpus macrophyllus Podocarpaceae Big‐leaf podocarp; Buddhist pine; Japanese yew Li et al. (2014)
Polypodium Polypodiaceae Plantae

CABI (online)

Polyscias guilfoylei Araliaceae Geranium‐leaf aralia

CABI (online)

Poncirus Rutaceae

CABI (online)

Pouteria caimito Sapotaceae Qin and Gullan (1994)
Premna serratifolia Lamiaceae Buas‐buas

CABI (online)

Prunus domestica Rosaceae European plum; garden plum

García Morales et al. (2016)

Prunus mume Rosaceae Japanese apricot

García Morales et al. (2016)

Prunus salicina Rosaceae Chinese plum; Japanese plum

CABI (online)

Psidium cattleianum Lithomyrtus Strawberry guava

CABI (online)

Psidium guajava Lithomyrtus Common guava; guava; yellow guava

CABI (online)

Psidium guineense Myrtaceae Brazilian guava Qin and Gullan (1994)
Psychotria Rubiaceae

García Morales et al. (2016)

Punica granatum Lythraceae Pomegranate

García Morales et al. (2016)

Pyrus communis Rosaceae Common pear

CABI (online)

Pyrus pyrifolia Rosaceae Japanese/Chinese pear

García Morales et al. (2016)

Quercus myrsinifolia Fagaceae Japanese white oak Suh (2020)
Randia Rubiaceae

García Morales et al. (2016)

Rapanea crassifolia Primulaceae

CABI (online)

Rhaphidophora Araceae Hodgson and Lagowska (2011).
Rhizophora Rhizophoraceae Gimpel et al. (1974)
Rhododendron indicum Ericaceae Satsuki azalea

García Morales et al. (2016)

Rhodomyrtus tomentosa Myrtaceae Hill gooseberry Qin and Gullan (1994)
Rhus Anacardiaceae Sumach

CABI (online)

Rosa chinensis Rosaceae Bengal rose; China rose; monthly rose Li et al. (2014)
Ruellia tuberosa Acanthaceae Poppingseed Vithana et al. (2019)
Saintpaulia ionantha Gesneriaceae African violet Vithana et al. (2019)
Salacia chinensis Celastraceae Vithana et al. (2019)
Salvia coccinea Lamiaceae Crimson sage; scarlet sage; Texas sage Li et al. (2014)
Santalum album Santalaceae Indian sandalwood Vithana et al. (2019)
Schefflera actinophylla Araliaceae Octopus tree; Queensland umbrella tree Doane and Ferris (1916)
Schefflera arboricola Araliaceae Dwarf umbrella tree Vithana et al. (2019)
Schinus terebinthifolia Anacardiaceae Christmas berry

García Morales et al. (2016)

Schinus terebinthifolius Anacardiaceae Brazilian pepper tree

CABI (online)

Sersalisia sericea Sapotaceae Qin and Gullan (1994)
Siphonodon Celastraceae Qin and Gullan (1994)
Solanum macrocarpon Solanaceae African eggplant Vithana et al. (2019)
Spartium junceum Fabaceae Rush broom; Spanish broom García Morales et al. (2016)
Spiraea thunbergii Rosaceae García Morales et al. (2016)
Spondias dulcis Anacardiaceae Golden apple Vithana et al. (2019)
Stanhopea Orchidaceae Nakahara (1981)
Strobilanthes japonicus Acanthaceae García Morales et al. (2016)
Symplocos japonica Symplocaceae García Morales et al. (2016)
Syngonium Araceae Nakahara (1981)
Syzygium aqueum Myrtaceae Watery rose apple Nakahara (1981)
Syzygium australe Myrtaceae Brush cherry Qin and Gullan (1994)
Syzygium cumini Myrtaceae Black plum; jambolan; jamun; Java plum

CABI (online)

Syzygium floribundum Myrtaceae Weeping lily pilly

García Morales et al. (2016)

Syzygium jambos Myrtaceae Malabar plum; Malay apple

CABI (online)

Syzygium malaccense Myrtaceae Kelat oil; long‐fruited rose apple CABI (online)
Syzygium moorei Myrtaceae Qin and Gullan (1994)
Syzygium oleosum Myrtaceae

García Morales et al. (2016)

Syzygium samarangense Myrtaceae Java apple

García Morales et al. (2016)

Syzygium smithii Myrtaceae Lilli pilly Qin and Gullan (1994)
Tagetes erecta Asteraceae African marigold; Aztec marigold Li et al. (2014)
Tamarix chinensis Tamaricaceae Chinese tamarisk

García Morales et al. (2016)

Ternstroemia japonica Pentaphylacaceae Japanese ternstroemia

García Morales et al. (2016)

Theobroma Malvaceae Suh and Bombay (2015)
Thevetia peruviana Apocynaceae Trumpet flower Suh and Bombay (2015)
Thunbergia erecta Acanthaceae Bush clockvine; king's mantle

CABI (online)

Thunbergia fragrans Acanthaceae Angel wings; fragrant thunbergia

CABI (online)

Toxicodendron succedaneum Anacardiaceae Japanese wax tree

García Morales et al. (2016)

Viburnum odoratissimum Caprifoliaceae Awabuki viburnum; sweet viburnum

Deng et al. (2012)

Weinmannia samoensis Cunoniaceae

García Morales et al. (2016)

Wilkiea macrophylla Monimiaceae

García Morales et al. (2016)

Zantedeschia Araceae Nakahara (1981)
Zingiber officinale Zingiberaceae Common ginger; garden ginger Nakahara (1981)

APPENDIX B. Distribution of Ceroplastes rubens

B.1.

Distribution records based on EPPO Global Database (EPPO, online), CABI CPC (CABI, online), García Morales et al. (2016) and literature.

Region Country Sub‐national (e.g. state) Status References
Central America British Virgin Islands (UK) Present, no details Malumphy et al. (2019)
Cuba Present, no details Yanes and Campos (2021)
Dominican Republic Present, no details Berry (2014)
Guadeloupe (France) Present, no details EPPO (online)
Haiti Present, no details Berry (2014)
Jamaica Present, no details

García Morales et al. (2016)

Martinique (FR) Present, no details EPPO (online)
Puerto Rico Present, no details Schowalter et al. (2014)
St Lucia Present, no details Malumphy (2011)
Trinidad and Tobago Present, no details

García Morales et al. (2016)

Virgin Islands (USA) Present, no details Malumphy (2011)
North America United States of America Present, restricted distribution

García Morales et al. (2016)

Florida Present, no details Miller et al. (2005)
South America Colombia Present, no details Kondo (2008)
Venezuela Present, no details Berry (2014)
Africa Egypt Present, no details

García Morales et al. (2016)

Ethiopia Present, no details

García Morales et al. (2016)

Kenya Present, no details

CABI (online)

Reunion (FR) Present, no details Germain et al. (2014)
Seychelles Present, no details

CABI (online)

South Africa Present, no details

CABI (online)

Sudan Present, no details García Morales et al. (2016)
Tanzania Present, no details

CABI (online)

Asia China Present, restricted distribution

Deng et al. (2012)

Anhui Present, no details

Deng et al. (2012)

Beijing Present, no details Li et al. (2014)
Fujian Present, no details

García Morales et al. (2016)

Guangdong Present, no details Li et al. (2014)
Guangxi (=Kwangsi) Present, no details

García Morales et al. (2016)

Guizhou (=Kweichow) Present, no details

CABI (online)

Hainan Present, no details Xiao and Huang (2001)
Hebei (=Hopei) Present, no details

García Morales et al. (2016)

Henan (=Honan) Present, no details

García Morales et al. (2016)

Hubei Present, no details Deng et al. (2012)
Hunan Present, no details

García Morales et al. (2016)

Jiangsu Present, no details

García Morales et al. (2016)

Jiangxi (=Kiangsi) Present, no details

García Morales et al. (2016)

Qinghai (=Chinghai) Present, no details

García Morales et al. (2016)

Shanghai Present, no details

García Morales et al. (2016)

Shanxi (=Shansi) Present, no details

García Morales et al. (2016)

Sichuan (=Szechwan) Present, no details

García Morales et al. (2016)

Xianggang (Hong Kong) Present, no details Martin and Lau (2011)
Yunnan Present, no details

García Morales et al. (2016)

Zhejiang Present, no details

García Morales et al. (2016)

Xizang (=Tibet) Present, no details Fetyko & Kozar, 2012
India Present, widespread

García Morales et al. (2016)

Andaman Islands Present, no details

García Morales et al. (2016)

Andhra Pradesh Present, no details

García Morales et al. (2016)

Assam Present, no details

García Morales et al. (2016)

Bihar Present, no details

García Morales et al. (2016)

Gujarat Present, no details Italiya et al. (2023)
Karnataka Present, no details Prakash and Patil (2015)
Kerala Present, no details

García Morales et al. (2016)

Maharashtra Present, no details

García Morales et al. (2016)

Nicobar Islands Present, no details García Morales et al. (2016)
Odisha Present, no details

García Morales et al. (2016)

Tamil Nadu Present, no details

García Morales et al. (2016)

Uttar Pradesh Present, no details García Morales et al. (2016)
West Bengal Present, no details García Morales et al. (2016)
Indonesia Java Present, no details Hamon and Williams (1984)
Sumatra Present, no details García Morales et al. (2016)
Iran Present, no details Moghaddam and Nematian (2021)
Japan Present, no details García Morales et al. (2016)
Honshu Present, no details García Morales et al. (2016)
Kyushu Present, no details García Morales et al. (2016)
Korea Dem. People's Republic Present, no details García Morales et al. (2016)
Korea, Republic Present, no details García Morales et al. (2016)
Laos Present, no details Suh and Bombay (2015)
Malaysia Present, no details García Morales et al. (2016)
Maldives Present, no details

García Morales et al. (2016)

Myanmar Present, no details García Morales et al. (2016)
Philippines Present, no details García Morales et al. (2016)
Sri Lanka Present, no details García Morales et al. (2016)
Taiwan Present, no details García Morales et al. (2016)
Thailand Present, no details

García Morales et al. (2016)

Oceania Australia Present, no details Qin and Gullan (1994)
Australian Capital Territory Present, no details Qin and Gullan (1994)
New South Wales Present, no details

García Morales et al. (2016)

Norfolk Island Present, no details Qin and Gullan (1994)
Northern Territory Present, no details Qin and Gullan (1994)
Queensland Present, no details Ben‐Dov et al. (2000)
South Australia Present, no details Qin & Gullan, 1994
Victoria Present, no details Qin and Gullan (1994)
Western Australia Present, no details Qin and Gullan (1994)
Christmas Islands Present, no details Neumann et al. (2016)
Cocos (=Keeling) Islands Present, no details García Morales et al. (2016)
Cook Islands Present, no details

García Morales et al. (2016)

Fiji Present, no details

García Morales et al. (2016)

French Polynesia (FR)

Present, restricted distribution Hamon and Williams (1984)
New Caledonia (FR) Present, widespread García Morales et al. (2016)
Kiribati Present, no details García Morales et al. (2016)
Niue Present, no details

García Morales et al. (2016)

Northern Mariana Islands Present, no details

García Morales et al. (2016)

Rota Island Present, no details Hamon and Williams (1984)
Saipan Island Present, no details Hamon and Williams (1984)
Palau Present, no details

García Morales et al. (2016)

Papua New Guinea Present, no details García Morales et al. (2016)
Samoa Present, no details CABI (online)
Solomon Islands Present, restricted distribution CABI (online)
Guam (USA) Present, no details Hamon and Williams (1984)
Hawaii (USA) Present, no details EPPO (online)
Vanuatu Present, no details

García Morales et al. (2016)

EU (27) Germany Brandenburg (Tropical Hall) Present, at one location Schönfeld (2015), confirmed by German NPPO
Hungary Budapest (botanical garden) Absent, confirmed by survey Fetyko and Kozar (2012), confirmed by Hungarian NPPO

APPENDIX C. Import data

C.1.

TABLE C.1 Citrus fruits (fresh or dried) imported in 100 kg into the EU from regions where Ceroplastes rubens is known to occur (Source: Eurostat accessed on 9 May 2024).

Country 2018 2019 2020 2021 2022
South Africa 6,381,124.73 6,196,837.96 7,830,147.60 7,950,857.87 7,909,065.90
Egypt 2,643,272.02 2,206,932.71 2,850,745.77 3,413,157.09 2,394,906.95
China 1,024,163.15 1,108,595.22 1,098,689.98 648,408.59 637,703.46
United States 185,706.99 177,755.45 148,608.92 114,110.50 64,510.65
Dominican Republic 10,426.97 7355.36 12,886.58 12,780.40 8464.22
Iran 1208.01 2174.22 1882.74 1910.39 2394.22
Australia 644.97 10,645.40 2343.47 4097.42 3784.45
Indonesia 779.35 836.73 864.54 872.68 890.40
Thailand 659.74 624.93 194.87 245.31 126.73
India 449.63 88.51 254.95 22.37 164.83
Japan 270.73 319.24 162.50 184.26 184.49
Tanzania 144.12 35.95 75.50 132.27 32.67
Sri Lanka 135.62 0.20 60.10 0.03 26.85
Kenya 8.80 34.56 0.02 0.01
Malaysia 83.45 7.71
Republic of Korea 21.09 15.00 0.54
Taiwan 0.01
Cuba 4438.14 3422.11 556.03 18.70
Laos 20.23 0.95
Sudan 2.10 20.58
Yemen 2.40
Philippines 0.20 7.71 0.10 0.08
French Polynesia 0.86

TABLE C.2 Dates, figs, pineapples, avocados, guavas, mangoes and mangosteens, fresh or dried (fresh or dried) imported in 100 kg into the EU from regions where Ceroplastes rubens is known to occur (Source: Eurostat accessed on 09 May 2024).

Country 2018 2019 2020 2021 2022
Colombia 345338.25 447916.62 709451.31 915313.83 599585.86
Kenya 405592.15 348390.17 459175.07 518871.48 595907.69
South Africa 678554.82 427676.85 441946.37 436785.29 513365.05
Dominican Republic 178174.01 234606.26 231031.29 292009.09 234848.04
Iran 130988.00 116963.02 121443.51 126879.99 105362.24
Tanzania 55708.96 60632.94 50957.11 58505.42 96322.45
United States 59589.94 84834.69 85992.19 54683.28 65981.50
Egypt 8901.82 10527.73 17790.91 11697.99 21806.99
Thailand 16735.29 14879.86 14235.10 14071.54 16231.85
India 9653.73 9489.46 7381.33 16743.40 13065.18
China 1873.45 1698.63 3504.25 4605.40 4264.06
Indonesia 2926.73 2386.31 1409.44 1630.43 3937.95
Sri Lanka 4896.51 3584.89 3071.24 2212.79 2945.68
Ethiopia 310.64 11.78 35.86 971.92 520.59
Venezuela 2512.75 2010.44 282.69 522.30 488.17
Philippines 979.51 455.36 694.19 158.87 273.26
Cuba 3894.39 2232.84 1241.78 1060.66 242.05
Sudan 251.00 108.90 68.93 48.29 224.97
Laos 603.14 806.50 525.32 285.98 174.67
United States 103.68 17.28
Taiwan 3.48 17.41 0.97 14.94 10.40
Republic of Korea 0.45 0.71 6.12
Malaysia 217.76 75.12 44.60 29.93 2.33
Japan 0.00 0.05 7.66 2.18
Jamaica 1.23
Myanmar (Burma) 511.12 707.74 379.60 408.27 0.58
Australia 62.92 0.01 0.01 0.32 0.31
French Polynesia 1.19 0.62 0.24 0.17 0.03
Trinidad and Tobago 0.01
Haiti 4.87
New Caledonia 2.09
Guam 224.00

TABLE C.3 Indoor rooted cuttings and young plants (excl. cacti) imported in 100 kg into the EU from regions where Ceroplastes rubens is known to occur (Source: Eurostat accessed on 09 May 2024).

Country 2018 2019 2020 2021 2022
China 13,466.13 14,163.88 19,018.51 28,947.05 19,547.08
Thailand 5186.67 5025.07 5508.39 7909.60 6454.23
Kenya 11,131.71 9428.58 9507.31 11655.13 3682.32
Tanzania 26,386.95 52,854.67 26,873.49 13,607.49 2921.29
India 4428.20 4581.08 4284.74 14115.76 2215.66
United States 201.85 398.31 114.98 252.68 2130.24
Ethiopia 3894.61 3990.22 1095.38 506.66 1416.13
Taiwan 815.69 842.29 480.22 1435.10 997.59
Sri Lanka 1445.74 1403.22 1119.29 1300.52 931.37
Malaysia 208.38 692.96 481.63 233.65 430.01
South Africa 3726.06 3245.41 2856.00 3309.81 395.79
Australia 354.52 369.02 384.96 398.73 281.04
Egypt 84.34 51.13 33.11 37.27 179.91
Colombia 241.38 484.53 211.31 199.61 115.54
Indonesia 901.69 985.39 888.74 1492.86 111.48
Philippines 17.61 113.19 114.45 161.14 28.62
Norfolk Island 273.89 224.90 187.63 126.24 20.87
Japan 11.20 13.28 12.09 10.47 6.34
Iran 1.93
Republic of Korea 18.06 0.32 6.81 12.62 0.65
Dominican Republic 335.16 154.14 70.54 0.08

TABLE C.4 Fresh persimmons imported in 100 kg into the EU from regions where Ceroplastes rubens is known to occur (Source: Eurostat accessed on 09 May 2024).

Country 2018 2019 2020 2021 2022
South Africa 206.08 7857.42 4974.49 5551.00 11,143.58
China 5.09 17.40 42.85 46.10
Kenya 2.25
Republic of Korea 0.05 0.80 0.28
Japan 0.76 0.27 0.02 0.32 0.11
Thailand 0.07 2.26 0.01

EFSA PLH Panel (EFSA Panel on Plant Health) , Bragard, C. , Baptista, P. , Chatzivassiliou, E. , Di Serio, F. , Gonthier, P. , Jaques Miret, J. A. , Justesen, A. F. , Magnusson, C. S. , Milonas, P. , Navas‐Cortes, J. A. , Parnell, S. , Potting, R. , Reignault, P. L. , Stefani, E. , Thulke, H.‐H. , Van der Werf, W. , Vicent Civera, A. , Yuen, J. , … MacLeod, A. (2024). Pest categorisation of Ceroplastes rubens . EFSA Journal, 22(7), e8888. 10.2903/j.efsa.2024.8888

Adopted: 19 June 2024

Notes

1

An EPPO code, formerly known as a Bayer code, is a unique identifier linked to the name of a plant or plant pest important in agriculture and plant protection. Codes are based on genus and species names. However, if a scientific name is changed, the EPPO code remains the same. This provides a harmonised system to facilitate the management of plant and pest names in computerised databases, as well as data exchange between IT systems (EPPO, 2019; Griessinger & Roy, 2015)

REFERENCES

  1. Baker, R. H. , Sansford, C. E. , Jarvis, C. H. , Cannon, R. J. , MacLeod, A. , & Walters, K. F. (2000). The role of climatic mapping in predicting the potential geographical distribution of non‐indigenous pests under current and future climates. Agriculture, Ecosystems & Environment, 82(1–3), 57–71. [Google Scholar]
  2. Baker, R. H. A. (2002). Predicting the limits to the potential distribution of alien crop pests. In Hallman G. J. & Schwalbe C. P. (Eds.), Invasive arthropods in agriculture: Problems and solutions (pp. 207–241). Science Publishers Inc. [Google Scholar]
  3. Basavaraju, S. , Kencharaddi, R. N. , Kushalappa, C. G. , Hegde, R. , & Hosagoudar, G. N. (2021). Occurrence of forest nursery pests in moist decidous forest ecosystem at Kodagu, Karnataka. Journal of Entomology and Zoology Studies, 9(1), 1136–1141. [Google Scholar]
  4. Ben‐Dov, Y. , Matile‐Ferrero, D. , and Gafny, R. (2000). Taxonomy of Ceroplastes rubens Maskell with description of a related new species (Hemiptera: Coccoidea: Coccidae) from Reunion, including DNA polymorphism analysis. In Annales de la Société entomologique de France (Vol. 36, No. 4, pp. 423‐433). Société entomologique de France. [Google Scholar]
  5. Berry, J. A. (2014). Generic Pest risk assessment: Armoured scale insects (Hemiptera: Coccoidea: Diaspididae) on the fresh produce pathway. Ministry for Primary Industries. [Google Scholar]
  6. Bi, S. , Qian, G. , Song, X. , Zhang, S. , Zhou, X. , & Zou, Y. (2022). Studies on dominant natural enemies of Ceroplastes rubens Maskell in tea gardens at different altitudes. International Journal of Tropical Insect Science, 42(4), 2845–2852. [Google Scholar]
  7. Blumberg, B. (1935). The life cycle and seasonal history of Ceroplastes rubens . The Proceedings of the Royal Society of Queensland, 46, 18–32. [Google Scholar]
  8. Borchsenius, N. S. (1957). Subtribe mealybugs and scales (Coccoidea). Soft scale insects Coccidae. Vol. IX. Fauna SSSR. Zoologicheskii Institut Akademii Nauk SSSR, 66, 1–493. [Google Scholar]
  9. CABI . (online). Ceroplastes rubens (red wax scale) Datasheet 12351 CABI crop protection compendium. CAB International. Last updated on 16 November 2021. https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.12351 [Google Scholar]
  10. Daneel, M. , Merwe, S. V. D. , & Jager, K. D. (1994). Sporadic scales affecting mango. Yearbook ‐ South African Mango Growers' Association, Vol. 14, 72‐74 ref. 7.
  11. Deng, J. U. N. , Yu, F. , Zhang, T. X. , Hu, H. Y. , Zhu, C. D. , Wu, S. A. , & Zhang, Y. Z. (2012). DNA barcoding of six Ceroplastes species (Hemiptera: Coccoidea: Coccidae) from China. Molecular Ecology Resources, 12(5), 791–796. [DOI] [PubMed] [Google Scholar]
  12. Doane, R. W. , & Ferris, G. F. (1916). Notes on Samoan Coccidae with descriptions of three new species. Bulletin of Entomological Research, 6, 399–402. [Google Scholar]
  13. EFSA PLH Panel (EFSA Panel on Plant Health) , Jeger, M. , Bragard, C. , Caffier, D. , Candresse, T. , Chatzivassiliou, E. , Dehnen‐Schmutz, K. , Gregoire, J.‐C. , Jaques Miret, J. A. , MacLeod, A. , Navajas Navarro, M. , Niere, B. , Parnell, S. , Potting, R. , Rafoss, T. , Rossi, V. , Urek, G. , Van Bruggen, A. , Van Der Werf, W. , … Gilioli, G. (2018). Guidance on quantitative pest risk assessment. EFSA Journal, 16(8), 5350. 10.2903/j.efsa.2018.5350 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. EFSA PLH Panel (EFSA Panel on Plant Health) , Bragard, C. , Dehnen‐Schmutz, K. , Di Serio, F. , Gonthier, P. , Jacques, M.‐A. , Jaques Miret, J. A. , Justesen, A. F. , MacLeod, A. , Magnusson, C. S. , Milonas, P. , Navas‐Cortes, J. A. , Potting, R. , Reignault, P. L. , Thulke, H.‐H. , van der Werf, W. , Vicent Civera, A. , Yuen, J. , Zappalà, L. , … Parnell, S. (2019). Update of the scientific opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory. EFSA Journal, 17(5), 5665. 10.2903/j.efsa.2019.5665 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. EFSA PLH Panel (EFSA Panel on Plant Health) , Bragard, C. , Baptista, P. , Chatzivassiliou, E. , Di Serio, F. , Jaques Miret, J. A. , Justesen, A. F. , MacLeod, A. , Magnusson, C. S. , Milonas, P. , Navas‐Cortes, J. A. , Parnell, S. , Potting, R. , Reignault, P. L. , Stefani, E. , Thulke, H.‐H. , Van der Werf, W. , Vicent Civera, A. , Yuen, J. , … Gonthier, P. (2022a). Scientific opinion on the commodity risk assessment of Acer palmatum plants grafted on Acer davidii from China. EFSA Journal, 20(5), 7298. 10.2903/j.efsa.2022.7298 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. EFSA PLH Panel (EFSA Panel on Plant Health) , Bragard, C. , Baptista, P. , Chatzivassiliou, E. , Di Serio, F. , Jaques Miret, J. A. , Justesen, A. F. , MacLeod, A. , Magnusson, C. S. , Milonas, P. , Navas‐Cortes, J. A. , Parnell, S. , Potting, R. , Reignault, P. L. , Stefani, E. , Thulke, H.‐H. , Van der Werf, W. , Vicent Civera, A. , Yuen, J. , … Gonthier, P. (2022b). Scientific opinion on the commodity risk assessment of bonsai plants from China consisting of Pinus parviflora grafted on Pinus thunbergii . EFSA Journal, 20(2), 7077. 10.2903/j.efsa.2022.7077 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. EFSA Scientific Committee , Hardy, A. , Benford, D. , Halldorsson, T. , Jeger, M. J. , Knutsen, H. K. , More, S. , Naegeli, H. , Noteborn, H. , Ockleford, C. , Ricci, A. , Rychen, G. , Schlatter, J. R. , Silano, V. , Solecki, R. , Turck, D. , Benfenati, E. , Chaudhry, Q. M. , Craig, P. , … Younes, M. (2017). Scientific opinion on the guidance on the use of the weight of evidence approach in scientific assessments. EFSA Journal, 15(8), 4971. 10.2903/j.efsa.2017.4971 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. EPPO (European and Mediterranean Plant Protection Organization) . (2019). EPPO codes. https://www.eppo.int/RESOURCES/eppo_databases/eppo_codes
  19. EPPO (European and Mediterranean Plant Protection Organization) . (online). EPPO Global Database. Ceroplastes rubens . https://gd.eppo.int/taxon/CERPRB
  20. EUROPHYT (online). European Union Notification System for Plant Health Interceptions – EUROPHYT. Available online: https://ec.europa.eu/food/plant/plant_health_biosecurity/europhyt/index_en.htm
  21. FAO (Food and Agriculture Organization of the United Nations) . (2013). ISPM (International Standards for Phytosanitary Measures) No 11. Pest risk analysis for quarantine pests. FAO, Rome, 36 pp. Available online: https://www.ippc.int/sites/default/files/documents/20140512/ispm_11_2013_en_2014‐04‐30_201405121523‐494.65%20KB.pdf
  22. FAO (Food and Agriculture Organization of the United Nations) . (2023). ISPM (international standards for Phytosanitary measures) No 5. Glossary of phytosanitary terms (p. 40). FAO. https://assets.ippc.int/static/media/files/publication/en/2023/07/ISPM_05_2023_En_Glossary_PostCPM‐17_2023‐07‐12_Fixed.pdf [Google Scholar]
  23. Fetyko, K. , & Kozar, F. (2012). Records of Ceroplastes Gray 1828 in Europe, with an identification key to species in the Palaearctic region. Bulletin of Insectology, 65(2), 291–295. [Google Scholar]
  24. Follett, P. A. , Yang, M. M. , Lu, K. H. , & Chen, T. W. (2007). Irradiation for postharvest control of quarantine insects. Formosan Entomologist, 27, 1–15. [Google Scholar]
  25. García Morales, M. , Denno, B. D. , Miller, D. R. , Miller, G. L. , Ben‐Dov, Y. , & Hardy, N. B. (2016). ScaleNet: A literature‐based model of scale insect biology and systematics. Database. 10.1093/database/bav118 [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Germain, J. F. , Minatchy, J. , Pastou, D. , Bagny, P. , Mérion, S. , Pallas, R. , Quilici, S. , & Matile Ferrero, D. (2014). An updated checklist of the scale insects from Réunion Island (Indian Ocean). Acta Zoologica Bulgarica, 2014(Suppl. 6), 21–27. [Google Scholar]
  27. Gill, R. J. , & Kosztarab, M. (1997). Pest status of soft scale insects; economic importance. World Crop Pests‐Soft Scale Insects–Their Biology, Natural Enemies and Control, 7, 161–163. [Google Scholar]
  28. Gimpel, W. F. , Miller, D. R. , & Davidson, J. A. (1974). Systematic revision of the wax scales, genus Ceroplastes, in the United States (Homoptera; Coccoidea; Coccidea).
  29. Griessinger D and Roy A‐S, 2015. EPPO codes: a brief description. https://www.eppo.int/media/uploaded_images/RESOURCES/eppo_databases/A4_EPPO_Codes_2018.pdf
  30. Hackman, R. H. , & Trikojus, V. M. (1952). The composition of the honeydew excreted by Australian coccids of the genus Ceroplastes . Biochemical Journal, 51(5), 653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hamon, A. B. , & Williams, M. L. (1984). The soft scale insects of Florida (Homoptera: Coccoidea: Coccidae) (Vol. 11). Florida Department of Agriculture and Consumer Services, Division of Plant Industry.
  32. Hill, D. S. (2008). Pests of crops in warmer climates and their control. Springer Science & Business Media. [Google Scholar]
  33. Hodges, G. , Ruter, J. M. , & Kristine Braman, S. (2001). Susceptibility of ilex species, hybrids and cultivars to Florida wax scale (Ceroplastes floridensis Comstock). Journal of Environmental Horticulture, 19(1), 32–36. [Google Scholar]
  34. Hodgson, C. J. (1994). The scale insect family Coccidae: An identification manual to genera (p. 639). CAB International. [Google Scholar]
  35. Hodgson, C. J. , & Lagowska, B. (2011). New scale insect (Hemiptera: Sternorrhyncha: Coccoidea) records from Fiji: Three new species, records of several new invasive species and an updated checklist of Coccoidea. Zootaxa, 2766(1), 1–29. [Google Scholar]
  36. Italiya, J. V. , Kalasariya, R. L. , & Sisodiya, D. B. (2023). First report of red wax scale, Ceroplastes rubens Maskell (Coccidae: Hemiptera) a new pest in mango (Mangifera indica) from Gujarat, India. Insect Environment, 26(2), 146–149. [Google Scholar]
  37. Itioka, T. (1993). An analysis of interactive webs of a scale insect community, their host plants and natural enemies. Mutualism and Community Organization: Behavioral, Theoretical and Food‐web Approaches. 159–177.
  38. Itioka, T. , & Inoue, T. (1991). Settling‐site selection and survival of two scale insects, Ceroplastes rubens and C. ceriferus, on citrus trees. Researches on Population Ecology, 33, 69–85. [Google Scholar]
  39. Itioka, T. , & Inoue, T. (1996). The consequences of ant‐attendance to the biological control of the red wax scale insect Ceroplastes rubens by Anicetus beneficus . Journal of Applied Ecology, 33(3), 609–618. 32 ref. [Google Scholar]
  40. Jansen, M. G. M. (1995). Scale insects (Homoptera: Coccinea) from import interceptions and greenhouses in The Netherlands. Israel Journal of Entomology, 29, 131–146. [Google Scholar]
  41. Kabashima, J. N. , & Drelstadt, S. H. (2014). University of California Agriculture and Natural Resources, Statewide Integrated Pest Management (IPM) Program, How to Manage Pests, Pests in Gardens and Landscapes. Scales. https://ipm.ucanr.edu/PMG/PESTNOTES/pn7408.html
  42. Kakoti, B. , Deka, B. , Roy, S. , & Babu, A. (2023). The scale insects: Its status, biology, ecology and management in tea plantations. Frontiers in Insect Science, 2, 1048299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Kondo, T. (2008). Ceroplastes rubens maskell (hemiptera: Coccidae), a new coccid record for Colombia. Boletín del Museo de Entomología de la Universidad del Valle, 9(1), 66–68. [Google Scholar]
  44. Kottek, M. , Grieser, J. , Beck, C. , Rudolf, B. , & Rubel, F. (2006). World map of the Köppen_Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263. 10.1127/0941-2948/2006/0130 [DOI] [Google Scholar]
  45. Kozár, F. , Benedicty, Z. K. , Fetykó, K. , Kiss, B. , & Szita, É. (2013). An annotated update of the scale insect checklist of Hungary (Hemiptera, Coccoidea). ZooKeys, 309, 49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Li, S. , Guo, L. , Ren, S. , De Barro, P. J. , & Qiu, B. L. (2014). Hosting major international events leads to pest redistributions. Biodiversity and Conservation, 23, 1229–1247. [Google Scholar]
  47. Loch, A. D. , & Zalucki, M. P. (1997). Variation in length, fecundity and survival of pink wax scale, Ceroplastes rubens Maskell (Hemiptera: Coccidae), on umbrella trees. Australian Journal of Zoology, 45(4), 399–407. [Google Scholar]
  48. Lu, C. , Huang, X. , & Deng, J. (2023). Mitochondrial genomes of soft scales (Hemiptera: Coccidae): Features, structures and significance. BMC Genomics, 24(1), 37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Lu, S. , & Jiang, F. (2015). Occurrence and control of Ceroplastes rubens Maskell. Acta Agriculturae Shanghai, 31(2), 147–149. [Google Scholar]
  50. Malumphy, C. (2010). The status of wax scales (Hemiptera: Coccidae: Ceroplastinae) in Britain. Entomologist's Monthly Magazine, 146(1751–53), 105–112. [Google Scholar]
  51. Malumphy, C. (2011). The Food and Environment Research Agency (FERA). Rapid Assessment of the need for a detailed Pest Risk Analysis for Ceroplastes rubens Maskell.
  52. Malumphy, C. (2014). The Food and Environment Research Agency (FERA). Pink wax scale. Ceroplastes rubens.
  53. Malumphy, C. , Bárrios, S. , Corcoran, M. R. , Sanchez, M. D. , Harrigan, N. , Monsegur‐Rivera, O. A. , & Hamilton, M. A. (2019). First report of invasive scale insects feeding on the threatened plants Calyptranthes kiaerskovii Krug & Urban and Calyptranthes thomasiana O. Berg in the British Virgin Islands. Entomologist's Monthly Magazine, 155(3), 193–199. [Google Scholar]
  54. Malumphy, C. , & Eyre, D. (2011). The Food and Environment Research Agency (FERA) Science Ltd. Pink wax scale ‐ Ceroplastes rubens. Plant Pest Factsheet.
  55. Malumphy, C. , Reid, S. , Down, R. , Dunn, J. , & Collins, D. (2018). The food and environment research agency (FERA) science ltd. Field guide to invasive alien plant pests in the caribbean UK overseas territories. PART 5 – HEMIPTERA (scale insects).
  56. Martin, J. H. , & Lau, C. S. K. (2011). The Hemiptera‐Sternorrhyncha (Insecta) of Hong Kong, China‐an annotated inventory citing voucher specimens and published records. Zootaxa, 2847, 1–122. [Google Scholar]
  57. Maskell, W. M. (1893). Further coccid notes: With descriptions of new species from Australia, India, Sandwich Islands, demerara, and South Pacific. Transactions and Proceedings of the New Zealand Institute, 25, 1893. [Google Scholar]
  58. Merrifield, L. E. , & Howcroft, N. S. (1975). Ceroplastes rubens Maskell damage of Pinus caribaea Morelet with notes on the scale's preference of certain clones as host material (Hemiptera: Coccidae). Silvae Genetica, 24(4), 110–113. [Google Scholar]
  59. Miller, D. R. , Miller, G. L. , Hodges, G. S. , & Davidson, J. A. (2005). Introduced scale insects (Hemiptera: Coccoidea) of the United States and their impact on US agriculture. Proceedings of the Entomological Society of Washington, 107(1), 123–158. [Google Scholar]
  60. Miller, D. R. , Rung, A. , & Parikh, G. (2014). Scale insects, edition 2, a tool for the identification of potential pest scales at USA ports‐of‐entry (Hemiptera, Sternorrhyncha, Coccoidea). ZooKeys, 431, 61. https://idtools.org/scales/index.cfm?packageID=1114&entityID=3490 [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Ministry of Agriculture and Forestry (MAF), Biosecurity New Zealand . (2007). Import risk analysis: Litchi chinensis (litchi) fresh fruit from Taiwan. Wellington (New Zealand).
  62. Moghaddam, M. , & Nematian, M. (2021). New record of a scale insect pest from the genus Ceroplastes (Hemiptera, Coccomorpha, Coccidae) on Aglaonema commutatum (Araceae) from Iran. Journal of Entomological Society of Iran, 41(2), 175–181. [Google Scholar]
  63. Nakahara, S. (1981). List of the Hawaiian Coccoidea (Homoptera: Sternorhyncha). Proceedings of the Hawaiian Entomological Society, 23, 387–424. [Google Scholar]
  64. Nakahara, S. , & Miller, C. E. (1981). A list of the Coccoidea species (Homoptera) of Puerto Rico. Proceedings of the Entomological Society of Washington, 83(1), 28–39. [Google Scholar]
  65. Neumann, G. , O'Dowd, D. J. , Gullan, P. J. , & Green, P. T. (2016). Diversity, endemism and origins of scale insects on a tropical oceanic Island: Implications for management of an invasive ant. Journal of Asia‐Pacific Entomology, 19(1), 159–166. [Google Scholar]
  66. Noda, T. , Kitamura, C. , Takahashi, S. , Takagi, K. , Kashio, T. , & Tanaka, M. (1982). Host selection behavior of Anicetus beneficus ISHII et YASUMATSU (hymenoptera: Encyrtidae): I. Ovipositional behavior for the natural host Ceroplastes rubens MASKELL (Hemiptera: Coccidae). Applied Entomology and Zoology, 17(3), 350–357. [Google Scholar]
  67. Prakash, H. T. , & Patil, R. R. (2015). Species composition of coccid pests on mango in different districts of northern Karnataka. Journal of Experimental Zoology, India, 18(2), 905–909. [Google Scholar]
  68. Prinsloo, G. L. , & Uys, V. M. (Eds.). (2015). Insects of cultivated plants and natural pastures in southern Africa. Entomological Society of Southern Africa. [Google Scholar]
  69. Qin, T. K. , & Gullan, P. J. (1994). Taxonomy of the wax scales (Hemiptera: Coccidae: Ceroplastinae) in Australia. Invertebrate Systematics, 8(4), 923–959. [Google Scholar]
  70. Sammani, A. , Sumathipala, D. , Nissanka, I. , Wijewardhana, P. , & Senanayake, P. (2023). The Pink Wax Scale Ceroplastes rubens Maskell: Its Biology, Behaviour and Management in Tea cultivation.
  71. Sands, D. P. A. (1984). Dissolving wax from scale insects: A method for assessing parasitism and determining instars of Ceroplastes spp. and Gascardia destructor (Newstead)(Homoptera: Coccidae). Australian Journal of Entomology, 23(4), 295–296. [Google Scholar]
  72. Sayers, E. W. , Cavanaugh, M. , Clark, K. , Ostell, J. , Pruitt, K. D. , & Karsch‐Mizrachi, I. (2020). Genbank. Nucleic Acids Research, 48(Database issue), D84–D86. 10.1093/nar/gkz956 [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Schönfeld, U. (2015). Coccoidea species in Brandenburg. Journal für Kulturpflanzen, 67(10), 337–341. [Google Scholar]
  74. Schowalter, T. D. , Willig, M. R. , & Presley, S. J. (2014). Canopy arthropod responses to experimental canopy opening and debris deposition in a tropical rainforest subject to hurricanes. Forest Ecology and Management, 332, 93–102. http://centerforsystematicentomology.org/default.asp?action=insectamundi&id=insecta_new&year=2015 [Google Scholar]
  75. Smith, D. (1976). The seasonal history and control of Ceroplastes rubens Maskell on citrus in south‐east Queensland. Queensland Journal of Agricultural and Animal Sciences, 33(1), 23–30. [Google Scholar]
  76. Smith, D. (1986). Biological control of Ceroplastes rubens Maskell, by the introduced parasitoid Anicetus beneficus Ishii and Yasumatsu. Queensland Journal of Agricultural and Animal Sciences, 43(2), 101–105. [Google Scholar]
  77. Suh, S. J. , & Bombay, K. (2015). Scale insects (Hemiptera: Coccoidea) found on dracaena and ficus plants (Asparagales: Asparagaceae, Rosales: Moraceae) from southeastern Asia. Insecta Mundi, No. 04481‐10.
  78. Suh, S. J. (2020). Host plant list of the scale insects (Hemiptera: Coccomorpha) in South Korea. Insecta Mundi.
  79. Summerville, W. A. T. (1935). Pink wax scale. Queensland. Agricultural Journal, 44, 404–408. [Google Scholar]
  80. Swirski, E. , Ben‐Dov, Y. , & Wysoki, M. (1997). Persimmon. In World crop pests (Vol. 7, pp. 265–270). Elsevier. [Google Scholar]
  81. Talhouk, A. S. (1978). Contributions to the knowledge of almond pests in East‐Mediterranean countries. VIII. The establishment of an integrated program of almond pest management in Lebanon. Journal of Applied Entomology, 87, 1–14. [Google Scholar]
  82. Tang, F. D. (1991). The Coccidae of China. 377 pp.+ 84 figures. Taiyuan, Shanxi, Shanxi united universities press. Chinese with English summary, keys to subfamilies, tribes, subtribes, and species.
  83. Toy, S. J. , & Newfield, M. J. (2010). The accidental introduction of invasive animals as hitchhikers through inanimate pathways: a New Zealand perspective. Revue scientifique et technique (International Office of Epizootics), 29(1), 123–133. [DOI] [PubMed] [Google Scholar]
  84. TRACES‐NT . (online). TRADE Control and Expert System. Available online: https://webgate.ec.europa.eu/tracesnt
  85. Vithana, K. V. A. I. K. , Sirisena, U. G. A. I. , & Hemachandra, K. S. (2019). Pink wax scale (Ceroplastes rubens) a growing threat to agriculture in Sri Lanka. Tropical Agricultural Research, 30(2), 13–22. [Google Scholar]
  86. Wang, X. B. , Deng, J. , Zhang, J. T. , Zhou, Q. S. , Zhang, Y. Z. , & Wu, S. A. (2015). DNA barcoding of common soft scales (Hemiptera: Coccoidea: Coccidae) in China. Bulletin of Entomological Research, 105(5), 545–554. [DOI] [PubMed] [Google Scholar]
  87. Wen, H. C. , Lu, F. M. , Hao, H. H. , & Liou, T. D. (2002). Insects pests and their injuries and control on longan in Southern Taiwan. Journal of Agricultural Research of China, 51(3), 56–64. [Google Scholar]
  88. Waterhouse, D. F. , & Sands, D. P. A. (2001). Classical biological control of arthropods in Australia. CSIRO Entomology, Australian Centre for International Agricultural Research. [Google Scholar]
  89. Williams, D. J. , & Miller, D. R. (2010). Scale insects (Hemiptera: Sternorrhyncha: Coccoidea) of the Krakatau Islands including species from adjacent Java. Zootaxa, 2451, 43–52. [Google Scholar]
  90. Xia, C. , Zhang, W. , Sun, X. , & Li, H. (2005). Observations on biological habits of Ceroplastes rubens Maskell in Shanghai. Journal of Shanghai Jiaotong University‐Agricultural Science, 23(4), 439–442. [Google Scholar]
  91. Xiao, H. , & Huang, D. W. (2001). A review of Eunotinae (hymenoptera: Chalcidoidea: Pteromalidae) from China. Journal of Natural History, 35(11), 1587–1605. [Google Scholar]
  92. Yanes, L. C. , & Campos, M. S. (2021). Ceroplastes rubens Maskell (Hemiptera: Coccidae), nuevo reporte para Cuba. Revista de Protección Vegetal, 36(1), 1–3. [Google Scholar]
  93. Yasumatsu, K. (1951). Futher Investigations On The Hymenopterous Parasites Of Ceroplastes Rubens In Japan, Futher Investigations On The Hymenopterous Parasites Of Ceroplastes Rubens In Japan.

Articles from EFSA Journal are provided here courtesy of Wiley

RESOURCES