Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Nov 21:2024.06.30.601424. Originally published 2024 Jul 2. [Version 3] doi: 10.1101/2024.06.30.601424

PTEN Regulates Myofibroblast Activation in Valvular Interstitial Cells based on Subcellular Localization

Dilara Batan, Georgios Tseropoulos, Bruce E Kirkpatrick, Kaustav Bera, Alex Khang, Mary Weiser-Evans, Kristi S Anseth
PMCID: PMC11244890  PMID: 39005262

Abstract

Aortic valve stenosis (AVS) is characterized by altered mechanics of the valve leaflets, which disrupts blood flow through the aorta and can cause left ventricle hypotrophy. These changes in the valve tissue result in activation of resident valvular interstitial cells (VICs) into myofibroblasts, which have increased levels of αSMA in their stress fibers. The persistence of VIC myofibroblast activation is a hallmark of AVS. In recent years, the tumor suppressor gene phosphatase and tensin homolog (PTEN) has emerged as an important player in the regulation of fibrosis in various tissues (e.g., lung, skin), which motivated us to investigate PTEN as a potential protective factor against matrix-induced myofibroblast activation in VICs. In aortic valve samples from humans, we found high levels of PTEN in healthy tissue and low levels of PTEN in diseased tissue. Then, using pharmacological inducers to treat VIC cultures, we observed PTEN overexpression prevented stiffness-induced myofibroblast activation, whereas genetic and pharmacological inhibition of PTEN further activated myofibroblasts. We also observed increased nuclear PTEN localization in VICs cultured on stiff matrices, and nuclear PTEN also correlated with smaller nuclei, altered expression of histones and a quiescent fibroblast phenotype. Together, these results suggest that PTEN not only suppresses VIC activation, but functions to promote quiescence, and could serve as a potential pharmacological target for the treatment of AVS.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES