Abstract

Non-coding RNAs are pivotal regulators of gene and protein expression, exerting crucial influences on diverse biological processes. Their dysregulation is frequently implicated in the onset and progression of diseases, notably cancer. A profound comprehension of the intricate mechanisms governing ncRNAs is imperative for devising innovative therapeutic interventions against these debilitating conditions. Significantly, nearly 80% of our genome comprises ncRNAs, underscoring their centrality in cellular processes. The elucidation of ncRNA functions is pivotal for grasping the complexities of gene regulation and its implications for human health. Modern genome sequencing techniques yield vast datasets, stored in specialized databases. To harness this wealth of information and to understand the crosstalk of non-coding RNAs, knowledge of available databases is required, and many new sophisticated computational tools have emerged. These tools play a pivotal role in the identification, prediction, and annotation of ncRNAs, thereby facilitating their experimental validation. This Review succinctly outlines the current understanding of ncRNAs, emphasizing their involvement in disease development. It also highlights the databases and tools instrumental in classifying, annotating, and evaluating ncRNAs. By extracting meaningful biological insights from seemingly “junk” data, these tools empower scientists to unravel the intricate roles of ncRNAs in shaping human health.
Keywords: Non-coding RNA, MicroRNA, Long non-coding RNA, CircularRNA, Cancer, Database
Sequencing the human genome unveiled new dimensions in molecular mechanisms, with a small portion translating into proteins, <2% of the genome. The non-coding (nc) genome’s functions remain unsolved, but recent studies highlight ncRNAs’ crucial roles in diverse biological processes and disease pathogenesis. Sequencing and analysis revealed 98% of the transcriptional activity in “Junk DNA”, prompting questions about gene evolution of an independent gene type or a convergence of coding and non-coding genes.1 Non-coding is further divided into “housekeeping ncRNAs” and “regulatory ncRNAs”, and then regulatory ncRNAs are categorized based on size into “small ncRNAs” (<200nt) and “large ncRNAs” (>200nt), as illustrated in Figure 1.
Figure 1.

Overview of different types of ncRNAs.
There are different kinds of ncRNAs, such as rRNA, snRNA, tRNA, microRNA, lncRNA, circRNA, and piwiRNA. A plethora of novel transcripts determined by advanced deep sequencing technologies required the classification and annotation of ncRNAs. The HUGO Gene Nomenclature Committee (HGNC) provides standard nomenclature of ncRNA genes annotated from the human genome.2 This nomenclature of ncRNA genes ensures that they are correctly cited and prevents confusion of gene symbols. If the ncRNAs do not have gene symbols or are not classified, it would create confusion for researchers while annotating the data. Non-coding RNAs are briefly explained as follows: First, lncRNAs are transcribed by RNA POL II. LncRNAs are epigenetic regulators of functions in histone and DNA modification, primarily methylation and acetylation, to control the transcription of genes.3 Classification of lncRNAs is based on length, location with respect to protein-coding genes, residence within specific DNA regulatory elements and loci, biogenesis pathway, subcellular localization or origin, lncRNA function, or association with specific biological processes.4Second, biogenesis of microRNA begins from polycistronic transcripts found in an intron or UTR of protein coding genes (PCGs). MicroRNA plays a critical regulatory role in inhibiting protein translation and destabilizing mRNA and thereby deregulating post-transcriptional gene regulation.5 MicroRNAs are classified on the basis of miRNA associated with disease, miRNA associated with function, miRNA associated with cluster genes, and miRNA with tissue specificity. Third, circRNA, produced from back-splicing, controls genes by inhibiting miRNA activity as a miRNA sponge, and it control one or more miRNAs.6 CircRNA can be classified into four types depending on its origin: (i) exonic circRNAs (ecircRNAs), which consist exclusively of single or multiple exons; (ii) circular intronic RNAs (ciRNAs), which are intron-derived; (iii) exon-intron circRNAs (ElciRNAs), which contain both exons and introns; and (iv) tRNA intronic circRNAs (tricRNAs), which are derived from the linear intron of tRNA precursors.7Fourth, small nuclear RNA (snRNA) can be transcribed from a promotor and encoded within intronic sequences; its vital function is in splicing of introns from primary genomic transcripts.8Fifth, small nucleolar RNAs (snoRNAs), encoded in the introns of protein-coding or non-coding genes and co-transcriptionally induced with host genes, regulate mRNA processing and are involved in rRNA processing, stress response, and metabolic changes.9Sixth, small interfering RNA (siRNA) is involved in the simultaneous synthesis of mature siRNA with transcription by RNA POL II, RNA POL III, or RNA POL IV, creating dsRNA, temporarily silences desired genes, and triggers RNAi upon binding to the target transcript.10Seventh, PIWI-interacting RNA (piRNA or piwiRNA) is transcribed inside the nucleus and exported to the cytoplasm, where it is further processed to form mature piRNAs that get loaded onto PIWI proteins, which have crucial roles in silencing transposons, preserving germline DNA integrity and epigenetic regulation of sex determination, and generating heterochromatin.11 Non-coding RNAs can cross-talk and interact with coding genes, proteins, and other ncRNAs (LncRNA and ceRNA),12 and when they are simply transcriptional noise it means that their expression levels remain nearly the same when observed among different tissues.13 However, many ncRNAs are also detected in the cytoplasm and nucleus. They interact with mRNAs, genes, and other ncRNAs, play regulatory functions, and show integrated regulatory networks with the ceRNA network and ncRNA-mediated networks in genomics and proteomics.14 This Review aims to highlight the significant role of ncRNAs, decipher the different types of RNAs and their role as biomarkers in diseases, and focus on the bioinformatics tools and the available databases covering the wide utility of different types of ncRNA databases as well as the disease- and cancer-associated databases.
Regulation of Non-coding RNAs
Regulation of non-coding RNAs occurs at multiple levels by its interactions with DNA, RNA, and proteins, as illustrated in Figure 2. MicroRNA interacts with the 3′UTR of target mRNAs, 5′UTR, coding sequence, and gene promoters. There are various mechanisms underlying miRNA-mediated gene regulations, including gene silencing via the miRISC complex, transcriptional and post-transcriptional gene regulation within the nucleus, and translation activation. Studies revealed that the dynamical behavior of microRNA contributes gene regulation, including functionalized compartmentalization and shuttling of miRISC within the cells.15LncRNA modulates in several ways, such as chromatin regulation, where protein-lncRNA localization and functions are mediated by recruitment and decoy of chromatin modifiers and direct interaction of proteins-lncRNA in cis and trans positions on chromatin; transcriptional regulation, with gene silencing by lncRNA, where lncRNAs transcribe at enhancers, regulatory networks involving cis-acting lncRNAs, chromatin scaffolding, and nuclear condensation; and post-transcription regulation, via RNA splicing, stability, and translation, cellular mechanisms where lncRNAs are localized to specific organelles, such as exosomes and mitochondria, and cellular homeostasis is dependent on the action of lncRNAs.16Small nucleolar RNA plays roles in rRNA, tRNA, and mRNA modifications. It guides N4-acetylcytidine, 2′-O-methylation, and pseudouridylation of rRNAs and regulates alternative splicing and levels of mRNA like a miRNA.17Small interfering RNA (cleavage product of dsRNA) mediates gene silencing (specific degradation of mRNA), shown to be post-transcriptional sequence-specific process.18Circular RNA modulates gene expression in the nucleus, which then act as microRNA decoys, regulate transcription, splicing, and chromatin interactions, can sequester proteins, and function as protein scaffolds.19PiwiRNA regulates transposon silencing and pachytene piRNA function and can distinguish self from non-self and fight viral infections.20
Figure 2.

Depicting the types of regulation by different ncRNAs (microRNA, lncRNA, circRNA, piRNA, siRNA, snoRNA) inside the cell. Dashed line arrow shows the regulation by the respective ncRNA, and dark line arrow shows the normal processes going on inside the cell.
Non-coding RNA Databases
Typically, data exists in a raw format characterized by diverse structures, necessitating a preprocessing stage to render the data suitable for algorithms, tools, and tailoring to the specific context of the relevant field. Techniques for data integration are employed to manage disparate resources, facilitating the consolidation of all data into organized databases. Tools and pipelines used for data integration include dChip-GemiNi (gene and microRNA network-based integration), MAGIA2, mirConnX, and IntegraMiR. Transcriptomic databases store information related to transcripts of the human genome whether coding mRNAs or ncRNAs, genes, and transcription factors.21
Training, testing, and verifying the input data for unique prediction are done by using machine learning (ML) approaches such as SVM, Monte Carlo algorithm, etc. Some NLPs (Natural Language Processing) help assess biological data. Biological data formats represent biological information in a file. A set of commonly used formats (FASTA/Q, SAM, VCF, GFF/GTF, etc.) are used for importing and exporting data.22
Databases
According to the 2018 NAR Molecular Biology Database Collection report, the current number of databases is 1737. However, this comprehensive list covers the broad spectrum of different primary and secondary biological databases containing multiple types of “omics” data.23 We emphasize four primary approaches in our database search: (1) acquiring information about databases, (2) making predictions through the integration of data within databases, (3) employing deep learning methods for the analysis of ncRNA, and (4) making identifications through the analysis of genomic data that reports on ncRNA, mRNA, and/or protein expression. Multiple platforms (databases and tools) are utilized for a complete systems-level analysis workflow, which causes hurdles and produces a fragmented user experience. Having many objectives, users analyze data on different platforms, which requires users to learn the details of each interface successfully, and they must merge the data to get useful results. When the users are inexperienced, they pose barriers while doing analysis. Moreover, significant data may be omitted during the analysis, and this is due to the disintegration of sources and analysis platforms. To facilitate multi-platform data analysis and interpretation, developers designed databases/tools to be more user-friendly and to increase the user experience.24
Non-coding RNAs play a key role during the transcriptional and post-translational processes. It is challenging to perform experimental processes to understand diversity in the functions of ncRNA. Computational approaches performed to analyze ncRNAs based on in silico approaches include annotation, data mining of new RNA datasets, and databases and tool resources.25 Computational methods are developed to ensure that valid ncRNA candidates should be found with a high confidence score, precision, and accurate significant value using statistical models for further experimental validation. ncRNA is currently a hot topic for studying drug targets and checking their correlations with diseases. Several reviews have already been published on computational databases and tools. However, many of them are outdated, with the rise of ncRNAs, and updating the list of computational databases and tools for ncRNAs is required from time to time. Computational predictions offer an alternative source of insight into ncRNA function, complementing experimental findings. The knowledge acquired from experiments continuously informs and refines computational methods, leading to more accurate and insightful predictions. In turn, these predictions shed light on potential interactions between ncRNAs and other biological components, guiding further experimental validation. This synergistic relationship between computational and experimental approaches fosters a deeper understanding of ncRNAs and their roles in various biological processes. The emphasis is on offering an updated database and tools, sparing researchers the challenge of navigating vast repositories. Current transcriptomics methods and computational resources in the ncRNA field enhance the classification, annotation, identification, storage, prediction, and analysis of ncRNAs.26
Furthermore, ncRNA databases are public repositories utilized by researchers. Some of the commonly used genomic databases, such as TCGA, ICGC, PCAWG, Cancer Cell Line Encyclopedia (CCLE), Gene Expression Omnibus (GEO), NCI Genomic Data Commons (GDC), cBioPortal, UALCAN, KM plotter, NCBI, ENCORE, Refseq, UCSC, PubMed, PDB, GENCODE, COSMIC, Ensembl, ICGC, RNAcentral, etc., work as the source of ncRNA databases and tools. Figure 3 illustrates that deep learning, new networks, and statistical analysis can form new ncRNA databases from source databases.27
Figure 3.

This illustration shows that data is extracted from source databases. Deep learning, statistical models, and network studies are done and ncRNA databases are curated. Note: In this figure, only a few representative source databases and ncRNA databases are shown.
We classify databases and tools into several categories: basic genomic annotation, expression profile, molecular interactions/regulatory networks, identification, sequence variants, prediction, and disease association, as tabulated in Table 1. In the table, enlisted databases and tools have various functions from decoding the functions and identification to prediction; categorization helps in studying various aspects, such as the molecular interactions of ncRNA-DNA, ncRNA-RNA, ncRNA-protein, LncRNA-miRNA, miRNA-mRNA, ceRNA networks, sequence variants of single nucleotide polymorphism (SNPs), SNPs in structure, and SNPs in interactions; expression profiles of expression patterns, epigenetics, secondary structure, TFBS (transcription-factor binding site) in ncRNAs, mRNA coexpression; basic genomic annotation of biological function, types and location, evolutionary conservation, sequence information, coding potential; disease association and its role in progression, and diagnostic and prognostic markers for building therapeutic targeting strategies. This tabular data can assist researchers in getting a better understanding of the ncRNA databases. Some of the databases and tools are for more than one type of ncRNAs; those specific to one type of ncRNA are called Multiple-Class RNA Databases. Some of the databases are mostly used by researchers as they are more user-friendly and more convenient. The most significant cutting-edge public repositories of ncRNA data are as follows: for Multiple RNA class, Rfam, RNACentral, NONCODE, deepBase, ncRNAdb, NPInter, NSDNA; for microRNA, miRBase and miRTarBase; for lncRNA, NONCODE, LncRNAWiki, LncBook, and LNCipedia; for circRNA, circBase, CircAtlas, and CircInteractome; and for piwiRNA, piRbase and piRNAdb.28−30 With the increasing prevalence of in silico studies, researchers can leverage computational sources, such as databases, for rigorous investigations. This Review delineates recent advancements in databases, bioinformatic tools, and innovative in silico approaches that facilitate the prediction and establishment of biological interactions involving ncRNAs. Special attention is given to ncRNA species, particularly those identified in humans.
Table 1. Databases Categorized into Basic Annotation, Expression Profile, Molecular Interactions/Regulatory Networks, Identification, Sequence Variants, Prediction, and Disease Associationa.



Color representation for different ncRNAs is different.
Databases and Tools for Predicting Interactions
Databases and tools that predict the interactions between RNA and RNA, or RNA and proteins, and any other interactions are discussed as indispensable resources for understanding the complex regulatory networks within cells. RAID is a resource that integrates experimental and computational prediction of RNA-associated (RNA-protein/RNA-RNA) interactions involving various RNAs (including circRNA, lncRNA, miRNA, mRNA, miscRNA, pseudogenes, rRNA, scRNA, sncRNA, snoRNA, snRNA, sRNA and tRNA) and contains many species. RNAInter means “RNA interactome” database and promotes research on RNA interactions with RNA, DNA, protein, and compounds in disease processes. Annotation in RNAInter is shown with disease associations and tissue-specific expression. ViRBase investigates viral infections via means of viral and host ncRNA-associated interactions. NPInter is newly updated with all recently identified ncRNA interactions, which were curated manually, and each interaction entry shows detailed annotations and prediction scores. ChIRP-seq data is captured for investigating the circRNA interactions and ncRNA-DNA interactions. The new interface is more convenient than StarBase and RAID, and to add confidence to the interactions, the predictive scores and visualization modules are integrated. SomamiR shows somatic mutations in miRNA and their target sites, as well as their interaction with competing endogenous RNAs (ceRNAs) like mRNA, lncRNA, and circRNA. A list of somatic mutations in miRNA seed regions gives information about miRNA target recognition. The miR2GO web server is integrated with SomamiR 2.0 for finding the functional impact of these mutations in miRNA target regions, and other sources such as GWAS and the biological pathway are added for functional analysis of somatic mutations altering miRNA-ceRNA interactions. ENCORI (The Encyclopedia of RNA Interactomes), previously known as StarBase, is a well-known database that integrates different data for mainly RNA species from high-throughput sequencing studies. ENCORI focuses exclusively on miRNA-ncRNA, miRNA-mRNA, RBP-ncRNA, and RBP-mRNA interactome data for visualization, while also incorporating complementary studies such as those involving survival and differential expression analyses. The miRFunction and ceRNAFunction web servers were developed to predict the function of miRNAs and other ncRNAs from the miRNA-mediated regulatory networks. LncBook adds three tools, RNAhybrid, miRanda, and TargetScan, to predict more lncRNA and miRNA interactions. LncFinder was released as a web server and R package that helps in finding the properties of lncRNAs and mRNAs, predicting lncRNA-protein interactions, and analyzing lncRNA evolution. Circ2Traits (circular 2 traits) is a database that focuses on two traits: (1) identification of the association between circRNAs and miRNAs specifically related to diseases in humans so that how circRNA nteract with disease and enrichment genes can be calculated; (2) SNPs associated with human diseases and their association with circRNAs. piRNAclusterDB shows the interactions among PIWI-interacting RNAs (piRNAs) and PIWI proteins. A high divergence of genomic piRNA-producing loci has been seen, along with their regulation and evolution of piRNA-producing loci across various tissues and species.
Non-coding RNAs as Therapeutic Biomarkers
Nowadays ncRNAs can be manufactured as synthetic oligonucleotides, which can bind to an mRNA and inhibit it directly and thus can modulate the activity of targets.31 Non-coding RNAs play a wide range of roles in the onset and progression of cancer. Dysregulated ncRNAs serve as hallmarks of cancers as oncogenes or tumor-suppressor genes and hence can be used as newer strategies to uncover the role of “dark matter” in the genome in cancer.32 They represent potential diagnostic and therapeutic biomarkers in hereditary diseases as well, like in alpha thalassemia, Alzheimer’s disease, Angelman syndrome, Beckwith–Wiedemann syndrome, metaphyseal chondrodysplasia, facioscapulohumeral muscular dystrophy (FSHD), Hirschsprung disease (HSCR), Huntington’s disease, Opitz–Kaveggia syndrome, Prader–Willi syndrome, pseudohypoparathyroidism type 1b (PHP1b), Silver–Russell syndrome, spinocerebral ataxia type 7 (SCA7), spinocerebral ataxia type 8, spinal muscular atrophy, heart diseases (myocardial infarction, hypertension, cardiac developmental disorder, cardiac fibrosis), cancer (breast cancer, cervical cancer, lung cancer, leukemia), and viral infections (Dengue virus, hepatitis C virus, Japanese encephalitis virus, enterovirus 71 (EV71), human immunodeficiency virus, SARS-COV,33 cerebral ischemia).34 Nemeth et al. provide an overview of the functions of miRNAs, lncRNAs, and circRNAs in cancer and various other significant human diseases, including cardiovascular, neurological, and infectious diseases. They also discuss the potential applications of ncRNAs as disease biomarkers and therapeutic targets.35
Role of Non-coding RNAs in Cancers and Various Diseases
Non-coding RNAs play a role in many physiological processes, from regulating healthy cells to developing cancerous cells. Cancer develops gradually, characterized by uncontrolled proliferation of cancer cells, altered apoptosis mechanisms, and infiltration of normal cells, leading to metastasis, a primary cause of death. Following metastasis, treatment becomes more challenging due to increased risk factors. Non-coding RNAs (ncRNAs) are implicated as both oncogenic factors and tumor suppressors across various cancers. Their roles are often multifaceted, with interactions among different ncRNAs regulating crucial cellular processes, including those involved in cancer, influencing its initiation and progression through three mechanisms, acting as oncogenes or tumor suppressors or impacting metastatic processes.36
Additionally, the distinctive tissue- and cancer-specific expression patterns of ncRNAs suggest their potential utility as diagnostic and prognostic biomarkers. However, a deeper understanding of ncRNAs, including newly identified tsRNA and circRNA, through comprehensive characterization and functional analysis is necessary to elucidate their molecular mechanisms in tumorigenesis. This exploration could unveil promising therapeutic targets for cancer treatment.37
“Jumping genes” or transposable elements (TEs) are considered essential factors for disturbing several molecular processes that cause the plasticity and evolution of the genome. Alu and LINE-1 repeats are prevalent in humans and may have their molecular roots in numerous clinical disorders.38 Transposons play a role in cancers by different mechanisms: 1. gene expression alteration by insertion; 2. alternative splicing; 3. double-strand breaks; 4. onco-exaptation; 5. placental gene expression; 6. expression of oncogenic LncRNAs; and 7. transposons in autophagy and senescence. Elucidating the expression of oncogenic LncRNAs reveals the influence of TEs on ncRNAs. TEs are present as part of lncRNAs, providing sites for transcription initiation and post- transcriptional modifications. Long terminal repeat (LTR) retroelements are part of the lncRNA example HOST 2 (Human Ovarian cancer Specific Transcript 2), which is overexpressed in triple-negative breast cancer (TNBC) and pancreatic cancer. LTR12C acts as a promoter for SchLAP1 lncRNA and overexpresses SchLAP1 in prostate cancer. Some of the LTRS promote oncogenic lncRNAs, including BACE1 and HULC in liver and breast cancer. Continuous research on jumping genes can give us a better understanding of their biological roles and applications in cancers.39 Beňačka et al. gave examples of ncRNAs involved selectively in some cancer diagnostic indications such as breast cancer, brain tumors, papillary thyroid carcinoma, hepatocellular carcinoma, intrahepatic cholangiocarcinoma, bronchogenic carcinoma, kidney cancers, bladder carcinoma, prostate cancer, cervix/endometrium/ovarian cancer, gastric cancer, colorectal cancer, and leukemia and non-cancer diagnostic indications such as gastritis, Crohn’s disease, ulcerative colitis, brain/spinal injuries, Alzhemier’s disease, Parkinson’s disease, diabetes mellitus, coronary artery disease, heart failure, COPD, asthma, NAFLD, cirrhosis, and liver failure.40
Non-coding RNAs transferred within the body in bodily fluids (serum, plasma, urine, saliva, and others), called extracellular (EC) or circulating ncRNAs (EC ncRNAs), mediate extracellular communication; they can also be called non-exosomal ncRNAs. Other EC ncRNAs are transported inside the cells for intercellular communication, enclosed by extracellular vesicles (such as exosomes, microvesicles, and apoptotic bodies); they can also be called exosomal ncRNAs. Exosomal and non-exosomal ncRNAs that regulate physiological homeostasis and pathological events in health and disease have been examined.41 NcRNAs can form integrated networks in major diseases, thereby working in chromatin modulation, splicing regulation, crosstalk with other ncRNAs in proteomics, and antisense transcription.33
Diseases and Cancer-Associated Non-coding RNA Databases
The versatile roles of ncRNAs span a broad spectrum of cellular processes, with some exerting significant influence in disease contexts. Despite substantial strides in recent decades, the identification of numerous potential ncRNA targets remains incomplete. The experimental validation of all prospective targets is a laborious and costly process, prompting increased interest in alternative approaches, particularly those leveraging bioinformatics. Given the involvement of ncRNAs in biological functions and signaling pathways, their dysregulation has been linked to various human diseases, including cancer. Recognizing the pivotal role of ncRNAs in disease contexts is crucial for biomedical researchers seeking diagnostic, therapeutic, or preventive solutions for specific disorders. This underscores the clinical relevance of understanding ncRNAs. Notably, dedicated databases have emerged to consolidate information on ncRNAs’ involvement in various diseaprovidses, providing a valuable resource for researchers (Table 1).
There are various ncRNA databases associated with diseases. For instance, Lnc2Cancer is an interactive analysis platform including single cell, RNA sequencing expression data, and associations between lncRNA or circRNA and various human cancers. LnCAR (LncRNAs from cancer arrays) overcomes the derivation of reannotation of public microarray data by providing expression profiles and prognostic landscape of lncRNAs. Circad (circRNAs associated with diseases) deals with the association of circular ncRNAs with diseases with reference to International Statistical Classification of Diseases (ICD) codes, providing standard disease nomenclature. CircRiC (circular RNA in cancers) provides an analysis of circRNAs and prediction for their being RNA regulatory elements as biogenesis regulators on drug response and association with mRNA, proteins, and mutations. MiOncoCirc helps in finding onogenic circRNAs. The iPiDA-GCN predictor discriminates features from similarity networks of piRNA and disease association patterns and reveals the potential pathogenesis at the RNA level affected by piRNA-disease associations. GeneCaRNA is an all-inclusive compendium of ncRNA genes that empowers ncRNA interaction networks related to diseases as well. ncRPheno databases identify and validate diseases related to ncRNAs, and miRdisNET discovers microRNA biomarkers and predicts potential microRNA-disease associations. cancerEnD is available to identify new enhancer biomarkers for therapy and disease diagnosis. The MetaGxData compendium integrates three packages containing curated and processed expression datasets for breast (MetaGxBreast), ovarian (MetaGxOvarian), and pancreatic (MetaGxPancreas) cancers. ncRNAVar association data between validated ncRNA variants and human diseases. MNDR (Mammalian ncRNA-Disease Repository) integrates manually curated data from literature that experimentally supports and predicts ncRNA-disease associations. The SPENCER database investigates ncPEPs (small peptides encoded by ncRNAs) in multiple cancers, OMCD compiles data for microRNA gene expression of normal and tumor tissues, and the BioXpress database integrates RNA-seq-derived gene expression for pan-cancer analysis. ViRBase investigates viral infections via means of viral and host ncRNA-associated interactions.
Some are site-/organ-specific databases. OncoDB is for analysis of gene expression and viral infection in cancer. The lung cancer database, LCE, explores gene expression and clinical associations. The breast cancer databases include BreastMark, which is a powerful tool for examining putative gene/microRNA prognostic markers; bc-GenExMiner for breast cancer differential gene expression analyses; BC-TFdb, for transcription factors that regulate breast cancer; and BCLncRDB for lncRNAs expression. The liver cancer database CancerLivER maintains gene expression datasets of liver cancer along with the putative biomarkers. The type 2 diabetes database T2DB is for long ncRNA genes expression in Type II diabetes. FibroDB identifies lncRNA gene expression during fibrosis. Three databases were found that provide ncRNA associations with the immune system: the RNA2Immune database identifies ncRNA-immune system associations, ImmunemiR prioritizes immune-microRNA disease associations, and ncRI provides experimentally validated ncRNAs in inflammation. These disease- and cancer-associated databases are depict in Figure 4.
Figure 4.
Depiction of the disease- and cancer-associated ncRNA databases.
Advantages and Major Challenges of Databases
The availability of databases offers researchers a continuous influx of information through regular updates and data derived from meticulous experimental processes, fostering the design of experimental trials and the exploration of new interactions. Computational and statistical methods enable predictions, with various databases and tools, such as RNAInter, oRNAment, NPInter v4.0, miRDB, and ENCORI, incorporating in silico prediction algorithms. The integration of deep learning, mimicking human brain function through artificial neural networks, has significantly impacted omics studies, introducing advancements like deep structured learning and hierarchical learning for analyzing quantitative data properties. The era of next-generation sequencing has provided unprecedented opportunities for identifying new ncRNAs. Cheng et al. discuss the application of bioinformatics in studying ncRNAs and highlight major challenges in computational analysis.42,43
To enhance the impact of computational models in biology, addressing challenges such as comprehensiveness, accessibility, reusability, interoperability, and reproducibility is crucial. Computational models play a role in studying the dynamic behavior of complex systems, and improvements involve proper model annotations, community-supported standardization of formats, interoperability through implementing standards in tools and platforms, transparency via comprehensive documentation across modeling frameworks, and the use of scorecards and simple rules to enhance model reproducibility.44
Conclusion
The field of ncRNA research demonstrates the diversity of nature and its complexity in cellular biology. Advancements in bioinformatics, sequencing technologies, proteomics, and microarrays have identified various ncRNAs. Understanding the unique functions of these ncRNAs is challenging due to their complex networks and biological pathways. The use of ncRNA therapies in drug development will increase, and further information is needed to understand their pharmacokinetics and dynamics. This Review covers various databases and tools and helps researchers by reducing the extensive research needed for selecting appropriate databases and tools. Non-coding RNAs have recently become strong therapeutic prospects in light of recent discoveries that these ncRNAs have an extensive function in disease progression and general pathophysiology. These databases will be invaluable resources for researchers working in this field. There are still unresolved issues concerning ncRNA research, even with the abundance of resources available. Future research should focus on ML models that recognize disease patterns. The use of ncRNAs may increase in the coming years, contributing to successful precision medicine and personalized therapies.
Acknowledgments
We thank VIT University, Vellore for providing facilities.
Glossary
Abbreviations
- ncRNA
Non-coding RNA
- piRNA
PIWI-interacting RNA
- lncRNA
Long non-coding RNA
- circRNA
Circular RNA
- miRNA
MicroRNA
- SVM
Support vector machine
- RNA POL
RNA polymerase
- TCGA
The Cancer Genome Atlas Program
- ICGC
International Cancer Genome Consortium
- GENCODE
Genome research and part of the ENCODE
- COSMIC
Catalogue of Somatic Mutations in Cancer
- ENCORE
ECHO Native Circadian Ontological Rhythmicity Explorer
- UCSC
University of California Santa Cruz
- PDB
Protein Data Bank
- CSCD
Cancer-Specific CircRNA Database
- ceRNA
Competing endogenous RNA
- CCLE
Cancer Cell Line Encyclopedia
The authors declare no competing financial interest.
Special Issue
Published as part of ACS Pharmacology & Translational Sciencevirtual special issue “Nucleosides, Nucleotides, and Nucleic Acids as Therapeutics”.
References
- Li J.; Liu C. Coding or Noncoding, the Converging Concepts of RNAs. Front Genet 2019, 10, 496. 10.3389/fgene.2019.00496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seal R. L.; Chen L.; Griffiths-Jones S.; Lowe T. M.; Mathews M. B.; O’Reilly D.; Pierce A. J.; Stadler P. F.; Ulitsky I.; Wolin S. L.; Bruford E. A. A Guide to Naming Human Non-coding RNA Genes. EMBO J. 2020, 39 (6), 103777. 10.15252/embj.2019103777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y.; Ding W.; Yu W.; Zhang Y.; Ao X.; Wang J. Long Non-Coding RNAs: Biogenesis, Functions, and Clinical Significance in Gastric Cancer. Mol. Ther Oncolytics 2021, 23, 458–476. 10.1016/j.omto.2021.11.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarroux J.; Morillon A.; Pinskaya M.. History, Discovery, and Classification of LncRNAs. In Long Non Coding RNA Biology, Advances in Experimental Medicine and Biology; Rao M. R. S., Ed.; Springer, 2017; pp 10081–46. 10.1007/978-981-10-5203-3_1. [DOI] [PubMed] [Google Scholar]
- Annese T.; Tamma R.; De Giorgis M.; Ribatti D. MicroRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front Oncol 2020, 10, 581007. 10.3389/fonc.2020.581007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beermann J.; Piccoli M.-T.; Viereck J.; Thum T. Non-Coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol Rev. 2016, 96 (4), 1297–1325. 10.1152/physrev.00041.2015. [DOI] [PubMed] [Google Scholar]
- Ouyang J.; Long Z.; Li G. Circular RNAs in Gastric Cancer: Potential Biomarkers and Therapeutic Targets. Biomed Res. Int. 2020, 2020, 1–13. 10.1155/2020/2790679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matera A. G.; Terns R. M.; Terns M. P. Non-Coding RNAs: Lessons from the Small Nuclear and Small Nucleolar RNAs. Nat. Rev. Mol. Cell Biol. 2007, 8 (3), 209–220. 10.1038/nrm2124. [DOI] [PubMed] [Google Scholar]
- Liang J.; Wen J.; Huang Z.; Chen X.; Zhang B.; Chu L. Small Nucleolar RNAs: Insight Into Their Function in Cancer. Front Oncol 2019, 9, 587. 10.3389/fonc.2019.00587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carthew R. W.; Sontheimer E. J. Origins and Mechanisms of MiRNAs and SiRNAs. Cell 2009, 136 (4), 642–655. 10.1016/j.cell.2009.01.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu X.; Pan Y.; Fang Y.; Zhang J.; Xie M.; Yang F.; Yu T.; Ma P.; Li W.; Shu Y. The Biogenesis and Functions of PiRNAs in Human Diseases. Mol. Ther Nucleic Acids 2020, 21, 108–120. 10.1016/j.omtn.2020.05.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamura S.; Imai-Sumida M.; Tanaka Y.; Dahiya R. Interaction and Cross-Talk between Non-Coding RNAs. Cell. Mol. Life Sci. 2018, 75 (3), 467–484. 10.1007/s00018-017-2626-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pertea M. The Human Transcriptome: An Unfinished Story. Genes (Basel) 2012, 3 (3), 344–360. 10.3390/genes3030344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang P.; Wu W.; Chen Q.; Chen M. Non-Coding RNAs and Their Integrated Networks. J. Integr Bioinform 2019, 16 (3), 20190027. 10.1515/jib-2019-0027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O’Brien J.; Hayder H.; Zayed Y.; Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne) 2018, 9, 402. 10.3389/fendo.2018.00402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Statello L.; Guo C.-J.; Chen L.-L.; Huarte M. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nat. Rev. Mol. Cell Biol. 2021, 22 (2), 96–118. 10.1038/s41580-020-00315-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang Z.; Du Y.; Wen J.; Lu B.; Zhao Y. SnoRNAs: Functions and Mechanisms in Biological Processes, and Roles in Tumor Pathophysiology. Cell Death Discov 2022, 8 (1), 259. 10.1038/s41420-022-01056-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alshaer W.; Zureigat H.; Al Karaki A.; Al-Kadash A.; Gharaibeh L.; Hatmal M. M.; Aljabali A. A. A.; Awidi A. SiRNA: Mechanism of Action, Challenges, and Therapeutic Approaches. Eur. J. Pharmacol. 2021, 905, 174178 10.1016/j.ejphar.2021.174178. [DOI] [PubMed] [Google Scholar]
- Chen L.-L. The Expanding Regulatory Mechanisms and Cellular Functions of Circular RNAs. Nat. Rev. Mol. Cell Biol. 2020, 21 (8), 475–490. 10.1038/s41580-020-0243-y. [DOI] [PubMed] [Google Scholar]
- Ozata D. M.; Gainetdinov I.; Zoch A.; O’Carroll D.; Zamore P. D. PIWI-Interacting RNAs: Small RNAs with Big Functions. Nat. Rev. Genet 2019, 20 (2), 89–108. 10.1038/s41576-018-0073-3. [DOI] [PubMed] [Google Scholar]
- Di Martino M. T.; Guzzi P. H.. Integrative Bioinformatics of Transcriptome: Databases, Tools and Pipelines. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier, 2019; Vol. 1, pp 1099–1103. 10.1016/B978-0-12-809633-8.20389-0. [DOI] [Google Scholar]
- Calabrese B.Standards and Models for Biological Data: Common Formats. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier, 2019; pp 130–136. 10.1016/B978-0-12-809633-8.20418-4. [DOI] [Google Scholar]
- Molkenov A.; Zhelambayeva A.; Yermekov A.; Mussurova S.; Sarkytbayeva A.; Kalykhbergenov Y.; Zhumadilov Z.; Kairov U.. Transcriptomic Databases. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier, 2019; pp 341–351. 10.1016/B978-0-12-809633-8.20208-2. [DOI] [Google Scholar]
- Zhou Y.; Zhou B.; Pache L.; Chang M.; Khodabakhshi A. H.; Tanaseichuk O.; Benner C.; Chanda S. K. Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nat. Commun. 2019, 10 (1), 1523. 10.1038/s41467-019-09234-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jani R.; Georrge J. J.. Noncoding RNAs: Database and Tools. Proceedings of 10th National Science Symposium on Recent Trends in Science and Technology, Rajkot, Gujarat, India, Feb 11, 2018; Christ Publications, 2018; pp 81–86.
- Thind A. S.; Kaur K.; Monga I.. An Overview of Databases and Tools for LncRNA Genomics Advancing Precision Medicine. In Machine Learning and Systems Biology in Genomics and Health; Springer Nature: Singapore, 2022; pp 49–67. 10.1007/978-981-16-5993-5_3. [DOI] [Google Scholar]
- Creighton C. J. Making Use of Cancer Genomic Databases. Curr. Protoc Mol. Biol. 2018, 121 (1), 49. 10.1002/cpmb.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maracaja-Coutinho V.; Paschoal A. R.; Caris-Maldonado J. C.; Borges P. V.; Ferreira A. J.; Durham A. M.. Noncoding RNAs Databases: Current Status and Trends. In Computational Biology of Non-Coding RNA, Methods in Molecular Biology; Humana Press: New York, 2019; Vol. 1912, pp 251–285. 10.1007/978-1-4939-8982-9_10. [DOI] [PubMed] [Google Scholar]
- Grillone K.; Riillo C.; Scionti F.; Rocca R.; Tradigo G.; Guzzi P. H.; Alcaro S.; Di Martino M. T.; Tagliaferri P.; Tassone P. Non-Coding RNAs in Cancer: Platforms and Strategies for Investigating the Genomic “Dark Matter”. Journal of Experimental & Clinical Cancer Research 2020, 39 (1), 117. 10.1186/s13046-020-01622-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balamurali D.; Stoll M. Non-Coding RNA Databases in Cardiovascular Research. Noncoding RNA 2020, 6 (3), 35. 10.3390/ncrna6030035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsui M.; Corey D. R. Non-Coding RNAs as Drug Targets. Nat. Rev. Drug Discov 2017, 16 (3), 167–179. 10.1038/nrd.2016.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grillone K.; Riillo C.; Scionti F.; Rocca R.; Tradigo G.; Guzzi P. H.; Alcaro S.; Di Martino M. T.; Tagliaferri P.; Tassone P. Non-Coding RNAs in Cancer: Platforms and Strategies for Investigating the Genomic “Dark Matter. Journal of Experimental & Clinical Cancer Research 2020, 39 (1), 117. 10.1186/s13046-020-01622-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhatti G. K.; Khullar N.; Sidhu I. S.; Navik U. S.; Reddy A. P.; Reddy P. H.; Bhatti J. S. Emerging Role of Non-coding RNA in Health and Disease. Metab Brain Dis 2021, 36 (6), 1119–1134. 10.1007/s11011-021-00739-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuan L.; Chen W.; Xiang J.; Deng Q.; Hu Y.; Li J. Advances of CircRNA-MiRNA-MRNA Regulatory Network in Cerebral Ischemia/Reperfusion Injury. Exp. Cell Res. 2022, 419 (2), 113302 10.1016/j.yexcr.2022.113302. [DOI] [PubMed] [Google Scholar]
- Nemeth K.; Bayraktar R.; Ferracin M.; Calin G. A. Non-Coding RNAs in Disease: From Mechanisms to Therapeutics. Nat. Rev. Genet 2024, 25 (3), 211–232. 10.1038/s41576-023-00662-1. [DOI] [PubMed] [Google Scholar]
- Wu S.; Wu Y.; Deng S.; Lei X.; Yang X. Emerging Roles of Noncoding RNAs in Human Cancers. Discover Oncology 2023, 14 (1), 128. 10.1007/s12672-023-00728-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng Y.; Li J.; Zhu L.. Cancer and Non-Coding RNAs. In Nutritional Epigenomics; Ferguson B. S., Ed.; Elsevier, 2019; Vol. 14, pp 119–132. 10.1016/B978-0-12-816843-1.00008-4. [DOI] [Google Scholar]
- Chénais B. Transposable Elements and Human Diseases: Mechanisms and Implication in the Response to Environmental Pollutants. Int. J. Mol. Sci. 2022, 23 (5), 2551. 10.3390/ijms23052551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pradhan R. K.; Ramakrishna W. Transposons: Unexpected Players in Cancer. Gene 2022, 808, 145975 10.1016/j.gene.2021.145975. [DOI] [PubMed] [Google Scholar]
- Beňačka R.; Szabóová D.; Guľašová Z.; Hertelyová Z.; Radoňak J. Non-Coding RNAs in Human Cancer and Other Diseases: Overview of the Diagnostic Potential. Int. J. Mol. Sci. 2023, 24 (22), 16213. 10.3390/ijms242216213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li C.; Ni Y.-Q.; Xu H.; Xiang Q.-Y.; Zhao Y.; Zhan J.-K.; He J.-Y.; Li S.; Liu Y.-S. Roles and Mechanisms of Exosomal Non-Coding RNAs in Human Health and Diseases. Signal Transduct Target Ther 2021, 6 (1), 383. 10.1038/s41392-021-00779-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rincón-Riveros A.; Morales D.; Rodríguez J. A.; Villegas V. E.; López-Kleine L. Bioinformatic Tools for the Analysis and Prediction of NcRNA Interactions. Int. J. Mol. Sci. 2021, 22 (21), 11397. 10.3390/ijms222111397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng C.; Moore J.; Greene C. Applications of Bioinformatics to Non-Coding RNAs in the Era of next-Generation Sequencing. Pac Symp. Biocomput 2014, 412–416. [PMC free article] [PubMed] [Google Scholar]
- Niarakis A.; Waltemath D.; Glazier J.; Schreiber F.; Keating S. M.; Nickerson D.; Chaouiya C.; Siegel A.; Noël V.; Hermjakob H.; Helikar T.; Soliman S.; Calzone L. Addressing Barriers in Comprehensiveness, Accessibility, Reusability, Interoperability and Reproducibility of Computational Models in Systems Biology. Brief Bioinform 2022, 23 (4), bbac212. 10.1093/bib/bbac212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kang J.; Tang Q.; He J.; Li L.; Yang N.; Yu S.; Wang M.; Zhang Y.; Lin J.; Cui T.; Hu Y.; Tan P.; Cheng J.; Zheng H.; Wang D.; Su X.; Chen W.; Huang Y. RNAInter v4.0: RNA Interactome Repository with Redefined Confidence Scoring System and Improved Accessibility. Nucleic Acids Res. 2022, 50 (D1), D326–D332. 10.1093/nar/gkab997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalvari I.; Nawrocki E. P.; Ontiveros-Palacios N.; Argasinska J.; Lamkiewicz K.; Marz M.; Griffiths-Jones S.; Toffano-Nioche C.; Gautheret D.; Weinberg Z.; Rivas E.; Eddy S. R.; Finn R. D.; Bateman A.; Petrov A. I. Rfam 14: Expanded Coverage of Metagenomic, Viral and MicroRNA Families. Nucleic Acids Res. 2021, 49 (D1), D192–D200. 10.1093/nar/gkaa1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yi Y.; Zhao Y.; Li C.; Zhang L.; Huang H.; Li Y.; Liu L.; Hou P.; Cui T.; Tan P.; Hu Y.; Zhang T.; Huang Y.; Li X.; Yu J.; Wang D. RAID v2.0: An Updated Resource of RNA-Associated Interactions across Organisms. Nucleic Acids Res. 2017, 45 (D1), D115–D118. 10.1093/nar/gkw1052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J.; Lin J.; Hu Y.; Ye M.; Yao L.; Wu L.; Zhang W.; Wang M.; Deng T.; Guo F.; Huang Y.; Zhu B.; Wang D. RNADisease v4.0: An Updated Resource of RNA-Associated Diseases, Providing RNA-Disease Analysis, Enrichment and Prediction. Nucleic Acids Res. 2023, 51, D1397–D1404. 10.1093/nar/gkac814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang J.; Zheng W.; Zhang P.; Lin Q.; Chen Z.; Xuan J.; Liu C.; Wu D.; Huang Q.; Zheng L.; Liu S.; Zhou K.; Qu L.; Li B.; Yang J. ChIPBase v3.0: The Encyclopedia of Transcriptional Regulations of Non-Coding RNAs and Protein-Coding Genes. Nucleic Acids Res. 2023, 51, D46–D56. 10.1093/nar/gkac1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng J.; Lin Y.; Xu L.; Chen K.; Li Q.; Xu K.; Ning L.; Kang J.; Cui T.; Huang Y.; Zhao X.; Wang D.; Li Y.; Su X.; Yang B. ViRBase v3.0: A Virus and Host NcRNA-Associated Interaction Repository with Increased Coverage and Annotation. Nucleic Acids Res. 2022, 50 (D1), D928–D933. 10.1093/nar/gkab1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cui T.; Dou Y.; Tan P.; Ni Z.; Liu T.; Wang D.; Huang Y.; Cai K.; Zhao X.; Xu D.; Lin H.; Wang D. RNALocate v2.0: An Updated Resource for RNA Subcellular Localization with Increased Coverage and Annotation. Nucleic Acids Res. 2022, 50 (D1), D333–D339. 10.1093/nar/gkab825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ning L.; Cui T.; Zheng B.; Wang N.; Luo J.; Yang B.; Du M.; Cheng J.; Dou Y.; Wang D. MNDR v3.0: Mammal NcRNA–Disease Repository with Increased Coverage and Annotation. Nucleic Acids Res. 2021, 49 (D1), D160–D164. 10.1093/nar/gkaa707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sweeney B. A.; Petrov A. I.; Ribas C. E.; Finn R. D.; Bateman A.; Szymanski M.; Karlowski W. M.; Seemann S. E.; Gorodkin J.; Cannone J. J.; Gutell R. R.; Kay S.; Marygold S.; dos Santos G.; Frankish A.; Mudge J. M.; Barshir R.; Fishilevich S.; Chan P. P.; Lowe T. M.; Seal R.; Bruford E.; Panni S.; Porras P.; Karagkouni D.; Hatzigeorgiou A. G.; Ma L.; Zhang Z.; Volders P.-J.; Mestdagh P.; Griffiths-Jones S.; Fromm B.; Peterson K. J.; Kalvari I.; Nawrocki E. P.; Petrov A. S.; Weng S.; Bouchard-Bourelle P.; Scott M.; Lui L. M.; Hoksza D.; Lovering R. C.; Kramarz B.; Mani P.; Ramachandran S.; Weinberg Z. RNAcentral 2021: Secondary Structure Integration, Improved Sequence Search and New Member Databases. Nucleic Acids Res. 2021, 49 (D1), D212–D220. 10.1093/nar/gkaa921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li J.; Xue Y.; Amin M. T.; Yang Y.; Yang J.; Zhang W.; Yang W.; Niu X.; Zhang H.-Y.; Gong J. NcRNA-EQTL: A Database to Systematically Evaluate the Effects of SNPs on Non-Coding RNA Expression across Cancer Types. Nucleic Acids Res. 2020, 48 (D1), D956–D963. 10.1093/nar/gkz711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang Y.; Wang J.; Zhao Y.; Wang H.; Liu T.; Li Y.; Cui T.; Li W.; Feng Y.; Luo J.; Gong J.; Ning L.; Zhang Y.; Wang D.; Zhang Y. CncRNAdb: A Manually Curated Resource of Experimentally Supported RNAs with Both Protein-Coding and Noncoding Function. Nucleic Acids Res. 2021, 49 (D1), D65–D70. 10.1093/nar/gkaa791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee Y.; Chen M.; Chung I.; Chang T. LncExplore: A Database of Pan-Cancer Analysis and Systematic Functional Annotation for LncRNAs from RNA-Sequencing Data. Database 2021, baab053. 10.1093/database/baab053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benoit Bouvrette L. P.; Bovaird S.; Blanchette M.; Lécuyer E. ORNAment: A Database of Putative RNA Binding Protein Target Sites in the Transcriptomes of Model Species. Nucleic Acids Res. 2019, 48 (D1), D166–D173. 10.1093/nar/gkz986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pliatsika V.; Loher P.; Magee R.; Telonis A. G.; Londin E.; Shigematsu M.; Kirino Y.; Rigoutsos I. MINTbase v2.0: A Comprehensive Database for TRNA-Derived Fragments That Includes Nuclear and Mitochondrial Fragments from All The Cancer Genome Atlas Projects. Nucleic Acids Res. 2018, 46 (D1), D152–D159. 10.1093/nar/gkx1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X.; Sun Y.-Z.; Zhang D.-H.; Li J.-Q.; Yan G.-Y.; An J.-Y.; You Z.-H. NRDTD: A Database for Clinically or Experimentally Supported Non-Coding RNAs and Drug Targets Associations. Database 2017, 2017, bax057. 10.1093/database/bax057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao L.; Wang J.; Li Y.; Song T.; Wu Y.; Fang S.; Bu D.; Li H.; Sun L.; Pei D.; Zheng Y.; Huang J.; Xu M.; Chen R.; Zhao Y.; He S. NONCODEV6: An Updated Database Dedicated to Long Non-Coding RNA Annotation in Both Animals and Plants. Nucleic Acids Res. 2021, 49 (D1), D165–D171. 10.1093/nar/gkaa1046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng L.-L.; Xu W.-L.; Liu S.; Sun W.-J.; Li J.-H.; Wu J.; Yang J.-H.; Qu L.-H. TRF2Cancer: A Web Server to Detect TRNA-Derived Small RNA Fragments (TRFs) and Their Expression in Multiple Cancers. Nucleic Acids Res. 2016, 44 (W1), W185–W193. 10.1093/nar/gkw414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan P. P.; Lowe T. M. GtRNAdb 2.0: An Expanded Database of Transfer RNA Genes Identified in Complete and Draft Genomes. Nucleic Acids Res. 2016, 44 (D1), D184–D189. 10.1093/nar/gkv1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu D.; Huang Y.; Kang J.; Li K.; Bi X.; Zhang T.; Jin N.; Hu Y.; Tan P.; Zhang L.; Yi Y.; Shen W.; Huang J.; Li X.; Li X.; Xu J.; Wang D. NcRDeathDB: A Comprehensive Bioinformatics Resource for Deciphering Network Organization of the NcRNA-Mediated Cell Death System. Autophagy 2015, 11 (10), 1917–1926. 10.1080/15548627.2015.1089375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar P.; Mudunuri S. B.; Anaya J.; Dutta A. TRFdb: A Database for Transfer RNA Fragments. Nucleic Acids Res. 2015, 43 (D1), D141–D145. 10.1093/nar/gku1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pang K. C.; Stephen S.; Dinger M. E.; Engstrom P. G.; Lenhard B.; Mattick J. S. RNAdb 2.0--an Expanded Database of Mammalian Non-Coding RNAs. Nucleic Acids Res. 2007, 35, D178. 10.1093/nar/gkl926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J.; Eteleeb A. M.; Rozycki E. B.; Inkman M. J.; Ly A.; Scharf R. E.; Jayachandran K.; Krasnick B. A.; Mazur T.; White N. M.; Fields R. C.; Maher C. A. DANSR: A Tool for the Detection of Annotated and Novel Small RNAs. Noncoding RNA 2022, 8 (1), 9. 10.3390/ncrna8010009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie F.; Liu S.; Wang J.; Xuan J.; Zhang X.; Qu L.; Zheng L.; Yang J. DeepBase v3.0: Expression Atlas and Interactive Analysis of NcRNAs from Thousands of Deep-Sequencing Data. Nucleic Acids Res. 2021, 49 (D1), D877–D883. 10.1093/nar/gkaa1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gao Y.; Shang S.; Guo S.; Li X.; Zhou H.; Liu H.; Sun Y.; Wang J.; Wang P.; Zhi H.; Li X.; Ning S.; Zhang Y. Lnc2Cancer 3.0: An Updated Resource for Experimentally Supported LncRNA/CircRNA Cancer Associations and Web Tools Based on RNA-Seq and ScRNA-Seq Data. Nucleic Acids Res. 2021, 49 (D1), D1251–D1258. 10.1093/nar/gkaa1006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stasiewicz J.; Mukherjee S.; Nithin C.; Bujnicki J. M. QRNAS: Software Tool for Refinement of Nucleic Acid Structures. BMC Struct Biol. 2019, 19 (1), 5. 10.1186/s12900-019-0103-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wan C.; Gao J.; Zhang H.; Jiang X.; Zang Q.; Ban R.; Zhang Y.; Shi Q. CPSS 2.0: A Computational Platform Update for the Analysis of Small RNA Sequencing Data. Bioinformatics 2017, 33 (20), 3289–3291. 10.1093/bioinformatics/btx066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nawrocki E. P.; Eddy S. R. Infernal 1.1:100-Fold Faster RNA Homology Searches. Bioinformatics 2013, 29 (22), 2933–2935. 10.1093/bioinformatics/btt509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cros M.-J.; de Monte A.; Mariette J.; Bardou P.; Grenier-Boley B.; Gautheret D.; Touzet H.; Gaspin C. RNAspace.Org: An Integrated Environment for the Prediction, Annotation, and Analysis of NcRNA. RNA 2011, 17 (11), 1947–1956. 10.1261/rna.2844911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruber A. R.; Findeiß S.; Washietl S.; Hofacker I. L.; Stadler P. F. RNAZ 2.0: Improved Noncoding RNA Detection. Pacific Symposium on Biocomputing 2009, 15, 69–79. 10.1142/9789814295291_0009. [DOI] [PubMed] [Google Scholar]
- Lindgreen S.; Gardner P. P.; Krogh A. MASTR: Multiple Alignment and Structure Prediction of Non-Coding RNAs Using Simulated Annealing. Bioinformatics 2007, 23 (24), 3304–3311. 10.1093/bioinformatics/btm525. [DOI] [PubMed] [Google Scholar]
- Gautheret D.; Lambert A. Direct RNA Motif Definition and Identification from Multiple Sequence Alignments Using Secondary Structure Profiles 1 1Edited by J. Doudna. J. Mol. Biol. 2001, 313 (5), 1003–1011. 10.1006/jmbi.2001.5102. [DOI] [PubMed] [Google Scholar]
- Huang Z.; Shi J.; Gao Y.; Cui C.; Zhang S.; Li J.; Zhou Y.; Cui Q. HMDD v3.0: A Database for Experimentally Supported Human MicroRNA–Disease Associations. Nucleic Acids Res. 2019, 47 (D1), D1013–D1017. 10.1093/nar/gky1010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kavakiotis I.; Alexiou A.; Tastsoglou S.; Vlachos I. S.; Hatzigeorgiou A. G. DIANA-MiTED: A MicroRNA Tissue Expression Database. Nucleic Acids Res. 2022, 50 (D1), D1055–D1061. 10.1093/nar/gkab733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marceca G. P.; Distefano R.; Tomasello L.; Lagana A.; Russo F.; Calore F.; Romano G.; Bagnoli M.; Gasparini P.; Ferro A.; Acunzo M.; Ma Q.; Croce C. M.; Nigita G. MiREDiBase, a Manually Curated Database of Validated and Putative Editing Events in MicroRNAs. Sci. Data 2021, 8 (1), 199. 10.1038/s41597-021-00979-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozomara A.; Birgaoanu M.; Griffiths-Jones S. MiRBase: From MicroRNA Sequences to Function. Nucleic Acids Res. 2019, 47 (D1), D155–D162. 10.1093/nar/gky1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teng X.; Chen X.; Xue H.; Tang Y.; Zhang P.; Kang Q.; Hao Y.; Chen R.; Zhao Y.; He S. NPInter v4.0: An Integrated Database of NcRNA Interactions. Nucleic Acids Res. 2019, 48 (D1), D160–D165. 10.1093/nar/gkz969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang H.-Y.; Lin Y.-C.-D.; Li J.; Huang K.-Y.; Shrestha S.; Hong H.-C.; Tang Y.; Chen Y.-G.; Jin C.-N.; Yu Y.; Xu J.-T.; Li Y.-M.; Cai X.-X.; Zhou Z.-Y.; Chen X.-H.; Pei Y.-Y.; Hu L.; Su J.-J.; Cui S.-D.; Wang F.; Xie Y.-Y.; Ding S.-Y.; Luo M.-F.; Chou C.-H.; Chang N.-W.; Chen K.-W.; Cheng Y.-H.; Wan X.-H.; Hsu W.-L.; Lee T.-Y.; Wei F.-X.; Huang H.-D. MiRTarBase 2020: Updates to the Experimentally Validated MicroRNA–Target Interaction Database. Nucleic Acids Res. 2020, 48 (D1), D148–D154. 10.1093/nar/gkz896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu X.; Wang S.; Meng F.; Wang J.; Zhang Y.; Dai E.; Yu X.; Li X.; Jiang W. SM2miR: A Database of the Experimentally Validated Small Molecules’ Effects on MicroRNA Expression. Bioinformatics 2013, 29 (3), 409–411. 10.1093/bioinformatics/bts698. [DOI] [PubMed] [Google Scholar]
- McGeary S. E.; Lin K. S.; Shi C. Y.; Pham T. M.; Bisaria N.; Kelley G. M.; Bartel D. P. The Biochemical Basis of MicroRNA Targeting Efficacy. Science 2019, 366 (6472), eaav1741. 10.1126/science.aav1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie B.; Ding Q.; Han H.; Wu D. MiRCancer: A MicroRNA-Cancer Association Database Constructed by Text Mining on Literature. Bioinformatics 2013, 29 (5), 638–644. 10.1093/bioinformatics/btt014. [DOI] [PubMed] [Google Scholar]
- Bhattacharya A.; Cui Y. SomamiR 2.0: A Database of Cancer Somatic Mutations Altering MicroRNA–CeRNA Interactions. Nucleic Acids Res. 2016, 44 (D1), D1005–D1010. 10.1093/nar/gkv1220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung I.-F.; Chang S.-J.; Chen C.-Y.; Liu S.-H.; Li C.-Y.; Chan C.-H.; Shih C.-C.; Cheng W.-C. YM500v3: A Database for Small RNA Sequencing in Human Cancer Research. Nucleic Acids Res. 2017, 45 (D1), D925–D931. 10.1093/nar/gkw1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhattacharya A.; Ziebarth J. D.; Cui Y. PolymiRTS Database 3.0: Linking Polymorphisms in MicroRNAs and Their Target Sites with Human Diseases and Biological Pathways. Nucleic Acids Res. 2014, 42 (D1), D86–D91. 10.1093/nar/gkt1028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li J.-H.; Liu S.; Zhou H.; Qu L.-H.; Yang J.-H. StarBase v2.0: Decoding MiRNA-CeRNA, MiRNA-NcRNA and Protein–RNA Interaction Networks from Large-Scale CLIP-Seq Data. Nucleic Acids Res. 2014, 42 (D1), D92–D97. 10.1093/nar/gkt1248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kern F.; Aparicio-Puerta E.; Li Y.; Fehlmann T.; Kehl T.; Wagner V.; Ray K.; Ludwig N.; Lenhof H.-P.; Meese E.; Keller A. MiRTargetLink 2.0—Interactive MiRNA Target Gene and Target Pathway Networks. Nucleic Acids Res. 2021, 49 (W1), W409–W416. 10.1093/nar/gkab297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paraskevopoulou M. D.; Karagkouni D.; Vlachos I. S.; Tastsoglou S.; Hatzigeorgiou A. G. MicroCLIP Super Learning Framework Uncovers Functional Transcriptome-Wide MiRNA Interactions. Nat. Commun. 2018, 9 (1), 3601. 10.1038/s41467-018-06046-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karagkouni D.; Paraskevopoulou M. D.; Chatzopoulos S.; Vlachos I. S.; Tastsoglou S.; Kanellos I.; Papadimitriou D.; Kavakiotis I.; Maniou S.; Skoufos G.; Vergoulis T.; Dalamagas T.; Hatzigeorgiou A. G. DIANA-TarBase v8: A Decade-Long Collection of Experimentally Supported MiRNA–Gene Interactions. Nucleic Acids Res. 2018, 46 (D1), D239–D245. 10.1093/nar/gkx1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vlachos I. S.; Zagganas K.; Paraskevopoulou M. D.; Georgakilas G.; Karagkouni D.; Vergoulis T.; Dalamagas T.; Hatzigeorgiou A. G. DIANA-MiRPath v3.0: Deciphering MicroRNA Function with Experimental Support. Nucleic Acids Res. 2015, 43 (W1), W460–W466. 10.1093/nar/gkv403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackenberg M.; Sturm M.; Langenberger D.; Falcón-Pérez J. M.; Aransay A. M. MiRanalyzer: A MicroRNA Detection and Analysis Tool for next-Generation Sequencing Experiments. Nucleic Acids Res. 2009, 37 (suppl_2), W68–W76. 10.1093/nar/gkp347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Y.; Wang D.; Miao Y.-R.; Wu X.; Luo H.; Cao W.; Yang W.; Yang J.; Guo A.-Y.; Gong J. LncRNASNP v3: An Updated Database for Functional Variants in Long Non-Coding RNAs. Nucleic Acids Res. 2023, 51 (D1), D192–D198. 10.1093/nar/gkac981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Z.; Liu L.; Feng C.; Qin Y.; Xiao J.; Zhang Z.; Ma L. LncBook 2.0: Integrating Human Long Non-Coding RNAs with Multi-Omics Annotations. Nucleic Acids Res. 2023, 51, D186–D191. 10.1093/nar/gkac999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao H.; Yin X.; Xu H.; Liu K.; Liu W.; Wang L.; Zhang C.; Bo L.; Lan X.; Lin S.; Feng K.; Ning S.; Zhang Y.; Wang L. LncTarD 2.0: An Updated Comprehensive Database for Experimentally-Supported Functional LncRNA–Target Regulations in Human Diseases. Nucleic Acids Res. 2023, 51 (D1), D199–D207. 10.1093/nar/gkac984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu L.; Li Z.; Liu C.; Zou D.; Li Q.; Feng C.; Jing W.; Luo S.; Zhang Z.; Ma L. LncRNAWiki 2.0: A Knowledgebase of Human Long Non-Coding RNAs with Enhanced Curation Model and Database System. Nucleic Acids Res. 2022, 50 (D1), D190–D195. 10.1093/nar/gkab998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin Y.; Pan X.; Shen H.-B. LncLocator 2.0: A Cell-Line-Specific Subcellular Localization Predictor for Long Non-Coding RNAs with Interpretable Deep Learning. Bioinformatics 2021, 37 (16), 2308–2316. 10.1093/bioinformatics/btab127. [DOI] [PubMed] [Google Scholar]
- Li Z.; Liu L.; Jiang S.; Li Q.; Feng C.; Du Q.; Zou D.; Xiao J.; Zhang Z.; Ma L. LncExpDB: An Expression Database of Human Long Non-Coding RNAs. Nucleic Acids Res. 2021, 49 (D1), D962–D968. 10.1093/nar/gkaa850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J.; Zhang J.; Gao Y.; Li Y.; Feng C.; Song C.; Ning Z.; Zhou X.; Zhao J.; Feng M.; Zhang Y.; Wei L.; Pan Q.; Jiang Y.; Qian F.; Han J.; Yang Y.; Wang Q.; Li C. LncSEA: A Platform for Long Non-Coding RNA Related Sets and Enrichment Analysis. Nucleic Acids Res. 2021, 49 (D1), D969–D980. 10.1093/nar/gkaa806. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hou M.; Tang X.; Tian F.; Shi F.; Liu F.; Gao G. AnnoLnc: A Web Server for Systematically Annotating Novel Human LncRNAs. BMC Genomics 2016, 17 (1), 931. 10.1186/s12864-016-3287-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volders P.-J.; Anckaert J.; Verheggen K.; Nuytens J.; Martens L.; Mestdagh P.; Vandesompele J. LNCipedia 5: Towards a Reference Set of Human Long Non-Coding RNAs. Nucleic Acids Res. 2019, 47 (D1), D135–D139. 10.1093/nar/gky1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karagkouni D.; Paraskevopoulou M. D.; Tastsoglou S.; Skoufos G.; Karavangeli A.; Pierros V.; Zacharopoulou E.; Hatzigeorgiou A. G. DIANA-LncBase v3: Indexing Experimentally Supported MiRNA Targets on Non-Coding Transcripts. Nucleic Acids Res. 2019, 38, 101–110. 10.1093/nar/gkz1036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu S.; Zhao X.; Zhang G.; Li W.; Liu F.; Liu S.; Zhang W. PredLnc-GFStack: A Global Sequence Feature Based on a Stacked Ensemble Learning Method for Predicting LncRNAs from Transcripts. Genes (Basel) 2019, 10 (9), 672. 10.3390/genes10090672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bao Z.; Yang Z.; Huang Z.; Zhou Y.; Cui Q.; Dong D. LncRNADisease 2.0: An Updated Database of Long Non-Coding RNA-Associated Diseases. Nucleic Acids Res. 2019, 47 (D1), D1034–D1037. 10.1093/nar/gky905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng L.; Wang P.; Tian R.; Wang S.; Guo Q.; Luo M.; Zhou W.; Liu G.; Jiang H.; Jiang Q. LncRNA2Target v2.0: A Comprehensive Database for Target Genes of LncRNAs in Human and Mouse. Nucleic Acids Res. 2019, 47 (D1), D140–D144. 10.1093/nar/gky1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ren C.; An G.; Zhao C.; Ouyang Z.; Bo X.; Shu W. Lnc2Catlas: An Atlas of Long Noncoding RNAs Associated with Risk of Cancers. Sci. Rep 2018, 8 (1), 1909. 10.1038/s41598-018-20232-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han S.; Liang Y.; Ma Q.; Xu Y.; Zhang Y.; Du W.; Wang C.; Li Y. LncFinder: An Integrated Platform for Long Non-Coding RNA Identification Utilizing Sequence Intrinsic Composition, Structural Information and Physicochemical Property. Brief Bioinform 2019, 20 (6), 2009–2027. 10.1093/bib/bby065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baek J.; Lee B.; Kwon S.; Yoon S. LncRNAnet: Long Non-Coding RNA Identification Using Deep Learning. Bioinformatics 2018, 34 (22), 3889–3897. 10.1093/bioinformatics/bty418. [DOI] [PubMed] [Google Scholar]
- Wen X.; Gao L.; Guo X.; Li X.; Huang X.; Wang Y.; Xu H.; He R.; Jia C.; Liang F.. LncSLdb: A Resource for Long Non-Coding RNA Subcellular Localization. Database 2018, 2018. 10.1093/database/bay085. [DOI] [PMC free article] [PubMed]
- Liu Y.; Zhao M. LnCaNet: Pan-Cancer Co-Expression Network for Human LncRNA and Cancer Genes. Bioinformatics 2016, 32 (10), 1595–1597. 10.1093/bioinformatics/btw017. [DOI] [PubMed] [Google Scholar]
- Bhartiya D.; Pal K.; Ghosh S.; Kapoor S.; Jalali S.; Panwar B.; Jain S.; Sati S.; Sengupta S.; Sachidanandan C.; Raghava G. P. S.; Sivasubbu S.; Scaria V.. LncRNome: A Comprehensive Knowledgebase of Human Long Noncoding RNAs. Database 2013, 2013 ( (bat034), ). 10.1093/database/bat034. [DOI] [PMC free article] [PubMed]
- Amaral P. P.; Clark M. B.; Gascoigne D. K.; Dinger M. E.; Mattick J. S. LncRNAdb: A Reference Database for Long Noncoding RNAs. Nucleic Acids Res. 2011, 39 (suppl_1), D146–D151. 10.1093/nar/gkq1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinger M. E.; Pang K. C.; Mercer T. R.; Crowe M. L.; Grimmond S. M.; Mattick J. S. NRED: A Database of Long Noncoding RNA Expression. Nucleic Acids Res. 2009, 37 (suppl_1), D122–D126. 10.1093/nar/gkn617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li M.; Liang C. LncDC: A Machine Learning-Based Tool for Long Non-Coding RNA Detection from RNA-Seq Data. Sci. Rep 2022, 12 (1), 19083 10.1038/s41598-022-22082-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng Y.; Xu Q.; Liu M.; Hu H.; Xie Y.; Zuo Z.; Ren J. LnCAR: A Comprehensive Resource for LncRNAs from Cancer Arrays. Cancer Res. 2019, 79 (8), 2076–2083. 10.1158/0008-5472.CAN-18-2169. [DOI] [PubMed] [Google Scholar]
- Zhang W.; Yue X.; Tang G.; Wu W.; Huang F.; Zhang X. SFPEL-LPI: Sequence-Based Feature Projection Ensemble Learning for Predicting LncRNA-Protein Interactions. PLoS Comput. Biol. 2018, 14 (12), e1006616 10.1371/journal.pcbi.1006616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mas-Ponte D.; Carlevaro-Fita J.; Palumbo E.; Hermoso Pulido T.; Guigo R.; Johnson R. LncATLAS Database for Subcellular Localization of Long Noncoding RNAs. RNA 2017, 23 (7), 1080–1087. 10.1261/rna.060814.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han S.; Liang Y.; Li Y.; Du W. Lncident: A Tool for Rapid Identification of Long Noncoding RNAs Utilizing Sequence Intrinsic Composition and Open Reading Frame Information. Int. J. Genomics 2016, 2016, 1–11. 10.1155/2016/9185496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li J.; Han L.; Roebuck P.; Diao L.; Liu L.; Yuan Y.; Weinstein J. N.; Liang H. TANRIC: An Interactive Open Platform to Explore the Function of LncRNAs in Cancer. Cancer Res. 2015, 75 (18), 3728–3737. 10.1158/0008-5472.CAN-15-0273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun L.; Liu H.; Zhang L.; Meng J. LncRScan-SVM: A Tool for Predicting Long Non-Coding RNAs Using Support Vector Machine. PLoS One 2015, 10 (10), e0139654 10.1371/journal.pone.0139654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park C.; Yu N.; Choi I.; Kim W.; Lee S. LncRNAtor: A Comprehensive Resource for Functional Investigation of Long Non-Coding RNAs. Bioinformatics 2014, 30 (17), 2480–2485. 10.1093/bioinformatics/btu325. [DOI] [PubMed] [Google Scholar]
- Li A.; Zhang J.; Zhou Z. PLEK: A Tool for Predicting Long Non-Coding RNAs and Messenger RNAs Based on an Improved k-Mer Scheme. BMC Bioinformatics 2014, 15 (1), 311. 10.1186/1471-2105-15-311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun K.; Chen X.; Jiang P.; Song X.; Wang H.; Sun H. ISeeRNA: Identification of Long Intergenic Non-Coding RNA Transcripts from Transcriptome Sequencing Data. BMC Genomics 2013, 14 (S2), S7 10.1186/1471-2164-14-S2-S7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Y.; Yao L.; Tang Y.; Jhong J.-H.; Wan J.; Chang J.; Cui S.; Luo Y.; Cai X.; Li W.; Chen Q.; Huang H.-Y.; Wang Z.; Chen W.; Chang T.-H.; Wei F.; Lee T.-Y.; Huang H.-D. CircNet 2.0: An Updated Database for Exploring Circular RNA Regulatory Networks in Cancers. Nucleic Acids Res. 2022, 50 (D1), D93–D101. 10.1093/nar/gkab1036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang W.; Liu Y.; Min Z.; Liang G.; Mo J.; Ju Z.; Zeng B.; Guan W.; Zhang Y.; Chen J.; Zhang Q.; Li H.; Zeng C.; Wei Y.; Chan G. C.-F. CircMine: A Comprehensive Database to Integrate, Analyze and Visualize Human Disease–Related CircRNA Transcriptome. Nucleic Acids Res. 2022, 50 (D1), D83–D92. 10.1093/nar/gkab809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rophina M.; Sharma D.; Poojary M.; Scaria V. Circad: A Comprehensive Manually Curated Resource of Circular RNA Associated with Diseases. Database 2020, 2020, baaa019. 10.1093/database/baaa019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meng X.; Hu D.; Zhang P.; Chen Q.; Chen M. CircFunBase: A Database for Functional Circular RNAs. Database 2019, 2019, baz003. 10.1093/database/baz003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu W.; Ji P.; Zhao F. CircAtlas: An Integrated Resource of One Million Highly Accurate Circular RNAs from 1070 Vertebrate Transcriptomes. Genome Biol. 2020, 21 (1), 101. 10.1186/s13059-020-02018-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu M.; Wang Q.; Shen J.; Yang B. B.; Ding X. Circbank: A Comprehensive Database for CircRNA with Standard Nomenclature. RNA Biol. 2019, 16 (7), 899–905. 10.1080/15476286.2019.1600395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruan H.; Xiang Y.; Ko J.; Li S.; Jing Y.; Zhu X.; Ye Y.; Zhang Z.; Mills T.; Feng J.; Liu C.-J.; Jing J.; Cao J.; Zhou B.; Wang L.; Zhou Y.; Lin C.; Guo A.-Y.; Chen X.; Diao L.; Li W.; Chen Z.; He X.; Mills G. B.; Blackburn M. R.; Han L. Comprehensive Characterization of Circular RNAs in ∼ 1000 Human Cancer Cell Lines. Genome Med. 2019, 11 (1), 55. 10.1186/s13073-019-0663-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dong R.; Ma X.-K.; Li G.-W.; Yang L. CIRCpedia v2: An Updated Database for Comprehensive Circular RNA Annotation and Expression Comparison. Genomics Proteomics Bioinformatics 2018, 16 (4), 226–233. 10.1016/j.gpb.2018.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dudekula D. B.; Panda A. C.; Grammatikakis I.; De S.; Abdelmohsen K.; Gorospe M. CircInteractome: A Web Tool for Exploring Circular RNAs and Their Interacting Proteins and MicroRNAs. RNA Biol. 2016, 13 (1), 34–42. 10.1080/15476286.2015.1128065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xia S.; Feng J.; Lei L.; Hu J.; Xia L.; Wang J.; Xiang Y.; Liu L.; Zhong S.; Han L.; He C. Comprehensive Characterization of Tissue-Specific Circular RNAs in the Human and Mouse Genomes. Brief Bioinform 2016, 18 (6), 984–992. 10.1093/bib/bbw081. [DOI] [PubMed] [Google Scholar]
- Chen X.; Han P.; Zhou T.; Guo X.; Song X.; Li Y. CircRNADb: A Comprehensive Database for Human Circular RNAs with Protein-Coding Annotations. Sci. Rep 2016, 6 (1), 34985 10.1038/srep34985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson D.; Van Allen E. M.; Wu Y.-M.; Schultz N.; Lonigro R. J.; Mosquera J.-M.; Montgomery B.; Taplin M.-E.; Pritchard C. C.; Attard G.; Beltran H.; Abida W.; Bradley R. K.; Vinson J.; Cao X.; Vats P.; Kunju L. P.; Hussain M.; Feng F. Y.; Tomlins S. A.; Cooney K. A.; Smith D. C.; Brennan C.; Siddiqui J.; Mehra R.; Chen Y.; Rathkopf D. E.; Morris M. J.; Solomon S. B.; Durack J. C.; Reuter V. E.; Gopalan A.; Gao J.; Loda M.; Lis R. T.; Bowden M.; Balk S. P.; Gaviola G.; Sougnez C.; Gupta M.; Yu E. Y.; Mostaghel E. A.; Cheng H. H.; Mulcahy H.; True L. D.; Plymate S. R.; Dvinge H.; Ferraldeschi R.; Flohr P.; Miranda S.; Zafeiriou Z.; Tunariu N.; Mateo J.; Perez-Lopez R.; Demichelis F.; Robinson B. D.; Schiffman M.; Nanus D. M.; Tagawa S. T.; Sigaras A.; Eng K. W.; Elemento O.; Sboner A.; Heath E. I.; Scher H. I.; Pienta K. J.; Kantoff P.; de Bono J. S.; Rubin M. A.; Nelson P. S.; Garraway L. A.; Sawyers C. L.; Chinnaiyan A. M. Integrative Clinical Genomics of Advanced Prostate Cancer. Cell 2015, 161 (5), 1215–1228. 10.1016/j.cell.2015.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosal S.; Das S.; Sen R.; Basak P.; Chakrabarti J. Circ2Traits: A Comprehensive Database for Circular RNA Potentially Associated with Disease and Traits. Front Genet 2013, 4, 283. 10.3389/fgene.2013.00283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glažar P.; Papavasileiou P.; Rajewsky N. CircBase: A Database for Circular RNAs. RNA 2014, 20 (11), 1666–1670. 10.1261/rna.043687.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhong S.; Feng J. CircPrimer 2.0: A Software for Annotating CircRNAs and Predicting Translation Potential of CircRNAs. BMC Bioinformatics 2022, 23 (1), 215. 10.1186/s12859-022-04705-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Z.; Ding H.; She J.; Chen C.; Zhang W.; Yang E. DEBKS: A Tool to Detect Differentially Expressed Circular RNAs. Genomics Proteomics Bioinformatics 2022, 20 (3), 549–556. 10.1016/j.gpb.2021.01.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nguyen D. T.; Trac Q. T.; Nguyen T.-H.; Nguyen H.-N.; Ohad N.; Pawitan Y.; Vu T. N. Circall: Fast and Accurate Methodology for Discovery of Circular RNAs from Paired-End RNA-Sequencing Data. BMC Bioinformatics 2021, 22 (1), 495. 10.1186/s12859-021-04418-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J.; Chen S.; Yang J.; Zhao F. Accurate Quantification of Circular RNAs Identifies Extensive Circular Isoform Switching Events. Nat. Commun. 2020, 11 (1), 90. 10.1038/s41467-019-13840-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun P.; Li G. CircCode: A Powerful Tool for Identifying CircRNA Coding Ability. Front Genet 2019, 10, 981. 10.3389/fgene.2019.00981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang J.; Wang L. Deep Learning of the Back-Splicing Code for Circular RNA Formation. Bioinformatics 2019, 35 (24), 5235–5242. 10.1093/bioinformatics/btz382. [DOI] [PubMed] [Google Scholar]
- Feng J.; Xiang Y.; Xia S.; Liu H.; Wang J.; Ozguc F. M.; Lei L.; Kong R.; Diao L.; He C.; Han L. CircView: A Visualization and Exploration Tool for Circular RNAs. Brief Bioinform 2019, 20 (3), 745–751. 10.1093/bib/bbx070. [DOI] [PubMed] [Google Scholar]
- You X.; Conrad T. O. Acfs: Accurate CircRNA Identification and Quantification from RNA-Seq Data. Sci. Rep 2016, 6 (1), 38820 10.1038/srep38820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song X.; Zhang N.; Han P.; Moon B.-S.; Lai R. K.; Wang K.; Lu W. Circular RNA Profile in Gliomas Revealed by Identification Tool UROBORUS. Nucleic Acids Res. 2016, 44 (9), e87–e87. 10.1093/nar/gkw075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pan X.; Xiong K. PredcircRNA: Computational Classification of Circular RNA from Other Long Non-Coding RNA Using Hybrid Features. Mol. Biosyst 2015, 11 (8), 2219–2226. 10.1039/C5MB00214A. [DOI] [PubMed] [Google Scholar]
- Gao Y.; Wang J.; Zhao F. CIRI: An Efficient and Unbiased Algorithm for de Novo Circular RNA Identification. Genome Biol. 2015, 16 (1), 4. 10.1186/s13059-014-0571-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chuang T.-J.; Wu C.-S.; Chen C.-Y.; Hung L.-Y.; Chiang T.-W.; Yang M.-Y. NCLscan: Accurate Identification of Non-Co-Linear Transcripts (Fusion, Trans -Splicing and Circular RNA) with a Good Balance between Sensitivity and Precision. Nucleic Acids Res. 2016, 44 (3), e29–e29. 10.1093/nar/gkv1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang K.; Singh D.; Zeng Z.; Coleman S. J.; Huang Y.; Savich G. L.; He X.; Mieczkowski P.; Grimm S. A.; Perou C. M.; MacLeod J. N.; Chiang D. Y.; Prins J. F.; Liu J. MapSplice: Accurate Mapping of RNA-Seq Reads for Splice Junction Discovery. Nucleic Acids Res. 2010, 38 (18), e178–e178. 10.1093/nar/gkq622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang J.; Shi Y.; Zhou H.; Zhang P.; Song T.; Ying Z.; Yu H.; Li Y.; Zhao Y.; Zeng X.; He S.; Chen R. PiRBase: Integrating PiRNA Annotation in All Aspects. Nucleic Acids Res. 2022, 50 (D1), D265–D272. 10.1093/nar/gkab1012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenkranz D.; Zischler H.; Gebert D. PiRNAclusterDB 2.0: Update and Expansion of the PiRNA Cluster Database. Nucleic Acids Res. 2022, 50 (D1), D259–D264. 10.1093/nar/gkab622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh B.; Sarkar A.; Mondal S.; Bhattacharya N.; Khatua S.; Ghosh Z. PiRNAQuest V.2: An Updated Resource for Searching through the PiRNAome of Multiple Species. RNA Biol. 2022, 19 (1), 12–25. 10.1080/15476286.2021.2010960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muhammad A.; Waheed R.; Khan N. A.; Jiang H.; Song X. PiRDisease v1.0: A Manually Curated Database for PiRNA Associated Diseases. Database 2019, 2019, baz052. 10.1093/database/baz052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang H.; Ali A.; Gao J.; Ban R.; Jiang X.; Zhang Y.; Shi Q. IsopiRBank: A Research Resource for Tracking PiRNA Isoforms. Database 2018, 2018, bay059. 10.1093/database/bay059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sai Lakshmi S.; Agrawal S. PiRNABank: A Web Resource on Classified and Clustered Piwi-Interacting RNAs. Nucleic Acids Res. 2008, 36 (suppl_1), D173. 10.1093/nar/gkm696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hou J.; Wei H.; Liu B. IPiDA-GCN: Identification of PiRNA-Disease Associations Based on Graph Convolutional Network. PLoS Comput. Biol. 2022, 18 (10), e1010671 10.1371/journal.pcbi.1010671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uhrig S.; Klein H. PingPongPro: A Tool for the Detection of PiRNA-Mediated Transposon-Silencing in Small RNA-Seq Data. Bioinformatics 2019, 35 (2), 335–336. 10.1093/bioinformatics/bty578. [DOI] [PubMed] [Google Scholar]
- Ray R.; Pandey P. PiRNA Analysis Framework from Small RNA-Seq Data by a Novel Cluster Prediction Tool - PILFER. Genomics 2018, 110 (6), 355–365. 10.1016/j.ygeno.2017.12.005. [DOI] [PubMed] [Google Scholar]
- Liu B.; Yang F.; Chou K.-C. 2L-PiRNA: A Two-Layer Ensemble Classifier for Identifying Piwi-Interacting RNAs and Their Function. Mol. Ther Nucleic Acids 2017, 7, 267–277. 10.1016/j.omtn.2017.04.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu X.; Ding J.; Gong F. PiRNA Identification Based on Motif Discovery. Mol. BioSyst. 2014, 10 (12), 3075–3080. 10.1039/C4MB00447G. [DOI] [PubMed] [Google Scholar]
- Wang J.; Zhang X.; Chen W.; Li J.; Liu C. CRlncRNA: A Manually Curated Database of Cancer-Related Long Non-Coding RNAs with Experimental Proof of Functions on Clinicopathological and Molecular Features. BMC Med. Genomics 2018, 11 (S6), 114. 10.1186/s12920-018-0430-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barshir R.; Fishilevich S.; Iny-Stein T.; Zelig O.; Mazor Y.; Guan-Golan Y.; Safran M.; Lancet D. GeneCaRNA: A Comprehensive Gene-Centric Database of Human Non-Coding RNAs in the GeneCards Suite. J. Mol. Biol. 2021, 433 (11), 166913 10.1016/j.jmb.2021.166913. [DOI] [PubMed] [Google Scholar]
- Jabeer A.; Temiz M.; Bakir-Gungor B.; Yousef M. MiRdisNET: Discovering MicroRNA Biomarkers That Are Associated with Diseases Utilizing Biological Knowledge-Based Machine Learning. Front Genet 2023, 13, 1076554. 10.3389/fgene.2022.1076554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ren Y.; Wang T.-Y.; Anderton L. C.; Cao Q.; Yang R. LncGSEA: A Versatile Tool to Infer LncRNA Associated Pathways from Large-Scale Cancer Transcriptome Sequencing Data. BMC Genomics 2021, 22 (1), 574. 10.1186/s12864-021-07900-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li L.; Wu P.; Wang Z.; Meng X.; Zha C.; Li Z.; Qi T.; Zhang Y.; Han B.; Li S.; Jiang C.; Zhao Z.; Cai J. NoncoRNA: A Database of Experimentally Supported Non-Coding RNAs and Drug Targets in Cancer. J. Hematol Oncol 2020, 13 (1), 15. 10.1186/s13045-020-00849-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang S.; Zhou S.; Liu H.; Meng Q.; Ma X.; Liu H.; Wang L.; Jiang W. NcRI: A Manually Curated Database for Experimentally Validated Non-Coding RNAs in Inflammation. BMC Genomics 2020, 21 (1), 380. 10.1186/s12864-020-06794-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prabahar A.; Natarajan J. ImmunemiR - A Database of Prioritized Immune MiRNA Disease Associations and Its Interactome. MicroRNA 2017, 6 (1), 71–78. 10.2174/2211536606666170117112322. [DOI] [PubMed] [Google Scholar]
- Zhang W.; Yao G.; Wang J.; Yang M.; Wang J.; Zhang H.; Li W. NcRPheno: A Comprehensive Database Platform for Identification and Validation of Disease Related Noncoding RNAs. RNA Biol. 2020, 17 (7), 943–955. 10.1080/15476286.2020.1737441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang T.; Liu X.; Wu R.; Shen L.; Ren S.; Shen B. CTRR-NcRNA: A Knowledgebase for Cancer Therapy Resistance and Recurrence Associated Non-Coding RNAs. Genomics Proteomics Bioinformatics 2023, 21 (2), 292–299. 10.1016/j.gpb.2022.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wan Q.; Dingerdissen H.; Fan Y.; Gulzar N.; Pan Y.; Wu T.-J.; Yan C.; Zhang H.; Mazumder R. BioXpress: An Integrated RNA-Seq-Derived Gene Expression Database for Pan-Cancer Analysis. Database 2015, 2015, bav019. 10.1093/database/bav019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cai L.; Lin S.; Girard L.; Zhou Y.; Yang L.; Ci B.; Zhou Q.; Luo D.; Yao B.; Tang H.; Allen J.; Huffman K.; Gazdar A.; Heymach J.; Wistuba I.; Xiao G.; Minna J.; Xie Y. LCE: An Open Web Portal to Explore Gene Expression and Clinical Associations in Lung Cancer. Oncogene 2019, 38 (14), 2551–2564. 10.1038/s41388-018-0588-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar R.; Lathwal A.; Kumar V.; Patiyal S.; Raghav P. K.; Raghava G. P. S. CancerEnD: A Database of Cancer Associated Enhancers. Genomics 2020, 112 (5), 3696–3702. 10.1016/j.ygeno.2020.04.028. [DOI] [PubMed] [Google Scholar]
- Gendoo D. M. A.; Zon M.; Sandhu V.; Manem V. S. K.; Ratanasirigulchai N.; Chen G. M.; Waldron L.; Haibe-Kains B. MetaGxData: Clinically Annotated Breast, Ovarian and Pancreatic Cancer Datasets and Their Use in Generating a Multi-Cancer Gene Signature. Sci. Rep 2019, 9 (1), 8770. 10.1038/s41598-019-45165-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madden S. F.; Clarke C.; Gaule P.; Aherne S. T.; O’Donovan N.; Clynes M.; Crown J.; Gallagher W. M. BreastMark: An Integrated Approach to Mining Publicly Available Transcriptomic Datasets Relating to Breast Cancer Outcome. Breast Cancer Research 2013, 15 (4), R52. 10.1186/bcr3444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Das S. S.; Saha P.; Chakravorty N. MiRwayDB: A Database for Experimentally Validated MicroRNA-Pathway Associations in Pathophysiological Conditions. Database 2018, 2018, bay023. 10.1093/database/bay023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaur H.; Bhalla S.; Kaur D.; Raghava G. P. CancerLivER: A Database of Liver Cancer Gene Expression Resources and Biomarkers. Database 2020, 2020, baaa012. 10.1093/database/baaa012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang J.; Li S.; Wang T.; Xu S.; Wang X.; Kong X.; Lu X.; Zhang H.; Li L.; Feng M.; Ning S.; Wang L. RNA2Immune: A Database of Experimentally Supported Data Linking Non-Coding RNA Regulation to The Immune System. Genomics Proteomics Bioinformatics 2023, 21 (2), 283–291. 10.1016/j.gpb.2022.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X.; Hao Y.; Cui Y.; Fan Z.; He S.; Luo J.; Chen R. LncVar: A Database of Genetic Variation Associated with Long Non-Coding Genes. Bioinformatics 2017, 33 (1), 112–118. 10.1093/bioinformatics/btw581. [DOI] [PubMed] [Google Scholar]
- Ilieva M.; Miller H. E.; Agarwal A.; Paulus G. K.; Madsen J. H.; Bishop A. J. R.; Kauppinen S.; Uchida S. FibroDB: Expression Analysis of Protein-Coding and Long Non-Coding RNA Genes in Fibrosis. Noncoding RNA 2022, 8 (1), 13. 10.3390/ncrna8010013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarver A. L.; Sarver A. E.; Yuan C.; Subramanian S. OMCD: OncomiR Cancer Database. BMC Cancer 2018, 18 (1), 1223. 10.1186/s12885-018-5085-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jézéquel P.; Gouraud W.; Ben Azzouz F.; Guérin-Charbonnel C.; Juin P. P.; Lasla H.; Campone M. Bc-GenExMiner 4.5: New Mining Module Computes Breast Cancer Differential Gene Expression Analyses. Database 2021, 2021, baab007. 10.1093/database/baab007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khan A.; Khan T.; Nasir S. N.; Ali S. S.; Suleman M.; Rizwan M.; Waseem M.; Ali S.; Zhao X.; Wei D.-Q. BC-TFdb: A Database of Transcription Factor Drivers in Breast Cancer. Database 2021, 2021, baab018. 10.1093/database/baab018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang W.; Zeng B.; Yang M.; Yang H.; Wang J.; Deng Y.; Zhang H.; Yao G.; Wu S.; Li W. NcRNAVar: A Manually Curated Database for Identification of Noncoding RNA Variants Associated with Human Diseases. J. Mol. Biol. 2021, 433 (11), 166727 10.1016/j.jmb.2020.166727. [DOI] [PubMed] [Google Scholar]
- Kumar S.; Agrawal A.; Vindal V. BCLncRDB: A Comprehensive Database of LncRNAs Associated with Breast Cancer. Funct Integr Genomics 2023, 23 (2), 178. 10.1007/s10142-023-01112-1. [DOI] [PubMed] [Google Scholar]
- Distefano R.; Ilieva M.; Madsen J. H.; Ishii H.; Aikawa M.; Rennie S.; Uchida S. T2DB: A Web Database for Long Non-Coding RNA Genes in Type II Diabetes. Noncoding RNA 2023, 9 (3), 30. 10.3390/ncrna9030030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luo X.; Huang Y.; Li H.; Luo Y.; Zuo Z.; Ren J.; Xie Y. SPENCER: A Comprehensive Database for Small Peptides Encoded by Noncoding RNAs in Cancer Patients. Nucleic Acids Res. 2022, 50 (D1), D1373–D1381. 10.1093/nar/gkab822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ru Y.; Kechris K. J.; Tabakoff B.; Hoffman P.; Radcliffe R. A.; Bowler R.; Mahaffey S.; Rossi S.; Calin G. A.; Bemis L.; Theodorescu D. The MultiMiR R Package and Database: Integration of MicroRNA–Target Interactions along with Their Disease and Drug Associations. Nucleic Acids Res. 2014, 42 (17), e133–e133. 10.1093/nar/gku631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Subhra Das S.; James M.; Paul S.; Chakravorty N. MiRnalyze: An Interactive Database Linking Tool to Unlock Intuitive MicroRNA Regulation of Cell Signaling Pathways. Database 2017, 2017 (1), bax015. 10.1093/database/bax015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preusse M.; Theis F. J.; Mueller N. S. MiTALOS v2: Analyzing Tissue Specific MicroRNA Function. PLoS One 2016, 11 (3), e0151771 10.1371/journal.pone.0151771. [DOI] [PMC free article] [PubMed] [Google Scholar]

