Skip to main content
European Heart Journal Open logoLink to European Heart Journal Open
. 2024 Jun 12;4(4):oeae046. doi: 10.1093/ehjopen/oeae046

Myeloid cell-derived interleukin-6 induces vascular dysfunction and vascular and systemic inflammation

Tanja Knopp 1,2,#, Rebecca Jung 3,4,5,#, Johannes Wild 6,7,8, Magdalena L Bochenek 9,10,11, Panagiotis Efentakis 12, Annika Lehmann 13,14, Tabea Bieler 15,16, Venkata Garlapati 17, Cindy Richter 18,19, Michael Molitor 20,21,22, Katharina Perius 23, Stefanie Finger 24, Jérémy Lagrange 25, Iman Ghasemi 26, Konstantinos Zifkos 27, Katharina S Kommoss 28, Joumana Masri 29, Sonja Reißig 30, Voahanginirina Randriamboavonjy 31, Thomas Wunderlich 32, Nadine Hövelmeyer 33,34, Alexander N R Weber 35, Ilgiz A Mufazalov 36, Markus Bosmann 37,38, Ingo Bechmann 39, Ingrid Fleming 40,41, Matthias Oelze 42, Andreas Daiber 43, Thomas Münzel 44,45,46, Katrin Schäfer 47,48, Philip Wenzel 49,50,51, Ari Waisman 52,53,#, Susanne Karbach 54,55,56,4,3,✉,#
Editor: Daniel F J Ketelhuth
PMCID: PMC11250217  PMID: 39015379

Abstract

Aims

The cytokine interleukin-6 (IL-6) plays a central role in the inflammation cascade as well as cardiovascular disease progression. Since myeloid cells are a primary source of IL-6 formation, we aimed to generate a mouse model to study the role of myeloid cell-derived IL-6 in vascular disease.

Methods and results

Interleukin-6-overexpressing (IL-6OE) mice were generated and crossed with LysM-Cre mice, to generate mice (LysM-IL-6OE mice) overexpressing the cytokine in myeloid cells. Eight- to 12-week-old LysM-IL-6OE mice spontaneously developed inflammatory colitis and significantly impaired endothelium-dependent aortic relaxation, increased aortic reactive oxygen species (ROS) formation, and vascular dysfunction in resistance vessels. The latter phenotype was associated with decreased survival. Vascular dysfunction was accompanied by a significant accumulation of neutrophils, monocytes, and macrophages in the aorta, increased myeloid cell reactivity (elevated ROS production), and vascular fibrosis associated with phenotypic changes in vascular smooth muscle cells. In addition to elevated Mcp1 and Cxcl1 mRNA levels, aortae from LysM-IL-6OE mice expressed higher levels of inducible NO synthase and endothelin-1, thus partially accounting for vascular dysfunction, whereas systemic blood pressure alterations were not observed. Bone marrow (BM) transplantation experiments revealed that vascular dysfunction and ROS formation were driven by BM cell-derived IL-6 in a dose-dependent manner.

Conclusion

Mice with conditional overexpression of IL-6 in myeloid cells show systemic and vascular inflammation as well as endothelial dysfunction. A decrease in circulating IL-6 levels by replacing IL-6-producing myeloid cells in the BM improved vascular dysfunction in this model, underpinning the relevant role of IL-6 in vascular disease.

Keywords: Interleukin-6, Chronic inflammation, Myeloid cells, Endothelin-1, Vascular dysfunction

Graphical Abstract

Graphical Abstract.

Graphical Abstract

Myeloid cell-derived interleukin-6 (IL-6) overexpression was associated with systemic inflammation. Chronic myeloid cell-derived IL-6 evoked a significantly impaired endothelium-dependent aortic relaxation, increased aortic reactive oxygen species (ROS), and vascular dysfunction in resistance vessels. Vascular dysfunction was accompanied by a significant accumulation of myeloid cells in the aortic wall, an increased reactivity of myeloid cells, vascular fibrosis, and an altered vascular smooth muscle cell phenotype. This went in line with significantly elevated Mcp1, Cxcl1, and Rorc levels and an increased inducible NO synthase and endothelin-1 expression in LysM-IL-6OE aortas. Bone marrow (BM) transplantation studies revealed that vascular dysfunction and ROS formation were driven by BM cell-derived IL-6 in a dose-dependent manner.

Introduction

Cardiovascular disease (CVD) remains the leading cause of death worldwide. Vascular inflammation plays a crucial role in the development of CVD. Among the different mediators of the immune system, the cytokine interleukin-6 (IL-6) is of central relevance and has been repeatedly implicated in the pathogenesis of CVD. Interleukin-6 is a predictor of long-term cardiovascular mortality in patients with acute coronary syndrome,1,2 involved in heart failure,3 and has been suggested to predict the onset of coronary artery disease (CAD).4 It was described to be independently associated with the risk of major adverse cardiovascular events, cardiovascular and all-cause mortality, myocardial infarction, and heart failure in patients with stable coronary heart disease.5 Within the inflammation cascade, IL-6 has pivotal functions at the crossroads of the innate and adaptive immune responses. It is mainly produced by myeloid cells, stimulates the differentiation of pathogenic Th17 cells, and leads to activation and recruitment of neutrophil granulocytes, causing an amplification of the inflammatory response.6–11 Moreover, IL-6 plays a driving role in various autoimmune diseases such as psoriasis,12 rheumatoid arthritis,13 systemic lupus erythematosus,14 and autoimmune colitis,15 all of which have been shown to be associated with an increased cardiovascular risk.16–19 Thus, IL-6 represents a potential mediator driving increased cardiovascular comorbidities in patients with these chronic inflammatory disease states.20 Interleukin-6 deficiency was described to attenuate angiotensin II (AngII)-induced vascular dysfunction in mice.21 Nevertheless, the mechanisms and interactions of IL-6 in CVD are incompletely understood.22 As myeloid cells are one of the relevant physiological sources of IL-6,23 we generated mice with chronic myeloid IL-6 overexpression and analysed their vascular phenotype in order to determine the role of myeloid cell-derived IL-6 for systemic and vascular inflammation.

Methods

Mice

Interleukin-6-overexpressing mice were generated by gene targeting of embryonic stem (ES) cells. In brief, we have constructed a targeting vector by inserting the cDNA coding for IL-6 followed by an internal ribosome entry site and the cDNA coding for enhanced green fluorescent protein (eGFP) (as shown in Figure 1A). The conditional ‘knock-in’ approach targeted the endogenous gt(ROSA)26Sor locus, introducing a lox-P-flanked transcriptional STOP cassette (Figure 1A). Following homologous recombination into C57BL/6-V6.5 ES cells, we generated the IL-6OE mice by injection of ES cells into blastocysts. This new mouse strain established on the C57BL/6J background allows cell-specific overexpression of IL-6 combined with eGFP expression (IL-6OE mouse strain) upon Cre-mediated control. By crossing homozygous IL-6OE/OE female mice with LysMCre+ male mice,24 we obtained LysM-IL-6OE mice with heterozygous expression of LysMCre and heterozygous overexpression of IL-6 in LysM+ cells. Control mice were LysMCre negative and heterozygous for the IL-6OE allele (IL-6OE mice). At the age of 8–12 weeks, mice were used for experiments. Both female and male mice were examined, and the results were pooled as no sex-specific effect was observed.

Figure 1.

Figure 1

Mice overexpressing interleukin-6 in myeloid cells have an increase in the splenic myeloid cell compartment and a reduced life expectancy. (A) Generation of the IL-6OE allele involved homologous recombination in embryonic stem cells (V6.5). The conditional ‘knock-in’ approach targeted the endogenous gt(ROSA)26Sor locus, introducing a lox-P-flanked transcriptional STOP cassette. Upon Cre-mediated recombination, the cassette was excised, enabling dual expression of interleukin-6 and enhanced green fluorescent protein under the control of the chicken β-actin (CAG) promotor. (B) Flow cytometric analysis of splenocytes from LysM-IL-6OE and control mice. Cells were stained for CD11b, B220, and CD90.2 with gating based on green fluorescent protein signal. Representative plots of n = 4 mice are shown. (C) Interleukin-6 levels in splenocytes and plasma. Left panel: interleukin-6 level in sorted and cultured CD11b+ splenocytes of LysM-IL-6OE mice and control mice. Splenocytes were cultured for 24 h. n = 3–4, Mann–Whitney test. Right panel: interleukin-6 plasma levels in 10-week-old LysM-IL-6OE compared with control mice (n.d. = not detectable). n = 19–28, Mann–Whitney test. P < 0.0001. (D) Statistical analysis of the total living cells per spleen of LysM-IL-6OE and control mice is shown (result of flow cytometric analysis), n = 13–23, Mann–Whitney test. P < 0.0001. (E) Flow cytometric analysis of LysM-IL-6OE and control mice splenocyte subpopulations: after gating out B220+ and CD90.2+ cells, analysis focused on CD11b, F4/80, Ly6C, and Ly6G. Representative plots of n = 8–15 mice are shown. (F) Statistical analysis of the splenic CD11b+ myeloid cells, the Ly6G + Ly6C+ neutrophils, and the Ly6GLy6C+ monocytes/macrophages of LysM-IL-6OE and control mice of the flow cytometric experiment above, n = 8–15 mice. Top row: total cells. Bottom row: percentage values of the total living cells, unpaired Student’s t-test. P < 0.0001. (G) Kaplan–Meier survival curve of LysM-IL-6OE vs. control mice, n = 8–16 mice, log-rank (Mantel–Cox) test. (H) Representative image of colon endoscopy (left). Statistical analysis of endoscopy score (right), n = 4, Mann–Whitney test. Bottom part: representative haematoxylin and eosin stainings of the colon of LysM-IL-6OE and control mice. Data are presented as mean ± SEM, and P values of <0.05 were considered significant and marked by asterisks (*P < 0.05; **P < 0.01; ***P < 0.001).

Mice were euthanized by exsanguination under deep isoflurane anaesthesia (5% inhalant in room air) combined with tamasic (buprenorphine) as a single subcutaneous injection (0.075 mg/kg body weight) 30 min before the procedure to avoid any pain. Then, blood was collected by right ventricular puncture. Afterwards, organs, namely aorta, spleen, bone marrow (BM), heart, brain, colon, lungs, and kidneys, were harvested.

Housing, treatment, and euthanasia of animals were performed in accordance with the relevant laws and institutional guidelines of the Central Animal Facility of the UMC Mainz, Germany, and state authorities (G15-1-051, G15-1-101, G21-1-025, and G21-1-030). Experimental procedures including anaesthetic and analgesic treatments followed the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes. Experiments were conducted according to the ARRIVE guidelines.

Vascular relaxation studies

Murine aortas were isolated and cut into 4 mm long segments, and the thoracic part of the aortas was utilized for aortic constriction and dilatation assays. They were mounted in organ chambers to measure endothelium or smooth muscle-dependent relaxation or contraction in response to acetylcholine (ACh), glyceryl trinitrate, potassium chloride (KCl), and prostaglandin F2α (PGF2α) as described previously.25

The ROS scavengers catalase (2000U/mL), superoxide dismutase (SOD) (2000U/mL), or the endothelin-1 (ET-1) antagonist bosentan (10 µM) were suspended in full medium (MV2 kit, PromoCell), and the isolated aorta segments were incubated in it for 90 min at 37°C and 5% CO2. Afterwards, relaxation studies were performed.

Besides the aortic analysis, the first and second branches of mesenteric arteries were isolated, cut into 2 mm long segments, and mounted in a myograph to measure relaxation in response to ACh or sodium nitroprusside or contraction in response to phenylephrine or KCl as described previously.26,27

Echocardiography

Mouse echocardiography was performed using a VEVO-3100 ultrasound machine (FUJIFILM VisualSonics Inc., Toronto, Canada) equipped with a 38 MHz (MX400) linear array transducer. Standardized images in parasternal long axis (PLAX) and parasternal short axis as well as apical four-chamber view were recorded under isoflurane sedation with 1.5–2 vol%. In parallel, electrocardiogram and respiration rate were monitored and body temperature was kept stable using a heating system within the handling platform. Post-acquisition analysis was performed with the Vevo LAB software (VisualSonics, FujiFilm, Toronto, Canada) for left ventricular (LV) ejection fraction (PLAX B-mode), LV mass, stroke volume, and cardiac output (PLAX M-mode) and right heart function with right ventricular end-diastolic (mid-ventricular diameter) (4C and SAX) and pulmonary artery velocity time integral (SAX).

Blood pressure measurement

Systolic blood pressure was measured using a tail–cuff non-invasive blood pressure system as previously described.28,29

Analysis of reactive oxygen and nitrogen species in the blood and aortic tissue

Reactive oxygen species (ROS)/reactive nitrogen species (RNS) were measured in whole blood by L012-enhanced chemiluminescence after incubation with phorbol 12,13-dibutyrate (PDBu) (10 μmol/L) for 20 min:30–32 200 IU of heparine was injected into the beating heart of the mouse and venous blood drawn from the right ventricle subsequently. Chemiluminescence was measured directly in the heparinized blood which was kept at room temperature (RT). L012-enhanced chemiluminescence signals were counted in 10 μL of samples with 100 μmol/L of L012 in the presence of PDBu using a Lumat LB 9507 from Berthold Technologies (Bad Wildbad, Germany). Chemiluminescence was expressed as counts per minute after incubation for 10 min.

Visualization of ROS in aortic cryosections was performed by staining with the superoxide-sensitive dye dihydroethidium (DHE, 1 µM) as previously described.32 Mouse aortas were rinsed, cleaned, and then cut into 4 mm sections which were then incubated in Krebs–Henseleit solution (containing 0.1 mg/mL of aprotinin, 0.2 mg/mL of pepstatin, and 0.5 mg/mL of leupeptin) for 10 min at 37°C. Then, the aortic sections were embedded in Tissue-Tek and frozen in liquid nitrogen. 8 µm aortic cryosections were cut and stained with DHE (incubation over 30 min at 37°C). Green autofluorescence from aortic lamina and red ethidium fluorescence inside the ROS-producing cells were detected by fluorescence light microscopy using a Zeiss Axiovert 40 CFL microscope, Zeiss lenses and Axiocam MRm camera (Zeiss, Oberkochen, Germany) and analysed with the AxioVision data acquisition software (Zeiss).

In vivo high-resolution endoscopic analysis of the colon

A high-resolution video endoscopic system (Karl Storz SE & Co AG, Tuttlingen, Germany) was used for the analysis of the colitis-like phenotype. Colitis scores were determined on mice anaesthetized with a mixture of ketamine (Ketavest 100 mg/mL; Pfizer, New York, NY) and xylazine (Rompun 2%; Bayer Healthcare, Leverkusen, Germany) intraperitoneally. Endoscopic scoring of five parameters, namely translucency, granularity, fibrin, vascularity, and stool, was performed as previously described.33

Bone marrow transfer

Recipient C57BL/6 Ly5.1 mice were irradiated with 9.5 Gy from Cs137 (OB58-BA; Buchler, Braunschweig, Germany). Mice were treated orally with Borgal antibiotic 2 weeks prior and 1 week after irradiation. Bone marrow cells were isolated from femurs and tibias of LysM-IL-6OE or control mice, and 5*106 BM cells were transplanted into recipient mice by injection into the tail vein. Different relative amounts of LysM-IL-6OE BM (100% of control BM, 100% of LysM-IL-6OE BM, 50% LysM-IL-6OE BM, or 10% LysM-IL-6OE BM) were transferred. Mice were analysed 10 weeks after BM transplantation.

Flow cytometric analysis

First, aortic and splenic single-cell solutions were incubated with anti-CD16/anti-CD32 antibodies to prevent unspecific antibody bindings. Then, cells were stained with fluorophore-coupled monoclonal antibodies for CD11b, F4/80, Ly6G, Ly6C, B220, or CD90.2, together with a viability dye. Cells were acquired using either the FACSCanto™ II cytometer (BD, USA) or Attune™ NxT (Thermo Fisher).

Flow cytometric reactive oxygen species analysis

For flow cytometric ROS analysis, whole blood was drawn by cardiac puncture and anticoagulated with ethylenediaminetetraacetic acid. Cells were treated with and without PDBu for 15 min at RT followed by incubation with CellROX® reagent (a fluorogenic indicator for the detection of ROS in cells, which is non-fluorescent but shows a strong fluorescence when oxidized; 5 μM, Thermo Fisher Scientific) for 30 min at 37°C, as previously described.34 Cells incubated in the absence of CellROX® reagent were used as a negative control. Afterwards, cells were stained [CD45—brilliant violet 510 (Clone: 30-F11), CD90.2—phycoerythrin (PE) (Clone: 53-2.1), CD11b—phycoerythrin–cyanine 7 (PE-Cy7) (Clone: M1/70), Ly6G—Super Bright 600 (Clone: 1A8), Ly6C—peridinin chlorophyll protein–Cy5.5 (Clone: KH1.4), and viability dye eFlour 708] and incubated for 20 min at RT. After dilution (final concentration 1:2000), cells were analysed using the Invitrogen™ Attune™ NxT flow cytometer (Thermo Fisher Scientific, Waltham, MA, USA) and the Invitrogen™ Attune™ No-Wash No-Lyse Filter Kit (Thermo Fisher Scientific, Waltham, MA, USA).

Cytokine and chemokine quantification

Plasma IL-6 levels were measured with BD OptEIA™ mouse ELISA kit. Absorption was measured using the infinite M200 PRO NanoQuant plate reader (Tecan, Austria) or with the Bioplex Multiplex Immunoassay System ( BioRad, Germany), according to the manufacturer’s protocol.

Cell culture

Human pulmonary artery endothelial cells (HPAECs, ATCC) were cultivated, as previously published.35 Cells were stimulated with 50 or 500 pg/mL of IL-6 (PeproTech, UK) with soluble IL-6 receptor (sIL-6R, PeproTech, UK).

Isolation and cultivation of vascular smooth muscle cells

Vascular smooth muscle cells were isolated from the aortas of LysM-IL-6OE mice and cultured as previously described36 In brief, aortas were carefully dissected and perfused with 1 × Phosphate buffered Saline (Gibco) to remove any blood. The aorta was kept in Dulbecco’s modified Eagle medium (DMEM; GlutaMAX-I; Gibco) with 10% fetal bovine serum (FBS; Gibco), 100 U/mL penicillin, and 100 μg/mL streptomycin (Gibco). After removing the perivascular fat under the microscope, aortas were cut into small pieces and digested in medium containing collagenase II (10 mg/mL) for 3 h in a thermo-shaker. Then, the medium was removed by centrifugation (400 g for 10 min), and cells were resuspended in DMEM containing 10% FBS, 100 U/mL penicillin, and 100 μg/mL streptomycin on 0.1% gelatin-coated six-well plates. Cells were analysed at passage 0.

Histology

At the time of sacrifice, aorta, spleen, BM, heart, brain, colon, lungs, and kidneys were isolated from the experimental mice, fixed in 4% paraformaldehyde, paraffin-embedded, cut, and stained with haematoxylin and eosin according to standard protocols.37 Aortic sections were stained for collagen fibres using Sirius Red and analysed by polarized light microscopy.

Immunohistochemistry

Aortic segments were fixed in 4% paraformaldehyde, paraffin-embedded, and stained with the primary antibody (anti-ET-1, 1:500, Meridian Life Science, USA) followed by incubation with the biotinylated secondary antibody after dilution. For immunochemical detection, ABC reagent (Vector) and then DAB reagent (peroxidase substrate Kit, Vector) as substrates were applied.38

Immunocytochemistry

Vascular smooth muscle cells were fixed in 4% paraformaldehyde for 15 min at RT and stained with antibodies against smooth muscle alpha-actin (SMA; dilution 1:100; Sigma, A2547) and Ki67 (dilution 1:100, Abcam, ab15580). Phalloidin–rhodamine (dilution 1:300; Life Technology, R415) was used to visualize the cytoskeleton and 4′,6-Diamidin-2-phenylindol (DAPI) to visualize cell nuclei.

RNA isolation and quantitative real-time PCR

Aortas and cells were lysed and homogenized in TRIzol® (Thermo Fisher) and processed following the manufacturer’s instructions. RNA concentration was measured using a NanoDrop spectrophotometer (Thermo Fisher). The TaqMan® Gene Expression Assay (Applied Biosystems™) was used with 0.5 μg of total RNA for quantitative real-time PCR for Tatabox-binding protein (Tbp) (Mm01277042_m1), Mcp1 (Mm00441242_m1), Vcam1 (Mm00449197_m1), Cxcl1 (Mm04207460_m1), Cxcl2 (Mm00436450_m1), Tnf Mm00443260_g1), Il6 (Mm99999064_m1), Rorc (Mm01261022_m1), ET-1 (Mm00438656_m1), Il1beta (Mm00434228_m1), Stat3 (Mm01219775_m1), Vegf-a (Mm01281449_m1), Nox2 (Mm00432775_m1), Col1α1 (Mm00801666_g1), Col1α2 (Mm00483888_m1), MMP2 (Mm00439498_m1), and MMP9 (Mm00442991_m1). For human material the following Primers were used: Tbp (Hs00427620_m1), Il6 (Hs00174131_m1), Et-1 (Hs00174961_m1). Besides, the following primers were used: glyceraldehyde-3-phosphate dehydrogenase (Gapdh) (forward: TAC CCC CAA TGT GTC CTG CTG G; reverse: CCT TCA GTG GGC CCT CAG ATG C); Col3α1 (forward: GAG GGC CAT AGC TGA ACT GA; reverse: TGA CTG TCC CAC GTA AGC AC), Vimentin (forward: CGG AAA GTG GAA TCC TTG CA; reverse: CAC ATC GAT CTG GAC ATG CTG T), and αSma (forward: GGACGTACAACTGGTATTGTGC; reverse: CGGCAGTAGTCACGAAGGAAT).

Quantification of mRNA expression as relative expression levels of the respective samples to Tbp or Gapdh as endogenous control (housekeeping genes) was calculated with the delta–delta threshold cycle method.39

Western blot analysis

Isolated aortic tissue was homogenized, and protein was isolated using Radio-Immunoprecipitation assay buffer (Sigma-Aldrich) containing a protease/phosphatase inhibitor cocktail (Thermo Scientific). Aortic lysates were electrophorized on a 7–12% gradient gel. Proteins were transferred on a polyvinylidene difluoride membrane (pore size 0.45 μm). Immunoblotting was performed with the following primary antibodies: inducible NO synthase (iNOS) (BD Bioscience), ET-1 (Abcam), and alpha-/beta-actinin (Cell Signaling Technologies). For detection with automated imaging equipment (FUSION CCD Imager), either anti-mouse or anti-rabbit (Cell Signaling Technologies) secondary antibodies coupled to horseradish peroxidase in combination with ECL Western Blotting Substrate (Thermo Scientific) were used. Final quantification was performed by densitometric analysis (GelPro-analyzer).

Statistical analysis

Data are displayed as mean ± SEM. Statistical calculation was done with GraphPad Prism software (version 9; GraphPad Software Inc.). Kolmogorov–Smirnov test was used for analysis of normal distribution. In the case of normal distribution, we performed the unpaired Student’s t-test to compare two experimental groups and the one-way analysis of variance (ANOVA) test with Tukey’s post hoc test for comparison of more than two groups. If non-normal distribution was given, Mann–Whitney test was applied for comparison of two groups and Kruskal–Wallis with Dunn’s multiple comparison test to compare more than two groups as indicated in the figure legends. Comparison of aortic relaxation curves and survival curves was made using a two-way ANOVA with Bonferroni’s post hoc test and log-rank (Mantel–Cox) test, respectively. P values of <0.05 were considered significant and marked by asterisks (*P < 0.05; **P < 0.01; ***P < 0.001).

Results

Myeloid cell-derived interleukin-6 evokes a chronic systemic inflammatory state with an expansion of the myeloid cell compartment paralleled by vascular dysfunction in mice

To understand the function of IL-6 in vascular disease, we generated mice with conditional IL-6 overexpression (IL-6OE/OE mouse strain). Crossing the IL-6OE/OE mouse strain with LysM-Cre+ mice24 resulted in mice in which myeloid cells overexpress IL-6 and eGFP (LysM-IL-6OE mice, Figure 1A). We confirmed this by flow cytometry of splenocytes (Figure 1B) and IL-6 ELISA of the supernatants of isolated and in vitro cultured CD11b+ cells (Figure 1C, left). Myeloid IL-6 overexpression resulted in significantly elevated circulating IL-6 plasma levels compared with non-detectable concentrations in littermate controls (Figure 1C, right). Of note, the IL-6 levels in these mice were considerably lower than those reported during acute sepsis.40

The increase in systemic IL-6 was accompanied by an increase in splenic total cell numbers shown by flow cytometric analysis in the LysM-IL-6OE mice (Figure 1D). We found an expansion of splenic CD11b+ myeloid cells, CD11b + Ly6G + Ly6C+ neutrophil granulocytes, and CD11b + Ly6GLy6C+ monocytes/macrophages (shown as total cell counts and the percentage of viable splenic cells, Figure 1E and F; gating strategy is shown in Supplementary material online, Figure S1A).

The CD11b+ myeloid cells and the CD11b + Ly6G + Ly6C+ neutrophil granulocytes were also increased in the blood, whereas the number of systemic CD11b + Ly6GLy6C+ monocytes/macrophages was not altered (see Supplementary material online, Figure S1B and C). There was no change in blood CD90.2+ T cells detectable in the LysM-IL-6OE mice compared with controls (see Supplementary material online, Figure S1D). The total number of splenic T cells was not altered either, but a reduction in the percentage of splenic T cells of total living cells was apparent (see Supplementary material online, Figure S1E).

Chronic elevations of circulating IL-6 levels were associated with an increased mortality in mice. Starting premature death at 9 weeks, only 12.5% of LysM-IL-6OE mice reached 15 weeks of age (Figure 1G). To better understand the reduced lifespan in the LysM-IL-6OE mice, we cautiously monitored the mice and performed detailed (histological) analysis of 11–12-week-old LysM-IL-6OE mice compared with control mice (Figure 1H and Supplementary material online, Figure S2). It was apparent that the LysM-IL-6OE mice were prone to the development of intestinal prolapses. This was accompanied by a colitis-like phenotype shown by histological analysis and endoscopy (Figure 1H). Additionally, LysM-IL-6OE mice revealed inflammatory changes in the lungs, liver, spleen, and kidney (see Supplementary material online, Figure S2A–D), all of which—in particular the pulmonary inflammation—could contribute to premature death. The brain was apparently histologically not affected (see Supplementary material online, Figure S2E). There were no macro- or microscopic signs of thrombosis or bleeding in all analysed organs (see Supplementary material online, Figure S2). In summary, LysM-IL-6OE mice developed signs of systemic inflammation with an IL-6-driven colitis-like phenotype.

We then focused on the analysis of the vascular system. Maximal constriction of aortic rings from LysM-IL-6OE mice to PGF2α was greater than that of control mice, whereas responses to KCl did not differ between genotypes (Figure 2A). Vessels from LysM-IL-6OE mice also demonstrated endothelial dysfunction evidenced by an impaired ACh-induced relaxation (Figure 2A). On the other hand, endothelium-independent vascular relaxation was comparable in segments from wild-type (WT) and LysM-IL-6OE mice, as was blood pressure (see Supplementary material online, Figure S3A and B). In mesenteric arteries, contractile responses to KCl were also unaffected by the overexpression of IL-6 in myeloid cells (Figure 2B). Additionally, ACh-induced relaxation was abrogated in mesenteric arteries from LysM-IL-6OE mice (Figure 2B). This indicated a clear link between a myeloid cell-derived cytokine and severe endothelial dysfunction that was independent of any change in VSMC reactivity or blood pressure (see Supplementary material online, Figure S3C). Endothelial dysfunction is linked to increased ROS production,41 and ROS/RNS levels were significantly increased in blood from LysM-IL-6OE mice (Figure 2C). Furthermore, the CD11b+ myeloid cells demonstrated an increased ROS production following PDBu stimulation by trend, underpinning their increased reactivity (Figure 2D). We detected no differences in the heart size or function in the LysM-IL-6OE mice compared with controls. There were no structural or functional differences in the heart, as assessed by histology and echocardiography (see Supplementary material online, Figure S4).

Figure 2.

Figure 2

Interleukin-6 overexpression in myeloid cells evokes significant vascular dysfunction, increased oxidative stress formation, and an increased reactivity of myeloid cells. (A) Aortic constriction studies. Left panel: aortic constriction in response to prostaglandin F2α and potassium chloride, analysed by unpaired Student’s t-test. Middle panel: isometric tension studies of LysM-IL-6OE and control aortas in response to acetylcholine, analysed by two-way ANOVA with Bonferroni’s multiple comparisons. Right panel: statistical analysis of acetylcholine -induced maximal relaxation with unpaired Student’s t-test. n = 5–11 mice. P = 0.0499 (prostaglandin F2α), P = 0.0002 (maximal relaxation acetylcholine). (B) Mesenteric artery contraction and relaxation. Left panel: contraction of mesenteric arteries in response to potassium chloride in LysM-IL-6OE and control mice, analysed by unpaired Student’s t-test. Right panel: relaxation to acetylcholine of mesenteric arteries that have been precontracted with phenylephrine, Mann–Whitney test, n = 8. P < 0.0001 (maximal relaxation acetylcholine). (C) Reactive oxygen species/reactive nitrogen species levels in whole blood after 20 min stimulation with phorbol 12,13-dibutyrate in LysM-IL-6OE vs. controls, n = 6–8, unpaired Student’s t-test. P = 0.003. (D) Flow cytometric analysis of reactive oxygen species levels detected by CellRox Deep Red staining in CD11b+ myeloid cells in blood of LysM-IL-6OE mice compared with controls with and without phorbol 12,13-dibutyrate stimulation. Pre-gating on living and CD45.2+ cells. Kruskal–Wallis test with Dunn’s multiple comparison test. Quantification left panel: representative flow cytometry histograms; right panel. n = 7–8 mice. P = 0.0045 (control vs. LysM-IL-6OE + phorbol 12,13-dibutyrate), P = 0.0035 (LysM-IL-6OE vs. LysM-IL-6OE + phorbol 12,13-dibutyrate). Data are presented as mean ± SEM, and P values of <0.05 were considered significant and marked by asterisks (*P < 0.05; **P < 0.01; ***P < 0.001).

Taken together, these data demonstrate that the chronic systemic inflammatory state evoked by chronic myeloid IL-6 overexpression is associated with vascular dysfunction without significant cardiac alterations.

Interleukin-6-induced vascular dysfunction is associated with vascular inflammation, increased reactive oxygen species formation and endothelin-1 expression, vascular smooth muscle cell phenotype alterations, and fibrosis in the vasculature

Flow cytometric analysis of CD11b+ cells in aorta showed that vascular dysfunction in LysM-IL-6OE mice was accompanied by an increase in Ly6G+ Ly6C+ neutrophils and by Ly6G Lys6C+ monocytes/macrophages, but neither CX3CR1+ nor the CD115+ CD11b+ monocytes/macrophages, in the aortic vessel wall (Figure 3A and Supplementary material online, Figure S5A (gating strategy) and B). Total aortic CD11b+ cell numbers were not increased, but we noted a shift towards the Ly6G+ Ly6C+ neutrophils within this population (Figure 3A). The quantity of CD90.2+ T cells was increased in LysM-IL6OE aortas, whereas no significant change in aortic CD4+ or CD8+ T cells was observed (see Supplementary material online, Figure S5C and D). In parallel to the described inflammation in the aortic vessel wall, increased ROS formation in the aortic vasculature was apparent (Figure 3B). In line, Mcp1, VCAM1, Cxcl1, Tnf, Nox2, Il6, STAT3, Rorc, iNOS, and VEGFa mRNA expression in the aortic vessel wall of LysM-IL-6OE mice was significantly increased (Figure 3C). Next to the increased protein expression of the inducible NO synthase (iNOS) in the LysM-IL-6OE aortas contributing to increased vascular ROS formation (Figure 3D), ET-1, a potent vasoconstrictor and mediator of vascular dysfunction,42 was elevated in protein expression (Figure 3D) and histological analysis (Figure 3E). Stimulation of HPAECs with IL-6 and sIL-6R resulted in a significantly increased ET-1 expression (Figure 3F), suggesting that IL-6 directly triggers ET-1 expression in endothelial cells. This observation, in combination with the reported capacity of ET-1 to drive IL-6 expression in endothelial cells,43 may trigger a vascular dysfunction vicious circle. Of note, IL-6 synthesis in pulmonary endothelial cells isolated from LysM-IL-6OE mice was increased compared with controls (see Supplementary material online, Figure S6A). Expression of the IL-6 receptor IL-6R was increased in the aortic tissue of LysM-IL6OE mice, further suggesting that IL-6 directly acts on the vessel wall in our experimental mice (see Supplementary material online, Figure S6B).

Figure 3.

Figure 3

Interleukin-6-induced vascular dysfunction is based on vascular inflammation combined with an increased endothelin-1 and inducible NO synthase expression. (A) Myeloid cell infiltration in aortas. Representative flow cytometry plots and statistical analysis of myeloid surface staining of aortas from LysM-IL-6OE mice compared with controls and quantification of aortic myeloid cell staining. Pre-gating on living, CD45.2+, and CD11b+ cells. Neutrophils and monocytes were further gated on Ly6G and Ly6C, n = 9–15 mice, either unpaired Student’s t-test or Mann–Whitney test. P = 0.001 (CD11b+ Ly6G+) and P = 0.0101 (CD11b+ Ly6G+). (B) Vascular superoxide formation oxidative fluorescence microtopography of aortic sections. Left: representative image of aortic sections showing lamina autofluorescence (green) and reactive oxygen species formation (red), scale bar = 50 µm. Right: densitometric analysis of vascular superoxide, normalized to control mice per experimental day. n = 6, unpaired Student’s t-test. P = 0.0275. (C) Mcp1 (P < 0.001), Vcam1 (P = 0.01), Cxcl1 (P = 0.0), Cxcl2 (ns), Tnf (P  =  0.009), Nox2 (P = 0.005), Il6 (P  =  0.01), Il1β (ns), Stat3 (P = 0.002), Rorc (P = 0.02), iNOS (P = 0.005), and Vegf-a (P = 0.005) expression in the aorta of LysM-IL-6OE normalized to control mice. Housekeeping gene: Tbp. n = 5–19, Mann–Whitney test or unpaired Student’s t-test. (D) Representative Western blot and statistical analyses for inducible NO synthase and endothelin-1 normalized to β-actin, n = 6–10, unpaired Student’s t-test. P = 0.0167 (inducible NO synthase) and P = 0.0071 (endothelin-1). (E) Immunohistochemical analysis of endothelin-1 in aortic sections. Left: representative images of endothelin-1 staining of aortic sections with positive and negative controls, scale bar = 50 µm. Right: quantification of the percentage of endothelin-1-positive area. The fatty tissue was excluded. n = 5–4, Mann–Whitney test. P = 0.02. (F) Endothelin-1 expression of human pulmonary arterial endothelial cell co-cultured with IL-6 and sIL-6R for 4 h (quantitative real-time PCR). n = 7, one-way ANOVA test. P = 0.045 (human pulmonary arterial endothelial cell vs. human pulmonary arterial endothelial cell co-cultured with IL-6 and sIL-6R 500pg) and P = 0.0102 (human pulmonary arterial endothelial cell co-cultured with interleukin-6 and sIL-6R 50pg vs. 500pg). Data are presented as mean ± SEM, and P values of <0.05 were considered significant and marked by asterisks (*P < 0.05; **P < 0.01; ***P < 0.001).

Focusing on the role of ROS in this context, we applied the ROS scavengers SOD and catalase, respectively, over 90 min in the organ bath (see Supplementary material online, Figure S7) and found no relevant improving effect. Additionally, application of the ET-1 antagonist bosentan displayed no effect (see Supplementary material online, Figure S7). This indicated that both ROS and ET-1 do not function as acute drivers of vascular dysfunction in this mouse model, but rather contribute to the chronic effects of myeloid cell-derived IL-6 on the vasculature.

In regard to the complex long-term vascular effects evoked by myeloid cell-derived IL-6 overexpression on the vasculature, we found that the amount of interstitial collagen thickness in the vascular wall of LysM-IL-6OE mice was moderately increased, whilst the aortic wall thickness remained unchanged (Figure 4A). This is in line with the concept that vascular inflammation promotes vascular fibrosis.44 To investigate the mechanistic underpinnings, we examined cultured VSMCs isolated from LysM-IL-6OE and control mice by immunocytochemistry (Figure 4B): here, no significant differences in proliferation (measured via Ki67) were apparent, although the presence of 10% serum in the medium may have masked minor changes. Expression of the mechanical stress marker F-actin did not differ between the VSMCs isolated from LysM-IL-6OE and control mice. However, there was a trend in SMA to be less expressed in LysM-IL-6OE VSMCs compared with controls (Figure 4B). This was corroborated in aortic tissue, where we found significantly less SMA mRNA expression in the LysM-IL-6OE compared with control mice (Figure 4C). We found increased matrix metallopeptidase-9 (Mmp9) mRNA levels in the LysM-IL-6OE mice (see Supplementary material online, Figure S8). The mRNA levels of Mmp2, collagen (Col1a1, Col1a2, Col3a1), or vimentin did not differ significantly (see Supplementary material online, Figure S8).

Figure 4.

Figure 4

Interleukin-6-induced vascular dysfunction is associated with an altered vascular smooth muscle cell phenotype and fibrosis formation. (A) Collagen deposition in aortic sections. Sirius Red staining of aortic sections. Left: representative image of aortic sections (images without polarized light are shown below), scale bar = 50 µm. Right: aortic wall thickness and collagen thickness measurement at 10 different points/section with ImageJ software, n = 5, unpaired Student’s t-test. P = 0.0079 (collagen thickness). (B) Immunocytochemical analysis of vascular smooth muscle cell phenotype. Vascular smooth muscle cells were isolated from LysM-IL-6OE mice and control mice and cultured. Cultured vascular smooth muscle cell were stained with smooth muscle alpha-actin, F-actin, Ki67, and DAPI (60×). Representative images are shown in the top row. Quantification is shown in the bottom row. n = 3 mice per group of two independent experiments. Single images of three biological replicates per mouse were analysed, and the mean values each mouse were compared, unpaired Student’s t-test. (C) Quantitative real-time PCR analysis for alpha SMA in LysM-IL-6OE mice aortas (red) vs. control aortas. Housekeeping gene: Gapdh. n = 10–12 mice per group, unpaired Student’s t-test. P = 0.03. Data are presented as mean ± SEM, and P values of <0.05 were considered significant and marked by asterisks (*P < 0.05; **P < 0.01; ***P < 0.001).

Interleukin-6 produced by bone - marrow-derived cells correlates with vascular dysfunction and systemic inflammation

To elucidate the contribution of myeloid cells derived from the BM, we generated chimeric mice transplanted with different ratios of BM isolated from LysM-IL-6OE mice (100, 50, and 10%) mixed with BM of control mice up to 100% (Figure 5A). Interestingly, circulating IL-6 levels in plasma (Figure 5B), vascular endothelial dysfunction (Figure 5C), and oxidative stress levels in blood (Figure 5D) all correlated with the amount of LysM-IL-6OE mice BM transferred and were most significantly pronounced in WT mice reconstituted with 100% LysM-IL-6OE BM cells. Importantly, vascular function in WT mice transplanted with only 10% of LysM-IL-6OE BM was unchanged to controls (Figure 5C), indicating a dose-dependent effect of IL-6 on systemic inflammation and vascular dysfunction. The amount of CD11b+ myeloid cells invading in the aortic vessel and spleen as markers of the IL-6-driven chronic systemic inflammation also correlated with the transferred amount of LysM-IL-6OE mice BM (Figure 5E and F).

Figure 5.

Figure 5

Bone marrow and blood interleukin-6 levels correlate with systemic and vascular inflammation and dysfunction. (A) Experimental approach of bone marrow transplantation. Schematic representation of the experimental design: different ratios of bone marrow isolated from LysM-IL-6OE mice mixed with bone marrow from control mice (100, 50, and 10%) were transplanted into C57BL6-Ly5.1 mice. The transplantation scenarios included wild-type bone marrow → wild type (black circles), 100% LysM-IL-6OE bone marrow → wild type (red circles completely filled with red colour), and mixed bone marrow consisting of 50% LysM-IL-6OE/50% wild type → wild type (half red circles) or 10% LysM-IL-6OE/90% wild type → wild type (red unfilled circles). Final analysis was conducted 70 days after bone marrow transfer. (B) Interleukin-6 levels in serum were measured by ELISA and Bioplex analysis in the bone marrow chimeric mice. n = 12–13, Kruskal–Wallis test with comparison of the mean of each column to the 100% control bone marrow column. P = 0.0245 (100% control bone marrow vs. 50% LysM-IL-6OE bone marrow) and P < 0.0001 (100% control bone marrow vs. 100% LysM-IL-6OE bone marrow). (C) Left: isometric tension studies of isolated aortic rings of bone marrow chimeric mice in response to acetylcholine. n = 5–16 mice/group, two-way ANOVA, Bonferroni’s multiple comparison. P < 0.0001 (comparison of the endpoint of the aortic relaxation curves of 100% control bone marrow vs. 100% LysM-IL-6OE bone marrow). Right: comparison of the maximal relaxation of the aortic relaxation curves in response to acetylcholine shown on the left-hand side. P = 0.003 (comparison of the maximum relaxation of the aortic relaxation curves of 100% control bone marrow vs. 100% LysM-IL-6OE bone marrow). (D) Reactive oxygen species/reactive nitrogen species measurement in blood after 20 min stimulation with phorbol 12,13-dibutyrate in bone marrow chimeric mice, n = 5–14, Kruskal–Wallis test with comparison of the mean of each column to the 100% control bone marrow column. P < 0.001 (100% control bone marrow vs. 100% LysM-IL-6OE bone marrow). (E) Flow cytometric analysis of the CD11b+ cells in the spleen of bone marrow chimeric mice. n = 4–7 mice/group, Kruskal–Wallis test with comparison of the mean of each column to the 100% control bone marrow column. P = 0.0134 (100% control bone marrow vs. 100% LysM-IL-6OE bone marrow). (F) Flow cytometric analysis of the CD11b+ cells in the aorta of bone marrow chimeric mice. n = 4–7 mice/group, Kruskal–Wallis test with comparison of the mean of each column to the 100% control bone marrow column. P = 0.0215 (100% control bone marrow vs. 100% LysM-IL-6OE bone marrow). Data are presented as mean ± SEM, and P values of <0.05 were considered significant and marked by asterisks (*P < 0.05; **P < 0.01; ***P < 0.001).

These findings show that vascular dysfunction and inflammation, as well as systemic inflammation and ROS formation, are driven by BM cell-derived IL-6 in a dose-dependent manner.

Discussion

Our results highlight the crucial long-term impact of myeloid cell-derived IL-6 on the development of vascular inflammation and dysfunction and underline a clear dose-dependent effect.

For us as clinical scientists based in cardiology, this mouse model was generated with the main aim to decipher the role of myeloid cell-derived IL-6 in CVD. This is of high clinical relevance, as elevated IL-6 levels in patients with CVD (as also seen for example in obesity45) seem to predict a poorer outcome,22,46 underlining the need for a better understanding of IL-6 in CVD.

The well-established central role of IL-6 in systemic inflammation47 was confirmed in our mouse model. Additionally, our mouse model highlights the central role of IL-6 in inflammatory bowel disease (IBD).15 This is in line with the observation that patients with IBD have a higher risk of cardiovascular events compared with patients without IBD despite an unchanged incidence of conventional cardiovascular risk factors.17 Our mouse model also reflects the cardiovascular comorbidity of patients with IBD. One relevant factor of the cardiovascular comorbidity in IBD might be the chronic systemic inflammation.17 The microbiome, which is relevant in CVD development48 and IBD,49 might represent a further interconnecting factor.

To the best of our knowledge, this is the first report on the chronic effects of IL-6 on the vasculature in a mouse model. Elevated levels of IL-6, activated downstream of the cytokine IL-1β, are known to be associated with an increased rate of adverse cardiovascular events in patients with chronic atherosclerotic disease.50,51 The inflammation concept in CAD supports the idea to specifically target the IL-6 receptor pathways to prevent or attenuate CAD.52 Interleukin-6 was found in atherosclerotic plaques53 and shown to promote atherosclerotic lesion progression in mice.54 Recently, it has been demonstrated that treatment approaches of antagonizing IL-6 could reduce various biomarkers of systemic inflammation associated with the atherothrombotic process in patients with high atherosclerotic risk.55,56 In contrast, a potentially atheroprotective role of IL-6 has also been reported.57,58 This underscores that experimental results on the role of IL-6 in the cardiovascular system must be interpreted carefully.22

In our study, we detected that IL-6 induces vascular dysfunction systemically—in both large and small vessels. This was paralleled by an increased ROS formation, recapitulating findings by Wassmann et al.59 in mice treated with IL-6 over 18 days. In parallel, Mcp1, Vcam1, Cxcl1 and 2, Tnf, iNOS, Nox2, Stat3, and Rorc, key drivers and relevant components of vascular dysfunction and inflammation, were upregulated in the LysM-IL-6OE aortas. The increased infiltration of myeloid cells into the aortic vessel wall and the increased vascular ROS formation detected in LysM-IL-6OE mice are fully compatible with the activating effect of IL-6 on myeloid cells.8,60 In comparison with mice with AngII-induced vascular dysfunction (1 week of AngII treatment), the number of myeloid cells invading into the aortic vessel wall seemed higher in the AngII-treated mice.61 This suggests that it is necessary to differentiate between long-term inflammation, as seen in the LysM-IL-6OE mouse model, and the short-term inflammation in the AngII model. However, since ROS scavengers as catalase could not attenuate vascular dysfunction when applied to LysM-IL-6OE aortas in vitro, this indicates that not acute exposure to oxidative stress, but rather long-term impact of chronic IL-6-driven inflammation renders the vasculature dysfunctional.

We therefore focussed on these long-term effects: we found a moderately increased fibrosis in the aortic vessel walls of the LysM-IL-6OE mice in line with the reported fibroblast stimulating effect of IL-6.62 Although this increase in the interstitial collagen thickness was significant, we were not faced with a major difference in size. This finding may pave the way for long-term IL-6-driven alterations of the vasculature and reflect an ongoing process. In any case, the increased mRNA expression of MMP-9 is compatible with an increased collagen turnover.63 Further, we found an altered phenotype of VSMCs in the form of loss of contractile markers, suggesting a phenotypic switch towards a more synthetic phenotype.64,65 We therefore hypothesize that the vessels in the LysM-IL-6OE mice are most likely in the process of an altered collagen formation. Nevertheless, they still provide an increased capacity to constrict upon stimulus. Taken together, these findings conclude that the vascular dysfunction initiated by myeloid cell-derived IL-6 overexpression involves the activation of multiple vascular cell types and release of downstream mediators and finally impacts the vascular collagen and VSMC phenotype.

Vascular dysfunction in LysM-IL-6OE mice was associated with an altered VSMC phenotype but did not evoke blood pressure elevation and systemic hypertension. The nitric oxide release of iNOS, which was upregulated in the LysM-IL-6OE aortas, could potentially blunt a potential blood pressure increase. The increased aortic ET-1 expression in the LysM-IL-6OE mice is strengthened by reports that chronic endothelial ET-1 overexpression is associated with normal blood pressure66 (in contrast to short-term endothelial overexpression of ET-1 resulting in hypertension67). Interestingly, our data demonstrate IL-6 to be capable of driving vascular ET-1 expression. In total, this suggests that chronic IL-6 expression has the potential to trigger a vicious cycle of vascular dysfunction and inflammation. High expression of the IL-6 receptor in the aortic tissue in LysM-IL-6OE mice suggests that IL-6 can directly impact the vasculature. This assumption is in line with data reported for human Endothelial cells (ECs).68 Further analysis has to follow on the exact IL-6 signalling in ECs and VSMCs under chronic IL-6 exposure. Here, the dose–response curve of IL-6 in the cardiovascular system must be kept in mind to determine at which IL-6 quantity chronic IL-6 exposure evokes changes in the cardiovascular system. The BM transfer experiments we performed suggest that the number of IL-6-producing myeloid cells in the BM correlates directly with systemic and vascular inflammation. Further studies on the impact of anti-IL6 treatment in this mouse model—and in a mouse model of vascular dysfunction—are needed.

The reported mouse model, as all genetic mouse models, certainly is not fully physiologic. However, extrapolating murine experimental knowledge from bench to bedside can raise necessary awareness that patients with elevated IL-6 levels (e.g. due to chronic IL-6-driven inflammatory diseases) are at risk to develop vascular inflammation. Since IL-6 levels correlate not only with systemic inflammation but also with vascular dysfunction and inflammation, it must be one treatment goal to keep the underlying inflammatory situation limited.

Conclusion

Long-term myeloid cell-derived IL-6 expression evokes a chronic systemic inflammatory state with autoimmune colitis as a leading symptom. This is associated with significant vascular inflammation and dysfunction, ROS formation, elevated vascular ET-1 expression, alterations of the VSMCs, and increased collagen formation. Vascular dysfunction and ROS formation were driven by BM cell-derived IL-6 in a directly dose-dependent manner. Based on our findings, we conclude that long-term reduction in systemic IL-6 levels (e.g. by treating the existing autoimmune disease) is essential to reduce the associated vascular phenotype.

Further research focused on the complex impact of central cytokines as IL-6 on vascular regulation in (chronic) inflammatory diseases will lead to a better understanding of the vascular component in inflammatory diseases and new targets amenable for drug therapy.

Lead author biography

graphic file with name oeae046il1.jpg

Tanja Knopp studied anthropology in Mainz, Germany, and focused on the impact of interleukin-6 on the vasculature and on the coagulation cascade during her thesis. As a post-doc in Bern, Switzerland, she is now working in the field of thrombosis and haemostasis.

graphic file with name oeae046il2.jpg

Rebecca Jung studied biology in Mainz, Germany. As a PhD candidate, she concentrated on the role of the cytokines IL-6 and IL-17A in vascular dysfunction development and on the cardiovascular comorbidity in the IL-17A-driven autoimmune skin disease psoriasis. She meanwhile switched from university to industry and continued working in the field of autoimmune diseases.

Supplementary Material

oeae046_Supplementary_Data

Acknowledgements

The authors thank Angelica Karpi, Anne-Kristin Conze, Alexey Nikolaev, Michaela Blanfeld, Julia Ringen, and Petra Adams-Quack for excellent support and help with the experiments. The authors are thankful to Ulrike Abuabed and Arturo Zychlinsky (Institute of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany) and Christoph Reinhardt and Maximilian Mimmler for fruitful discussion on aortic NETosis stainings. Graphical abstract and parts of the figures were created with BioRender.com.

Contributor Information

Tanja Knopp, Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.

Rebecca Jung, Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; Institute of Molecular Medicine, University Medical Center Mainz, Mainz, Germany.

Johannes Wild, Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner site Rhine-Main, Germany.

Magdalena L Bochenek, Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner site Rhine-Main, Germany.

Panagiotis Efentakis, Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.

Annika Lehmann, Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.

Tabea Bieler, Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.

Venkata Garlapati, Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.

Cindy Richter, Institute of Anatomy, University Medical Center Leipzig, Leipzig, Germany; Institute of Neuroradiology, University Medical Center, Leipzig, Germany.

Michael Molitor, Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner site Rhine-Main, Germany.

Katharina Perius, Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.

Stefanie Finger, Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.

Jérémy Lagrange, Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.

Iman Ghasemi, Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.

Konstantinos Zifkos, Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.

Katharina S Kommoss, Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.

Joumana Masri, Institute of Molecular Medicine, University Medical Center Mainz, Mainz, Germany.

Sonja Reißig, Institute of Molecular Medicine, University Medical Center Mainz, Mainz, Germany.

Voahanginirina Randriamboavonjy, Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.

Thomas Wunderlich, Max Planck Institute for Metabolism Research Cologne, Cologne, Germany.

Nadine Hövelmeyer, Institute of Molecular Medicine, University Medical Center Mainz, Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.

Alexander N R Weber, Department of Innate Immunity, Eberhard Karls University Tübingen, Tübingen, Germany.

Ilgiz A Mufazalov, Institute of Molecular Medicine, University Medical Center Mainz, Mainz, Germany.

Markus Bosmann, Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA.

Ingo Bechmann, Institute of Anatomy, University Medical Center Leipzig, Leipzig, Germany.

Ingrid Fleming, German Center for Cardiovascular Research (DZHK), Partner site Rhine-Main, Germany; Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.

Matthias Oelze, Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.

Andreas Daiber, Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.

Thomas Münzel, Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner site Rhine-Main, Germany.

Katrin Schäfer, Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner site Rhine-Main, Germany.

Philip Wenzel, Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner site Rhine-Main, Germany.

Ari Waisman, Institute of Molecular Medicine, University Medical Center Mainz, Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.

Susanne Karbach, Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner site Rhine-Main, Germany.

Data availability

The data underlying this article will be shared on request to the corresponding author.

Supplementary material

Supplementary material is available at European Heart Journal Open online.

Author contribution

R.J., T.K., J.W., M.B., K.P., I.G., K.Z., A.L., P.E., J.L., T.B., M.M., V.R., and C.R. performed experiments and statistical analysis. N.H., T.W., and J.M. supported the generation of the genetic mouse model. M.O., A.D., K.S., I.F., I.B., I.A.M., A.N.R.W., and T.M. were fruitful discussion partners and supported the analysis and writing and correction of the manuscript. K.S.K. corrected the manuscript. S.R. performed mouse endoscopy. P.W. supported the whole project with discussion, analysis, and writing. A.W. and S.K. designed the mouse and the project. SK made the mouse, planned the experiments, acquired funding, performed the analysis, supervised PhD candidates, and wrote the manuscript.

Funding

This work was supported by the German Federal Ministry for Education and Research (BMBF 01EO1503, CTH Mainz TRP Project X.II and junior group ‘Systemic inflammation and vascular disease’) and the Deutsche Forschungsgemeinschaft (DFG) with the grant KA 4035/1-1 (S.K.). It was partially funded by the Boehringer Ingelheim Foundation ‘Novel and neglected cardiovascular risk factors: Molecular mechanisms and therapeutic implications’ (S.K., J.W., M.M., and P.W.) and the DZHK grant ‘Platelet signatures and psoriasis in cardiac dysfunction’ (S.K. and P.W.). S.K., A.W., K.S.K., and A.N.R.W. were supported by the DFG/SFB grant TRR156/2–246807620. P.W. was supported by the DFG WE4361/14-1 and M.M. by the DZHK (FKZ 81X3210105) and the Else Kroner-Fresenius Foundation (2021_ 2020_EKEA.14). N.H. and A.W. were supported by CRC1292/2–318346496. M.B. was supported by the National Institutes of Health (1R01HL141513, 1R01HL139641, 1R01AI153613) and the DFG (BO3482/3-3, BO3482/4-1). K.Z. was supported by a PhD fellowship from the Marie Skłodowska Curie Innovative Training Network ‘TICARDIO’ (Marie Skłodowska Curie grant agreement No 813409). K.S. received funding from the German Research Foundation (Deutsche Forschungsgemeinschaft; SCHA 808/9-2 and Sonderforschungsbereich 1531, project A09; project number 456687919) and I.F. from the German Research Foundation (Sonderforschungsbereich 1531, project B03; project number 456687919). K.S.K. was supported by the Physician Scientist Programme, University Hospital Heidelberg.

References

  • 1. Fanola  CL, Morrow  DA, Cannon  CP, Jarolim  P, Lukas  MA, Bode  C, Hochman  JS, Goodrich  EL, Braunwald  E, O'Donoghue  ML. Interleukin-6 and the risk of adverse outcomes in patients after an acute coronary syndrome: observations from the SOLID-TIMI 52 (stabilization of plaque using darapladib-thrombolysis in myocardial infarction 52) trial. J Am Heart Assoc  2017;6:e005637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Gager  GM, Biesinger  B, Hofer  F, Winter  MP, Hengstenberg  C, Jilma  B, Eyileten  C, Postula  M, Lang  IM, Siller-Matula  JM. Interleukin-6 level is a powerful predictor of long-term cardiovascular mortality in patients with acute coronary syndrome. Vascul Pharmacol  2020;135:106806. [DOI] [PubMed] [Google Scholar]
  • 3. Markousis-Mavrogenis  G, Tromp  J, Ouwerkerk  W, Devalaraja  M, Anker  SD, Cleland  JG, Dickstein  K, Filippatos  GS, van der Harst  P, Lang  CC, Metra  M, Ng  LL, Ponikowski  P, Samani  NJ, Zannad  F, Zwinderman  AH, Hillege  HL, van Veldhuisen  DJ, Kakkar  R, Voors  AA, van der Meer  P. The clinical significance of interleukin-6 in heart failure: results from the BIOSTAT-CHF study. Eur J Heart Fail  2019;21:965–973. [DOI] [PubMed] [Google Scholar]
  • 4. Wainstein  MV, Mossmann  M, Araujo  GN, Goncalves  SC, Gravina  GL, Sangalli  M, Veadrigo  F, Matte  R, Reich  R, Costa  FG, Andrades  M, da Silva  AMV, Bertoluci  MC. Elevated serum interleukin-6 is predictive of coronary artery disease in intermediate risk overweight patients referred for coronary angiography. Diabetol Metab Syndr  2017;9:67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Held  C, White  HD, Stewart  RAH, Budaj  A, Cannon  CP, Hochman  JS, Koenig  W, Siegbahn  A, Steg  PG, Soffer  J, Weaver  WD, Östlund  O, Wallentin  L; STABILITY Investigators . Inflammatory biomarkers interleukin-6 and C-reactive protein and outcomes in stable coronary heart disease: experiences from the STABILITY (stabilization of atherosclerotic plaque by initiation of darapladib therapy) trial. J Am Heart Assoc  2017;6:e005077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Korn  T, Bettelli  E, Oukka  M, Kuchroo  VK. IL-17 and Th17 cells. Annu Rev Immunol  2009;27:485–517. [DOI] [PubMed] [Google Scholar]
  • 7. Iwakura  Y, Ishigame  H, Saijo  S, Nakae  S. Functional specialization of interleukin-17 family members. Immunity  2011;34:149–162. [DOI] [PubMed] [Google Scholar]
  • 8. Kaplanski  G, Marin  V, Montero-Julian  F, Mantovani  A, Farnarier  C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol  2003;24:25–29. [DOI] [PubMed] [Google Scholar]
  • 9. Murphy  K, Travers  P, Walport  M. Janeway´s immunobiology. Seventh Edition ed. New York: Garland Science, Taylor and Francis Group, LLC; 2008. [Google Scholar]
  • 10. Rose-John  S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci  2012;8:1237–1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Hunter  CA, Jones  SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol  2015;16:448–457. [DOI] [PubMed] [Google Scholar]
  • 12. Blauvelt  A. IL-6 Differs from TNF-alpha: unpredicted clinical effects caused by IL-6 blockade in psoriasis. J Invest Dermatol  2017;137:541–542. [DOI] [PubMed] [Google Scholar]
  • 13. Choy  EH, De Benedetti  F, Takeuchi  T, Hashizume  M, John  MR, Kishimoto  T. Translating IL-6 biology into effective treatments. Nat Rev Rheumatol  2020;16:335–345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. McHugh  J. Systemic lupus erythematosus: B cell-derived IL-6 promotes disease. Nat Rev Rheumatol  2017;13:633. [DOI] [PubMed] [Google Scholar]
  • 15. Schreiber  S, Aden  K, Bernardes  JP, Conrad  C, Tran  F, Hoper  H, Volk  V, Mishra  N, Blase  JI, Nikolaus  S, Bethge  J, Kühbacher  T, Röcken  C, Chen  M, Cottingham  I, Petri  N, Rasmussen  BB, Lokau  J, Lenk  L, Garbers  C, Feuerhake  F, Rose-John  S, Waetzig  GH, Rosenstiel  P. Therapeutic interleukin-6 trans-signaling inhibition by olamkicept (sgp130Fc) in patients with active inflammatory bowel disease. Gastroenterology  2021;160:2354–2366.e11. [DOI] [PubMed] [Google Scholar]
  • 16. Mehta  NN, Azfar  RS, Shin  DB, Neimann  AL, Troxel  AB, Gelfand  JM. Patients with severe psoriasis are at increased risk of cardiovascular mortality: cohort study using the General Practice Research Database. Eur Heart J  2010;31:1000–1006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Singh  S, Kullo  IJ, Pardi  DS, Loftus  EV  Jr. Epidemiology, risk factors and management of cardiovascular diseases in IBD. Nat Rev Gastroenterol Hepatol  2015;12:26–35. [DOI] [PubMed] [Google Scholar]
  • 18. Kahlenberg  JM, Kaplan  MJ. The interplay of inflammation and cardiovascular disease in systemic lupus erythematosus. Arthritis Res Ther  2011;13:203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Hansildaar  R, Vedder  D, Baniaamam  M, Tausche  AK, Gerritsen  M, Nurmohamed  MT. Cardiovascular risk in inflammatory arthritis: rheumatoid arthritis and gout. Lancet Rheumatol  2021;3:e58–e70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Durante  A, Bronzato  S. The increased cardiovascular risk in patients affected by autoimmune diseases: review of the various manifestations. J Clin Med Res  2015;7:379–384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Schrader  LI, Kinzenbaw  DA, Johnson  AW, Faraci  FM, Didion  SP. IL-6 deficiency protects against angiotensin II induced endothelial dysfunction and hypertrophy. Arterioscler Thromb Vasc Biol  2007;27:2576–2581. [DOI] [PubMed] [Google Scholar]
  • 22. Ridker  PM, Rane  M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ Res  2021;128:1728–1746. [DOI] [PubMed] [Google Scholar]
  • 23. Allocca  M, Jovani  M, Fiorino  G, Schreiber  S, Danese  S. Anti-IL-6 treatment for inflammatory bowel diseases: next cytokine, next target. Curr Drug Targets  2013;14:1508–1521. [DOI] [PubMed] [Google Scholar]
  • 24. Clausen  BE, Burkhardt  C, Reith  W, Renkawitz  R, Forster  I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res  1999;8:265–277. [DOI] [PubMed] [Google Scholar]
  • 25. Munzel  T, Giaid  A, Kurz  S, Stewart  DJ, Harrison  DG. Evidence for a role of endothelin 1 and protein kinase C in nitroglycerin tolerance. Proc Natl Acad Sci U S A  1995;92:5244–5248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Lagaud  GJ, Randriamboavonjy  V, Roul  G, Stoclet  JC, Andriantsitohaina  R. Mechanism of Ca2+release and entry during contraction elicited by norepinephrine in rat resistance arteries. Am J Physiol  1999;276:H300–H308. [DOI] [PubMed] [Google Scholar]
  • 27. Randriamboavonjy  V, Kyselova  A, Elgheznawy  A, Zukunft  S, Wittig  I, Fleming  I. Calpain 1 cleaves and inactivates prostacyclin synthase in mesenteric arteries from diabetic mice. Basic Res Cardiol  2017;112:10. [DOI] [PubMed] [Google Scholar]
  • 28. Daugherty  A, Manning  MW, Cassis  LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest  2000;105:1605–1612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Karbach  S, Croxford  AL, Oelze  M, Schuler  R, Minwegen  D, Wegner  J, Koukes  L, Yogev  N, Nikolaev  A, Reißig  S, Ullmann  A, Knorr  M, Waldner  M, Neurath  MF, Li  H, Wu  Z, Brochhausen  C, Scheller  J, Rose-John  S, Piotrowski  C, Bechmann  I, Radsak  M, Wild  P, Daiber  A, von Stebut  E, Wenzel  P, Waisman  A, Münzel  T. Interleukin 17 drives vascular inflammation, endothelial dysfunction, and arterial hypertension in psoriasis-like skin disease. Arterioscler Thromb Vasc Biol  2014;34:2658–2668. [DOI] [PubMed] [Google Scholar]
  • 30. Daiber  A, August  M, Baldus  S, Wendt  M, Oelze  M, Sydow  K, Kleschyov  AL, Munzel  T. Measurement of NAD(P)H oxidase-derived superoxide with the luminol analogue L-012. Free Radic Biol Med  2004;36:101–111. [DOI] [PubMed] [Google Scholar]
  • 31. Oelze  M, Daiber  A, Brandes  RP, Hortmann  M, Wenzel  P, Hink  U, Schulz  E, Mollnau  H, von Sandersleben  A, Kleschyov  AL, Mülsch  A, Li  H, Förstermann  U, Münzel  T. Nebivolol inhibits superoxide formation by NADPH oxidase and endothelial dysfunction in angiotensin II-treated rats. Hypertension  2006;48:677–684. [DOI] [PubMed] [Google Scholar]
  • 32. Karbach  SH, Schonfelder  T, Brandao  I, Wilms  E, Hormann  N, Jackel  S, Schüler  R, Finger  S, Knorr  M, Lagrange  J, Brandt  M, Waisman  A, Kossmann  S, Schäfer  K, Münzel  T, Reinhardt  C, Wenzel  P. Gut Microbiota promote angiotensin II-induced arterial hypertension and vascular dysfunction. J Am Heart Assoc  2016;5:e003698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Tang  Y, Reissig  S, Glasmacher  E, Regen  T, Wanke  F, Nikolaev  A, Gerlach  K, Popp  V, Karram  K, Fantini  MC, Schattenberg  JM, Galle  PR, Neurath  MF, Weigmann  B, Kurschus  FC, Hövelmeyer  N, Waisman  A. Alternative splice forms of CYLD mediate ubiquitination of SMAD7 to prevent TGFB signaling and promote colitis. Gastroenterology  2019;156:692–707.e7. [DOI] [PubMed] [Google Scholar]
  • 34. Cossarizza  A, Chang  HD, Radbruch  A, Acs  A, Adam  D, Adam-Klages  S, Agace  WW, Aghaeepour  N, Akdis  M, Allez  M, Almeida  LN, Alvisi  G, Anderson  G, Andrä  I, Annunziato  F, Anselmo  A, Bacher  P, Baldari  CT, Bari  S, Barnaba  V, Barros-Martins  J, Battistini  L, Bauer  W, Baumgart  S, Baumgarth  N, Baumjohann  D, Baying  B, Bebawy  M, Becher  B, Beisker  W, Benes  V, Beyaert  R, Blanco  A, Boardman  DA, Bogdan  C, Borger  JG, Borsellino  G, Boulais  PE, Bradford  JA, Brenner  D, Brinkman  RR, Brooks  AES, Busch  DH, Büscher  M, Bushnell  TP, Calzetti  F, Cameron  G, Cammarata  I, Cao  X, Cardell  SL, Casola  S, Cassatella  MA, Cavani  A, Celada  A, Chatenoud  L, Chattopadhyay  PK, Chow  S, Christakou  E, Čičin-Šain  L, Clerici  M, Colombo  FS, Cook  L, Cooke  A, Cooper  AM, Corbett  AJ, Cosma  A, Cosmi  L, Coulie  PG, Cumano  A, Cvetkovic  L, Dang  VD, Dang-Heine  C, Davey  MS, Davies  D, De Biasi  S, Del Zotto  G, Dela Cruz  GV, Delacher  M, Della Bella  S, Dellabona  P, Deniz  G, Dessing  M, Di Santo  JP, Diefenbach  A, Dieli  F, Dolf  A, Dörner  T, Dress  RJ, Dudziak  D, Dustin  M, Dutertre  CA, Ebner  F, Eckle  SBG, Edinger  M, Eede  P, Ehrhardt  GRA, Eich  M, Engel  P, Engelhardt  B, Erdei  A, Esser  C, Everts  B, Evrard  M, Falk  CS, Fehniger  TA, Felipo-Benavent  M, Ferry  H, Feuerer  M, Filby  A, Filkor  K, Fillatreau  S, Follo  M, Förster  I, Foster  J, Foulds  GA, Frehse  B, Frenette  PS, Frischbutter  S, Fritzsche  W, Galbraith  DW, Gangaev  A, Garbi  N, Gaudilliere  B, Gazzinelli  RT, Geginat  J, Gerner  W, Gherardin  NA, Ghoreschi  K, Gibellini  L, Ginhoux  F, Goda  K, Godfrey  DI, Goettlinger  C, González-Navajas  JM, Goodyear  CS, Gori  A, Grogan  JL, Grummitt  D, Grützkau  A, Haftmann  C, Hahn  J, Hammad  H, Hämmerling  G, Hansmann  L, Hansson  G, Harpur  CM, Hartmann  S, Hauser  A, Hauser  AE, Haviland  DL, Hedley  D, Hernández  DC, Herrera  G, Herrmann  M, Hess  C, Höfer  T, Hoffmann  P, Hogquist  K, Holland  T, Höllt  T, Holmdahl  R, Hombrink  P, Houston  JP, Hoyer  BF, Huang  B, Huang  FP, Huber  JE, Huehn  J, Hundemer  M, Hunter  CA, Hwang  WYK, Iannone  A, Ingelfinger  F, Ivison  SM, Jäck  HM, Jani  PK, Jávega  B, Jonjic  S, Kaiser  T, Kalina  T, Kamradt  T, Kaufmann  SHE, Keller  B, Ketelaars  SLC, Khalilnezhad  A, Khan  S, Kisielow  J, Klenerman  P, Knopf  J, Koay  HF, Kobow  K, Kolls  JK, Kong  WT, Kopf  M, Korn  T, Kriegsmann  K, Kristyanto  H, Kroneis  T, Krueger  A, Kühne  J, Kukat  C, Kunkel  D, Kunze-Schumacher  H, Kurosaki  T, Kurts  C, Kvistborg  P, Kwok  I, Landry  J, Lantz  O, Lanuti  P, LaRosa  F, Lehuen  A, LeibundGut-Landmann  S, Leipold  MD, Leung  LYT, Levings  MK, Lino  AC, Liotta  F, Litwin  V, Liu  Y, Ljunggren  HG, Lohoff  M, Lombardi  G, Lopez  L, López-Botet  M, Lovett-Racke  AE, Lubberts  E, Luche  H, Ludewig  B, Lugli  E, Lunemann  S, Maecker  HT, Maggi  L, Maguire  O, Mair  F, Mair  KH, Mantovani  A, Manz  RA, Marshall  AJ, Martínez-Romero  A, Martrus  G, Marventano  I, Maslinski  W, Matarese  G, Mattioli  AV, Maueröder  C, Mazzoni  A, McCluskey  J, McGrath  M, McGuire  HM, McInnes  IB, Mei  HE, Melchers  F, Melzer  S, Mielenz  D, Miller  SD, Mills  KHG, Minderman  H, Mjösberg  J, Moore  J, Moran  B, Moretta  L, Mosmann  TR, Müller  S, Multhoff  G, Muñoz  LE, Münz  C, Nakayama  T, Nasi  M, Neumann  K, Ng  LG, Niedobitek  A, Nourshargh  S, Núñez  G, O'Connor  JE, Ochel  A, Oja  A, Ordonez  D, Orfao  A, Orlowski-Oliver  E, Ouyang  W, Oxenius  A, Palankar  R, Panse  I, Pattanapanyasat  K, Paulsen  M, Pavlinic  D, Penter  L, Peterson  P, Peth  C, Petriz  J, Piancone  F, Pickl  WF, Piconese  S, Pinti  M, Pockley  AG, Podolska  MJ, Poon  Z, Pracht  K, Prinz  I, Pucillo  CEM, Quataert  SA, Quatrini  L, Quinn  KM, Radbruch  H, Radstake  TRDJ, Rahmig  S, Rahn  HP, Rajwa  B, Ravichandran  G, Raz  Y, Rebhahn  JA, Recktenwald  D, Reimer  D, Reis e Sousa  C, Remmerswaal  EBM, Richter  L, Rico  LG, Riddell  A, Rieger  AM, Robinson  JP, Romagnani  C, Rubartelli  A, Ruland  J, Saalmüller  A, Saeys  Y, Saito  T, Sakaguchi  S, Sala-de-Oyanguren  F, Samstag  Y, Sanderson  S, Sandrock  I, Santoni  A, Sanz  RB, Saresella  M, Sautes-Fridman  C, Sawitzki  B, Schadt  L, Scheffold  A, Scherer  HU, Schiemann  M, Schildberg  FA, Schimisky  E, Schlitzer  A, Schlosser  J, Schmid  S, Schmitt  S, Schober  K, Schraivogel  D, Schuh  W, Schüler  T, Schulte  R, Schulz  AR, Schulz  SR, Scottá  C, Scott-Algara  D, Sester  DP, Shankey  TV, Silva-Santos  B, Simon  AK, Sitnik  KM, Sozzani  S, Speiser  DE, Spidlen  J, Stahlberg  A, Stall  AM, Stanley  N, Stark  R, Stehle  C, Steinmetz  T, Stockinger  H, Takahama  Y, Takeda  K, Tan  L, Tárnok  A, Tiegs  G, Toldi  G, Tornack  J, Traggiai  E, Trebak  M, Tree  TIM, Trotter  J, Trowsdale  J, Tsoumakidou  M, Ulrich  H, Urbanczyk  S, van de Veen  W, van den Broek  M, van der Pol  E, Van Gassen  S, Van Isterdael  G, van Lier  RAW, Veldhoen  M, Vento-Asturias  S, Vieira  P, Voehringer  D, Volk  HD, von Borstel  A, von Volkmann  K, Waisman  A, Walker  RV, Wallace  PK, Wang  SA, Wang  XM, Ward  MD, Ward-Hartstonge  KA, Warnatz  K, Warnes  G, Warth  S, Waskow  C, Watson  JV, Watzl  C, Wegener  L, Weisenburger  T, Wiedemann  A, Wienands  J, Wilharm  A, Wilkinson  RJ, Willimsky  G, Wing  JB, Winkelmann  R, Winkler  TH, Wirz  OF, Wong  A, Wurst  P, Yang  JHM, Yang  J, Yazdanbakhsh  M, Yu  L, Yue  A, Zhang  H, Zhao  Y, Ziegler  SM, Zielinski  C, Zimmermann  J, Zychlinsky  A. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol  2019;49:1457–1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Bochenek  ML, Rosinus  NS, Lankeit  M, Hobohm  L, Bremmer  F, Schutz  E, Klok  FA, Horke  S, Wiedenroth  CB, Münzel  T, Lang  IM, Mayer  E, Konstantinides  S, Schäfer  K. From thrombosis to fibrosis in chronic thromboembolic pulmonary hypertension. Thromb Haemost  2017;117:769–783. [DOI] [PubMed] [Google Scholar]
  • 36. Gogiraju  R, Renner  L, Bochenek  ML, Zifkos  K, Molitor  M, Danckwardt  S, Wenzel  P, Münzel  T, Konstantinides  S, Schäfer  K. Arginase-1 deletion in erythrocytes promotes vascular calcification via enhanced GSNOR (S-nitrosoglutathione reductase) expression and NO signaling in smooth muscle cells. Arterioscler Thromb Vasc Biol  2022;42:e291–e310. [DOI] [PubMed] [Google Scholar]
  • 37. Feldman  AT, Wolfe  D. Tissue processing and hematoxylin and eosin staining. Methods Mol Biol  2014;1180:31–43. [DOI] [PubMed] [Google Scholar]
  • 38. Oelze  M, Knorr  M, Kroller-Schon  S, Kossmann  S, Gottschlich  A, Rummler  R, Schuff  A, Daub  S, Doppler  C, Kleinert  H, Gori  T, Daiber  A, Münzel  T. Chronic therapy with isosorbide-5-mononitrate causes endothelial dysfunction, oxidative stress, and a marked increase in vascular endothelin-1 expression. Eur Heart J  2013;34:3206–3216. [DOI] [PubMed] [Google Scholar]
  • 39. Livak  KJ, Schmittgen  TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods  2001;25:402–408. [DOI] [PubMed] [Google Scholar]
  • 40. Bosmann  M, Russkamp  NF, Ward  PA. Fingerprinting of the TLR4-induced acute inflammatory response. Exp Mol Pathol  2012;93:319–323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Klionsky  DJ, Abdel-Aziz  AK, Abdelfatah  S, Abdellatif  M, Abdoli  A, Abel  S, Abeliovich  H, Abildgaard  MH, Abudu  YP, Acevedo-Arozena  A, Adamopoulos  IE, Adeli  K, Adolph  TE, Adornetto  A, Aflaki  E, Agam  G, Agarwal  A, Aggarwal  BB, Agnello  M, Agostinis  P, Agrewala  JN, Agrotis  A, Aguilar  PV, Ahmad  ST, Ahmed  ZM, Ahumada-Castro  U, Aits  S, Aizawa  S, Akkoc  Y, Akoumianaki  T, Akpinar  HA, Al-Abd  AM, Al-Akra  L, Al-Gharaibeh  A, Alaoui-Jamali  MA, Alberti  S, Alcocer-Gómez  E, Alessandri  C, Ali  M, Alim Al-Bari  MA, Aliwaini  S, Alizadeh  J, Almacellas  E, Almasan  A, Alonso  A, Alonso  GD, Altan-Bonnet  N, Altieri  DC, Álvarez  ÉMC, Alves  S, Alves da Costa  C, Alzaharna  MM, Amadio  M, Amantini  C, Amaral  C, Ambrosio  S, Amer  AO, Ammanathan  V, An  Z, Andersen  SU, Andrabi  SA, Andrade-Silva  M, Andres  AM, Angelini  S, Ann  D, Anozie  UC, Ansari  MY, Antas  P, Antebi  A, Antón  Z, Anwar  T, Apetoh  L, Apostolova  N, Araki  T, Araki  Y, Arasaki  K, Araújo  WL, Araya  J, Arden  C, Arévalo  MA, Arguelles  S, Arias  E, Arikkath  J, Arimoto  H, Ariosa  AR, Armstrong-James  D, Arnauné-Pelloquin  L, Aroca  A, Arroyo  DS, Arsov  I, Artero  R, Asaro  DML, Aschner  M, Ashrafizadeh  M, Ashur-Fabian  O, Atanasov  AG, Au  AK, Auberger  P, Auner  HW, Aurelian  L, Autelli  R, Avagliano  L, Ávalos  Y, Aveic  S, Aveleira  CA, Avin-Wittenberg  T, Aydin  Y, Ayton  S, Ayyadevara  S, Azzopardi  M, Baba  M, Backer  JM, Backues  SK, Bae  DH, Bae  ON, Bae  SH, Baehrecke  EH, Baek  A, Baek  SH, Baek  SH, Bagetta  G, Bagniewska-Zadworna  A, Bai  H, Bai  J, Bai  X, Bai  Y, Bairagi  N, Baksi  S, Balbi  T, Baldari  CT, Balduini  W, Ballabio  A, Ballester  M, Balazadeh  S, Balzan  R, Bandopadhyay  R, Banerjee  S, Banerjee  S, Bánréti  Á, Bao  Y, Baptista  MS, Baracca  A, Barbati  C, Bargiela  A, Barilà  D, Barlow  PG, Barmada  SJ, Barreiro  E, Barreto  GE, Bartek  J, Bartel  B, Bartolome  A, Barve  GR, Basagoudanavar  SH, Bassham  DC, Bast  RC  Jr, Basu  A, Batoko  H, Batten  I, Baulieu  EE, Baumgarner  BL, Bayry  J, Beale  R, Beau  I, Beaumatin  F, Bechara  LRG, Beck  GR  Jr, Beers  MF, Begun  J, Behrends  C, Behrens  GMN, Bei  R, Bejarano  E, Bel  S, Behl  C, Belaid  A, Belgareh-Touzé  N, Bellarosa  C, Belleudi  F, Belló Pérez  M, Bello-Morales  R, Beltran  JSO, Beltran  S, Benbrook  DM, Bendorius  M, Benitez  BA, Benito-Cuesta  I, Bensalem  J, Berchtold  MW, Berezowska  S, Bergamaschi  D, Bergami  M, Bergmann  A, Berliocchi  L, Berlioz-Torrent  C, Bernard  A, Berthoux  L, Besirli  CG, Besteiro  S, Betin  VM, Beyaert  R, Bezbradica  JS, Bhaskar  K, Bhatia-Kissova  I, Bhattacharya  R, Bhattacharya  S, Bhattacharyya  S, Bhuiyan  MS, Bhutia  SK, Bi  L, Bi  X, Biden  TJ, Bijian  K, Billes  VA, Binart  N, Bincoletto  C, Birgisdottir  AB, Bjorkoy  G, Blanco  G, Blas-Garcia  A, Blasiak  J, Blomgran  R, Blomgren  K, Blum  JS, Boada-Romero  E, Boban  M, Boesze-Battaglia  K, Boeuf  P, Boland  B, Bomont  P, Bonaldo  P, Bonam  SR, Bonfili  L, Bonifacino  JS, Boone  BA, Bootman  MD, Bordi  M, Borner  C, Bornhauser  BC, Borthakur  G, Bosch  J, Bose  S, Botana  LM, Botas  J, Boulanger  CM, Boulton  ME, Bourdenx  M, Bourgeois  B, Bourke  NM, Bousquet  G, Boya  P, Bozhkov  PV, Bozi  LHM, Bozkurt  TO, Brackney  DE, Brandts  CH, Braun  RJ, Braus  GH, Bravo-Sagua  R, Bravo-San Pedro  JM, Brest  P, Bringer  MA, Briones-Herrera  A, Broaddus  VC, Brodersen  P, Brodsky  JL, Brody  SL, Bronson  PG, Bronstein  JM, Brown  CN, Brown  RE, Brum  PC, Brumell  JH, Brunetti-Pierri  N, Bruno  D, Bryson-Richardson  RJ, Bucci  C, Buchrieser  C, Bueno  M, Buitrago-Molina  LE, Buraschi  S, Buch  S, Buchan  JR, Buckingham  EM, Budak  H, Budini  M, Bultynck  G, Burada  F, Burgoyne  JR, Burón  MI, Bustos  V, Büttner  S, Butturini  E, Byrd  A, Cabas  I, Cabrera-Benitez  S, Cadwell  K, Cai  J, Cai  L, Cai  Q, Cairó  M, Calbet  JA, Caldwell  GA, Caldwell  KA, Call  JA, Calvani  R, Calvo  AC, Calvo-Rubio Barrera  M, Camara  NO, Camonis  JH, Camougrand  N, Campanella  M, Campbell  EM, Campbell-Valois  FX, Campello  S, Campesi  I, Campos  JC, Camuzard  O, Cancino  J, Candido de Almeida  D, Canesi  L, Caniggia  I, Canonico  B, Cantí  C, Cao  B, Caraglia  M, Caramés  B, Carchman  EH, Cardenal-Muñoz  E, Cardenas  C, Cardenas  L, Cardoso  SM, Carew  JS, Carle  GF, Carleton  G, Carloni  S, Carmona-Gutierrez  D, Carneiro  LA, Carnevali  O, Carosi  JM, Carra  S, Carrier  A, Carrier  L, Carroll  B, Carter  AB, Carvalho  AN, Casanova  M, Casas  C, Casas  J, Cassioli  C, Castillo  EF, Castillo  K, Castillo-Lluva  S, Castoldi  F, Castori  M, Castro  AF, Castro-Caldas  M, Castro-Hernandez  J, Castro-Obregon  S, Catz  SD, Cavadas  C, Cavaliere  F, Cavallini  G, Cavinato  M, Cayuela  ML, Cebollada Rica  P, Cecarini  V, Cecconi  F, Cechowska-Pasko  M, Cenci  S, Ceperuelo-Mallafré  V, Cerqueira  JJ, Cerutti  JM, Cervia  D, Cetintas  VB, Cetrullo  S, Chae  HJ, Chagin  AS, Chai  CY, Chakrabarti  G, Chakrabarti  O, Chakraborty  T, Chakraborty  T, Chami  M, Chamilos  G, Chan  DW, Chan  EYW, Chan  ED, Chan  HYE, Chan  HH, Chan  H, Chan  MTV, Chan  YS, Chandra  PK, Chang  CP, Chang  C, Chang  HC, Chang  K, Chao  J, Chapman  T, Charlet-Berguerand  N, Chatterjee  S, Chaube  SK, Chaudhary  A, Chauhan  S, Chaum  E, Checler  F, Cheetham  ME, Chen  CS, Chen  GC, Chen  JF, Chen  LL, Chen  L, Chen  L, Chen  M, Chen  MK, Chen  N, Chen  Q, Chen  RH, Chen  S, Chen  W, Chen  W, Chen  XM, Chen  XW, Chen  X, Chen  Y, Chen  YG, Chen  Y, Chen  Y, Chen  YJ, Chen  YQ, Chen  ZS, Chen  Z, Chen  ZH, Chen  ZJ, Chen  Z, Cheng  H, Cheng  J, Cheng  SY, Cheng  W, Cheng  X, Cheng  XT, Cheng  Y, Cheng  Z, Chen  Z, Cheong  H, Cheong  JK, Chernyak  BV, Cherry  S, Cheung  CFR, Cheung  CHA, Cheung  KH, Chevet  E, Chi  RJ, Chiang  AKS, Chiaradonna  F, Chiarelli  R, Chiariello  M, Chica  N, Chiocca  S, Chiong  M, Chiou  SH, Chiramel  AI, Chiurchiù  V, Cho  DH, Choe  SK, Choi  AMK, Choi  ME, Choudhury  KR, Chow  NS, Chu  CT, Chua  JP, Chua  JJE, Chung  H, Chung  KP, Chung  S, Chung  SH, Chung  YL, Cianfanelli  V, Ciechomska  IA, Cifuentes  M, Cinque  L, Cirak  S, Cirone  M, Clague  MJ, Clarke  R, Clementi  E, Coccia  EM, Codogno  P, Cohen  E, Cohen  MM, Colasanti  T, Colasuonno  F, Colbert  RA, Colell  A, Čolić  M, Coll  NS, Collins  MO, Colombo  MI, Colón-Ramos  DA, Combaret  L, Comincini  S, Cominetti  MR, Consiglio  A, Conte  A, Conti  F, Contu  VR, Cookson  MR, Coombs  KM, Coppens  I, Corasaniti  MT, Corkery  DP, Cordes  N, Cortese  K, Costa  MDC, Costantino  S, Costelli  P, Coto-Montes  A, Crack  PJ, Crespo  JL, Criollo  A, Crippa  V, Cristofani  R, Csizmadia  T, Cuadrado  A, Cui  B, Cui  J, Cui  Y, Cui  Y, Culetto  E, Cumino  AC, Cybulsky  AV, Czaja  MJ, Czuczwar  SJ, D'Adamo  S, D'Amelio  M, D'Arcangelo  D, D'Lugos  AC, D'Orazi  G, da Silva  JA, Dafsari  HS, Dagda  RK, Dagdas  Y, Daglia  M, Dai  X, Dai  Y, Dai  Y, Dal Col  J, Dalhaimer  P, Dalla Valle  L, Dallenga  T, Dalmasso  G, Damme  M, Dando  I, Dantuma  NP, Darling  AL, Das  H, Dasarathy  S, Dasari  SK, Dash  S, Daumke  O, Dauphinee  AN, Davies  JS, Dávila  VA, Davis  RJ, Davis  T, Dayalan Naidu  S, De Amicis  F, De Bosscher  K, De Felice  F, De Franceschi  L, De Leonibus  C, de Mattos Barbosa  MG, De Meyer  GRY, De Milito  A, De Nunzio  C, De Palma  C, De Santi  M, De Virgilio  C, De Zio  D, Debnath  J, DeBosch  BJ, Decuypere  JP, Deehan  MA, Deflorian  G, DeGregori  J, Dehay  B, Del Rio  G, Delaney  JR, Delbridge  LMD, Delorme-Axford  E, Delpino  MV, Demarchi  F, Dembitz  V, Demers  ND, Deng  H, Deng  Z, Dengjel  J, Dent  P, Denton  D, DePamphilis  ML, Der  CJ, Deretic  V, Descoteaux  A, Devis  L, Devkota  S, Devuyst  O, Dewson  G, Dharmasivam  M, Dhiman  R, di Bernardo  D, Di Cristina  M, Di Domenico  F, Di Fazio  P, Di Fonzo  A, Di Guardo  G, Di Guglielmo  GM, Di Leo  L, Di Malta  C, Di Nardo  A, Di Rienzo  M, Di Sano  F, Diallinas  G, Diao  J, Diaz-Araya  G, Díaz-Laviada  I, Dickinson  JM, Diederich  M, Dieudé  M, Dikic  I, Ding  S, Ding  WX, Dini  L, Dinić  J, Dinic  M, Dinkova-Kostova  AT, Dionne  MS, Distler  JHW, Diwan  A, Dixon  IMC, Djavaheri-Mergny  M, Dobrinski  I, Dobrovinskaya  O, Dobrowolski  R, Dobson  RCJ, Đokić  J, Dokmeci Emre  S, Donadelli  M, Dong  B, Dong  X, Dong  Z, Dorn Ii  GW, Dotsch  V, Dou  H, Dou  J, Dowaidar  M, Dridi  S, Drucker  L, Du  A, Du  C, Du  G, Du  HN, Du  LL, du Toit  A, Duan  SB, Duan  X, Duarte  SP, Dubrovska  A, Dunlop  EA, Dupont  N, Durán  RV, Dwarakanath  BS, Dyshlovoy  SA, Ebrahimi-Fakhari  D, Eckhart  L, Edelstein  CL, Efferth  T, Eftekharpour  E, Eichinger  L, Eid  N, Eisenberg  T, Eissa  NT, Eissa  S, Ejarque  M, El Andaloussi  A, El-Hage  N, El-Naggar  S, Eleuteri  AM, El-Shafey  ES, Elgendy  M, Eliopoulos  AG, Elizalde  MM, Elks  PM, Elsasser  HP, Elsherbiny  ES, Emerling  BM, Emre  NCT, Eng  CH, Engedal  N, Engelbrecht  AM, Engelsen  AST, Enserink  JM, Escalante  R, Esclatine  A, Escobar-Henriques  M, Eskelinen  EL, Espert  L, Eusebio  MO, Fabrias  G, Fabrizi  C, Facchiano  A, Facchiano  F, Fadeel  B, Fader  C, Faesen  AC, Fairlie  WD, Falcó  A, Falkenburger  BH, Fan  D, Fan  J, Fan  Y, Fang  EF, Fang  Y, Fang  Y, Fanto  M, Farfel-Becker  T, Faure  M, Fazeli  G, Fedele  AO, Feldman  AM, Feng  D, Feng  J, Feng  L, Feng  Y, Feng  Y, Feng  W, Fenz Araujo  T, Ferguson  TA, Fernández  ÁF, Fernandez-Checa  JC, Fernández-Veledo  S, Fernie  AR, Ferrante  AW  Jr, Ferraresi  A, Ferrari  MF, Ferreira  JCB, Ferro-Novick  S, Figueras  A, Filadi  R, Filigheddu  N, Filippi-Chiela  E, Filomeni  G, Fimia  GM, Fineschi  V, Finetti  F, Finkbeiner  S, Fisher  EA, Fisher  PB, Flamigni  F, Fliesler  SJ, Flo  TH, Florance  I, Florey  O, Florio  T, Fodor  E, Follo  C, Fon  EA, Forlino  A, Fornai  F, Fortini  P, Fracassi  A, Fraldi  A, Franco  B, Franco  R, Franconi  F, Frankel  LB, Friedman  SL, Fröhlich  LF, Frühbeck  G, Fuentes  JM, Fujiki  Y, Fujita  N, Fujiwara  Y, Fukuda  M, Fulda  S, Furic  L, Furuya  N, Fusco  C, Gack  MU, Gaffke  L, Galadari  S, Galasso  A, Galindo  MF, Gallolu Kankanamalage  S, Galluzzi  L, Galy  V, Gammoh  N, Gan  B, Ganley  IG, Gao  F, Gao  H, Gao  M, Gao  P, Gao  SJ, Gao  W, Gao  X, Garcera  A, Garcia  MN, Garcia  VE, García-Del Portillo  F, Garcia-Escudero  V, Garcia-Garcia  A, Garcia-Macia  M, García-Moreno  D, Garcia-Ruiz  C, García-Sanz  P, Garg  AD, Gargini  R, Garofalo  T, Garry  RF, Gassen  NC, Gatica  D, Ge  L, Ge  W, Geiss-Friedlander  R, Gelfi  C, Genschik  P, Gentle  IE, Gerbino  V, Gerhardt  C, Germain  K, Germain  M, Gewirtz  DA, Ghasemipour Afshar  E, Ghavami  S, Ghigo  A, Ghosh  M, Giamas  G, Giampietri  C, Giatromanolaki  A, Gibson  GE, Gibson  SB, Ginet  V, Giniger  E, Giorgi  C, Girao  H, Girardin  SE, Giridharan  M, Giuliano  S, Giulivi  C, Giuriato  S, Giustiniani  J, Gluschko  A, Goder  V, Goginashvili  A, Golab  J, Goldstone  DC, Golebiewska  A, Gomes  LR, Gomez  R, Gómez-Sánchez  R, Gomez-Puerto  MC, Gomez-Sintes  R, Gong  Q, Goni  FM, González-Gallego  J, Gonzalez-Hernandez  T, Gonzalez-Polo  RA, Gonzalez-Reyes  JA, González-Rodríguez  P, Goping  IS, Gorbatyuk  MS, Gorbunov  NV, Görgülü  K, Gorojod  RM, Gorski  SM, Goruppi  S, Gotor  C, Gottlieb  RA, Gozes  I, Gozuacik  D, Graef  M, Gräler  MH, Granatiero  V, Grasso  D, Gray  JP, Green  DR, Greenhough  A, Gregory  SL, Griffin  EF, Grinstaff  MW, Gros  F, Grose  C, Gross  AS, Gruber  F, Grumati  P, Grune  T, Gu  X, Guan  JL, Guardia  CM, Guda  K, Guerra  F, Guerri  C, Guha  P, Guillén  C, Gujar  S, Gukovskaya  A, Gukovsky  I, Gunst  J, Günther  A, Guntur  AR, Guo  C, Guo  C, Guo  H, Guo  LW, Guo  M, Gupta  P, Gupta  SK, Gupta  S, Gupta  VB, Gupta  V, Gustafsson  AB, Gutterman  DD, Haapasalo  A, Haber  JE, Hać  A, Hadano  S, Hafrén  AJ, Haidar  M, Hall  BS, Halldén  G, Hamacher-Brady  A, Hamann  A, Hamasaki  M, Han  W, Hansen  M, Hanson  PI, Hao  Z, Harada  M, Harhaji-Trajkovic  L, Hariharan  N, Haroon  N, Harris  J, Hasegawa  T, Hasima Nagoor  N, Haspel  JA, Haucke  V, Hawkins  WD, Hay  BA, Haynes  CM, Hayrabedyan  SB, Hays  TS, He  C, He  Q, He  RR, He  YW, He  YY, Heakal  Y, Heberle  AM, Hejtmancik  JF, Helgason  GV, Henkel  V, Herb  M, Hergovich  A, Herman-Antosiewicz  A, Hernández  A, Hernandez  C, Hernandez-Diaz  S, Hernandez-Gea  V, Herpin  A, Herreros  J, Hervás  JH, Hesselson  D, Hetz  C, Heussler  VT, Higuchi  Y, Hilfiker  S, Hill  JA, Hlavacek  WS, Ho  EA, Ho  IHT, Ho  PW, Ho  SL, Ho  WY, Hobbs  GA, Hochstrasser  M, Hoet  PHM, Hofius  D, Hofman  P, Höhn  A, Holmberg  CI, Hombrebueno  JR, Yi-Ren Hong  CH, Hooper  LV, Hoppe  T, Horos  R, Hoshida  Y, Hsin  IL, Hsu  HY, Hu  B, Hu  D, Hu  LF, Hu  MC, Hu  R, Hu  W, Hu  YC, Hu  ZW, Hua  F, Hua  J, Hua  Y, Huan  C, Huang  C, Huang  C, Huang  C, Huang  C, Huang  H, Huang  K, Huang  MLH, Huang  R, Huang  S, Huang  T, Huang  X, Huang  YJ, Huber  TB, Hubert  V, Hubner  CA, Hughes  SM, Hughes  WE, Humbert  M, Hummer  G, Hurley  JH, Hussain  S, Hussain  S, Hussey  PJ, Hutabarat  M, Hwang  HY, Hwang  S, Ieni  A, Ikeda  F, Imagawa  Y, Imai  Y, Imbriano  C, Imoto  M, Inman  DM, Inoki  K, Iovanna  J, Iozzo  RV, Ippolito  G, Irazoqui  JE, Iribarren  P, Ishaq  M, Ishikawa  M, Ishimwe  N, Isidoro  C, Ismail  N, Issazadeh-Navikas  S, Itakura  E, Ito  D, Ivankovic  D, Ivanova  S, Iyer  AKV, Izquierdo  JM, Izumi  M, Jäättelä  M, Jabir  MS, Jackson  WT, Jacobo-Herrera  N, Jacomin  AC, Jacquin  E, Jadiya  P, Jaeschke  H, Jagannath  C, Jakobi  AJ, Jakobsson  J, Janji  B, Jansen-Dürr  P, Jansson  PJ, Jantsch  J, Januszewski  S, Jassey  A, Jean  S, Jeltsch-David  H, Jendelova  P, Jenny  A, Jensen  TE, Jessen  N, Jewell  JL, Ji  J, Jia  L, Jia  R, Jiang  L, Jiang  Q, Jiang  R, Jiang  T, Jiang  X, Jiang  Y, Jimenez-Sanchez  M, Jin  EJ, Jin  F, Jin  H, Jin  L, Jin  L, Jin  M, Jin  S, Jo  EK, Joffre  C, Johansen  T, Johnson  GVW, Johnston  SA, Jokitalo  E, Jolly  MK, Joosten  LAB, Jordan  J, Joseph  B, Ju  D, Ju  JS, Ju  J, Juárez  E, Judith  D, Juhász  G, Jun  Y, Jung  CH, Jung  SC, Jung  YK, Jungbluth  H, Jungverdorben  J, Just  S, Kaarniranta  K, Kaasik  A, Kabuta  T, Kaganovich  D, Kahana  A, Kain  R, Kajimura  S, Kalamvoki  M, Kalia  M, Kalinowski  DS, Kaludercic  N, Kalvari  I, Kaminska  J, Kaminskyy  VO, Kanamori  H, Kanasaki  K, Kang  C, Kang  R, Kang  SS, Kaniyappan  S, Kanki  T, Kanneganti  TD, Kanthasamy  AG, Kanthasamy  A, Kantorow  M, Kapuy  O, Karamouzis  MV, Karim  MR, Karmakar  P, Katare  RG, Kato  M, Kaufmann  SHE, Kauppinen  A, Kaushal  GP, Kaushik  S, Kawasaki  K, Kazan  K, Ke  PY, Keating  DJ, Keber  U, Kehrl  JH, Keller  KE, Keller  CW, Kemper  JK, Kenific  CM, Kepp  O, Kermorgant  S, Kern  A, Ketteler  R, Keulers  TG, Khalfin  B, Khalil  H, Khambu  B, Khan  SY, Khandelwal  VKM, Khandia  R, Kho  W, Khobrekar  NV, Khuansuwan  S, Khundadze  M, Killackey  SA, Kim  D, Kim  DR, Kim  DH, Kim  DE, Kim  EY, Kim  EK, Kim  HR, Kim  HS, Hyung-Ryong  K, Kim  JH, Kim  JK, Kim  JH, Kim  J, Kim  JH, Kim  KI, Kim  PK, Kim  SJ, Kimball  SR, Kimchi  A, Kimmelman  AC, Kimura  T, King  MA, Kinghorn  KJ, Kinsey  CG, Kirkin  V, Kirshenbaum  LA, Kiselev  SL, Kishi  S, Kitamoto  K, Kitaoka  Y, Kitazato  K, Kitsis  RN, Kittler  JT, Kjaerulff  O, Klein  PS, Klopstock  T, Klucken  J, Knævelsrud  H, Knorr  RL, Ko  BCB, Ko  F, Ko  JL, Kobayashi  H, Kobayashi  S, Koch  I, Koch  JC, Koenig  U, Kögel  D, Koh  YH, Koike  M, Kohlwein  SD, Kocaturk  NM, Komatsu  M, König  J, Kono  T, Kopp  BT, Korcsmaros  T, Korkmaz  G, Korolchuk  VI, Korsnes  MS, Koskela  A, Kota  J, Kotake  Y, Kotler  ML, Kou  Y, Koukourakis  MI, Koustas  E, Kovacs  AL, Kovács  T, Koya  D, Kozako  T, Kraft  C, Krainc  D, Krämer  H, Krasnodembskaya  AD, Kretz-Remy  C, Kroemer  G, Ktistakis  NT, Kuchitsu  K, Kuenen  S, Kuerschner  L, Kukar  T, Kumar  A, Kumar  A, Kumar  D, Kumar  D, Kumar  S, Kume  S, Kumsta  C, Kundu  CN, Kundu  M, Kunnumakkara  AB, Kurgan  L, Kutateladze  TG, Kutlu  O, Kwak  S, Kwon  HJ, Kwon  TK, Kwon  YT, Kyrmizi  I, La Spada  A, Labonté  P, Ladoire  S, Laface  I, Lafont  F, Lagace  DC, Lahiri  V, Lai  Z, Laird  AS, Lakkaraju  A, Lamark  T, Lan  SH, Landajuela  A, Lane  DJR, Lane  JD, Lang  CH, Lange  C, Langel  Ü, Langer  R, Lapaquette  P, Laporte  J, LaRusso  NF, Lastres-Becker  I, Lau  WCY, Laurie  GW, Lavandero  S, Law  BYK, Law  HK, Layfield  R, Le  W, Le Stunff  H, Leary  AY, Lebrun  JJ, Leck  LYW, Leduc-Gaudet  JP, Lee  C, Lee  CP, Lee  DH, Lee  EB, Lee  EF, Lee  GM, Lee  HJ, Lee  HK, Lee  JM, Lee  JS, Lee  JA, Lee  JY, Lee  JH, Lee  M, Lee  MG, Lee  MJ, Lee  MS, Lee  SY, Lee  SJ, Lee  SY, Lee  SB, Lee  WH, Lee  YR, Lee  YH, Lee  Y, Lefebvre  C, Legouis  R, Lei  YL, Lei  Y, Leikin  S, Leitinger  G, Lemus  L, Leng  S, Lenoir  O, Lenz  G, Lenz  HJ, Lenzi  P, León  Y, Leopoldino  AM, Leschczyk  C, Leskelä  S, Letellier  E, Leung  CT, Leung  PS, Leventhal  JS, Levine  B, Lewis  PA, Ley  K, Li  B, Li  DQ, Li  J, Li  J, Li  J, Li  K, Li  L, Li  M, Li  M, Li  M, Li  M, Li  M, Li  PL, Li  MQ, Li  Q, Li  S, Li  T, Li  W, Li  W, Li  X, Li  YP, Li  Y, Li  Z, Li  Z, Li  Z, Lian  J, Liang  C, Liang  Q, Liang  W, Liang  Y, Liang  Y, Liao  G, Liao  L, Liao  M, Liao  YF, Librizzi  M, Lie  PPY, Lilly  MA, Lim  HJ, Lima  TRR, Limana  F, Lin  C, Lin  CW, Lin  DS, Lin  FC, Lin  JD, Lin  KM, Lin  KH, Lin  LT, Lin  PH, Lin  Q, Lin  S, Lin  SJ, Lin  W, Lin  X, Lin  YX, Lin  YS, Linden  R, Lindner  P, Ling  SC, Lingor  P, Linnemann  AK, Liou  YC, Lipinski  MM, Lipovšek  S, Lira  VA, Lisiak  N, Liton  PB, Liu  C, Liu  CH, Liu  CF, Liu  CH, Liu  F, Liu  H, Liu  HS, Liu  HF, Liu  H, Liu  J, Liu  J, Liu  J, Liu  L, Liu  L, Liu  M, Liu  Q, Liu  W, Liu  W, Liu  XH, Liu  X, Liu  X, Liu  X, Liu  X, Liu  Y, Liu  Y, Liu  Y, Liu  Y, Liu  Y, Livingston  JA, Lizard  G, Lizcano  JM, Ljubojevic-Holzer  S, LLeonart  ME, Llobet-Navàs  D, Llorente  A, Lo  CH, Lobato-Márquez  D, Long  Q, Long  YC, Loos  B, Loos  JA, López  MG, López-Doménech  G, López-Guerrero  JA, López-Jiménez  AT, López-Pérez  Ó, López-Valero  I, Lorenowicz  MJ, Lorente  M, Lorincz  P, Lossi  L, Lotersztajn  S, Lovat  PE, Lovell  JF, Lovy  A, Lőw  P, Lu  G, Lu  H, Lu  JH, Lu  JJ, Lu  M, Lu  S, Luciani  A, Lucocq  JM, Ludovico  P, Luftig  MA, Luhr  M, Luis-Ravelo  D, Lum  JJ, Luna-Dulcey  L, Lund  AH, Lund  VK, Lünemann  JD, Lüningschrör  P, Luo  H, Luo  R, Luo  S, Luo  Z, Luparello  C, Lüscher  B, Luu  L, Lyakhovich  A, Lyamzaev  KG, Lystad  AH, Lytvynchuk  L, Ma  AC, Ma  C, Ma  M, Ma  NF, Ma  QH, Ma  X, Ma  Y, Ma  Z, MacDougald  OA, Macian  F, MacIntosh  GC, MacKeigan  JP, Macleod  KF, Maday  S, Madeo  F, Madesh  M, Madl  T, Madrigal-Matute  J, Maeda  A, Maejima  Y, Magarinos  M, Mahavadi  P, Maiani  E, Maiese  K, Maiti  P, Maiuri  MC, Majello  B, Major  MB, Makareeva  E, Malik  F, Mallilankaraman  K, Malorni  W, Maloyan  A, Mammadova  N, Man  GCW, Manai  F, Mancias  JD, Mandelkow  EM, Mandell  MA, Manfredi  AA, Manjili  MH, Manjithaya  R, Manque  P, Manshian  BB, Manzano  R, Manzoni  C, Mao  K, Marchese  C, Marchetti  S, Marconi  AM, Marcucci  F, Mardente  S, Mareninova  OA, Margeta  M, Mari  M, Marinelli  S, Marinelli  O, Mariño  G, Mariotto  S, Marshall  RS, Marten  MR, Martens  S, Martin  APJ, Martin  KR, Martin  S, Martin  S, Martín-Segura  A, Martín-Acebes  MA, Martin-Burriel  I, Martin-Rincon  M, Martin-Sanz  P, Martina  JA, Martinet  W, Martinez  A, Martinez  A, Martinez  J, Martinez Velazquez  M, Martinez-Lopez  N, Martinez-Vicente  M, Martins  DO, Martins  JO, Martins  WK, Martins-Marques  T, Marzetti  E, Masaldan  S, Masclaux-Daubresse  C, Mashek  DG, Massa  V, Massieu  L, Masson  GR, Masuelli  L, Masyuk  AI, Masyuk  TV, Matarrese  P, Matheu  A, Matoba  S, Matsuzaki  S, Mattar  P, Matte  A, Mattoscio  D, Mauriz  JL, Mauthe  M, Mauvezin  C, Maverakis  E, Maycotte  P, Mayer  J, Mazzoccoli  G, Mazzoni  C, Mazzulli  JR, McCarty  N, McDonald  C, McGill  MR, McKenna  SL, McLaughlin  B, McLoughlin  F, McNiven  MA, McWilliams  TG, Mechta-Grigoriou  F, Medeiros  TC, Medina  DL, Megeney  LA, Megyeri  K, Mehrpour  M, Mehta  JL, Meijer  AJ, Meijer  AH, Mejlvang  J, Meléndez  A, Melk  A, Memisoglu  G, Mendes  AF, Meng  D, Meng  F, Meng  T, Menna-Barreto  R, Menon  MB, Mercer  C, Mercier  AE, Mergny  JL, Merighi  A, Merkley  SD, Merla  G, Meske  V, Mestre  AC, Metur  SP, Meyer  C, Meyer  H, Mi  W, Mialet-Perez  J, Miao  J, Micale  L, Miki  Y, Milan  E, Milczarek  M, Miller  DL, Miller  SI, Miller  S, Millward  SW, Milosevic  I, Minina  EA, Mirzaei  H, Mirzaei  HR, Mirzaei  M, Mishra  A, Mishra  N, Mishra  PK, Misirkic Marjanovic  M, Misasi  R, Misra  A, Misso  G, Mitchell  C, Mitou  G, Miura  T, Miyamoto  S, Miyazaki  M, Miyazaki  M, Miyazaki  T, Miyazawa  K, Mizushima  N, Mogensen  TH, Mograbi  B, Mohammadinejad  R, Mohamud  Y, Mohanty  A, Mohapatra  S, Möhlmann  T, Mohmmed  A, Moles  A, Moley  KH, Molinari  M, Mollace  V, Møller  AB, Mollereau  B, Mollinedo  F, Montagna  C, Monteiro  MJ, Montella  A, Montes  LR, Montico  B, Mony  VK, Monzio Compagnoni  G, Moore  MN, Moosavi  MA, Mora  AL, Mora  M, Morales-Alamo  D, Moratalla  R, Moreira  PI, Morelli  E, Moreno  S, Moreno-Blas  D, Moresi  V, Morga  B, Morgan  AH, Morin  F, Morishita  H, Moritz  OL, Moriyama  M, Moriyasu  Y, Morleo  M, Morselli  E, Moruno-Manchon  JF, Moscat  J, Mostowy  S, Motori  E, Moura  AF, Moustaid-Moussa  N, Mrakovcic  M, Muciño-Hernández  G, Mukherjee  A, Mukhopadhyay  S, Mulcahy Levy  JM, Mulero  V, Muller  S, Münch  C, Munjal  A, Munoz-Canoves  P, Muñoz-Galdeano  T, Münz  C, Murakawa  T, Muratori  C, Murphy  BM, Murphy  JP, Murthy  A, Myöhänen  TT, Mysorekar  IU, Mytych  J, Nabavi  SM, Nabissi  M, Nagy  P, Nah  J, Nahimana  A, Nakagawa  I, Nakamura  K, Nakatogawa  H, Nandi  SS, Nanjundan  M, Nanni  M, Napolitano  G, Nardacci  R, Narita  M, Nassif  M, Nathan  I, Natsumeda  M, Naude  RJ, Naumann  C, Naveiras  O, Navid  F, Nawrocki  ST, Nazarko  TY, Nazio  F, Negoita  F, Neill  T, Neisch  AL, Neri  LM, Netea  MG, Neubert  P, Neufeld  TP, Neumann  D, Neutzner  A, Newton  PT, Ney  PA, Nezis  IP, Ng  CCW, Ng  TB, Nguyen  HTT, Nguyen  LT, Ni  HM, Ní Cheallaigh  C, Ni  Z, Nicolao  MC, Nicoli  F, Nieto-Diaz  M, Nilsson  P, Ning  S, Niranjan  R, Nishimune  H, Niso-Santano  M, Nixon  RA, Nobili  A, Nobrega  C, Noda  T, Nogueira-Recalde  U, Nolan  TM, Nombela  I, Novak  I, Novoa  B, Nozawa  T, Nukina  N, Nussbaum-Krammer  C, Nylandsted  J, O'Donovan  TR, O'Leary  SM, O'Rourke  EJ, O'Sullivan  MP, O'Sullivan  TE, Oddo  S, Oehme  I, Ogawa  M, Ogier-Denis  E, Ogmundsdottir  MH, Ogretmen  B, Oh  GT, Oh  SH, Oh  YJ, Ohama  T, Ohashi  Y, Ohmuraya  M, Oikonomou  V, Ojha  R, Okamoto  K, Okazawa  H, Oku  M, Oliván  S, Oliveira  JMA, Ollmann  M, Olzmann  JA, Omari  S, Omary  MB, Önal  G, Ondrej  M, Ong  SB, Ong  SG, Onnis  A, Orellana  JA, Orellana-Muñoz  S, Ortega-Villaizan  MDM, Ortiz-Gonzalez  XR, Ortona  E, Osiewacz  HD, Osman  AK, Osta  R, Otegui  MS, Otsu  K, Ott  C, Ottobrini  L, Ou  JJ, Outeiro  TF, Oynebraten  I, Ozturk  M, Pagès  G, Pahari  S, Pajares  M, Pajvani  UB, Pal  R, Paladino  S, Pallet  N, Palmieri  M, Palmisano  G, Palumbo  C, Pampaloni  F, Pan  L, Pan  Q, Pan  W, Pan  X, Panasyuk  G, Pandey  R, Pandey  UB, Pandya  V, Paneni  F, Pang  SY, Panzarini  E, Papademetrio  DL, Papaleo  E, Papinski  D, Papp  D, Park  EC, Park  HT, Park  JM, Park  JI, Park  JT, Park  J, Park  SC, Park  SY, Parola  AH, Parys  JB, Pasquier  A, Pasquier  B, Passos  JF, Pastore  N, Patel  HH, Patschan  D, Pattingre  S, Pedraza-Alva  G, Pedraza-Chaverri  J, Pedrozo  Z, Pei  G, Pei  J, Peled-Zehavi  H, Pellegrini  JM, Pelletier  J, Peñalva  MA, Peng  D, Peng  Y, Penna  F, Pennuto  M, Pentimalli  F, Pereira  CM, Pereira  GJS, Pereira  LC, Pereira de Almeida  L, Perera  ND, Pérez-Lara  Á, Perez-Oliva  AB, Pérez-Pérez  ME, Periyasamy  P, Perl  A, Perrotta  C, Perrotta  I, Pestell  RG, Petersen  M, Petrache  I, Petrovski  G, Pfirrmann  T, Pfister  AS, Philips  JA, Pi  H, Picca  A, Pickrell  AM, Picot  S, Pierantoni  GM, Pierdominici  M, Pierre  P, Pierrefite-Carle  V, Pierzynowska  K, Pietrocola  F, Pietruczuk  M, Pignata  C, Pimentel-Muiños  FX, Pinar  M, Pinheiro  RO, Pinkas-Kramarski  R, Pinton  P, Pircs  K, Piya  S, Pizzo  P, Plantinga  TS, Platta  HW, Plaza-Zabala  A, Plomann  M, Plotnikov  EY, Plun-Favreau  H, Pluta  R, Pocock  R, Pöggeler  S, Pohl  C, Poirot  M, Poletti  A, Ponpuak  M, Popelka  H, Popova  B, Porta  H, Porte Alcon  S, Portilla-Fernandez  E, Post  M, Potts  MB, Poulton  J, Powers  T, Prahlad  V, Prajsnar  TK, Praticò  D, Prencipe  R, Priault  M, Proikas-Cezanne  T, Promponas  VJ, Proud  CG, Puertollano  R, Puglielli  L, Pulinilkunnil  T, Puri  D, Puri  R, Puyal  J, Qi  X, Qi  Y, Qian  W, Qiang  L, Qiu  Y, Quadrilatero  J, Quarleri  J, Raben  N, Rabinowich  H, Ragona  D, Ragusa  MJ, Rahimi  N, Rahmati  M, Raia  V, Raimundo  N, Rajasekaran  NS, Ramachandra Rao  S, Rami  A, Ramírez-Pardo  I, Ramsden  DB, Randow  F, Rangarajan  PN, Ranieri  D, Rao  H, Rao  L, Rao  R, Rathore  S, Ratnayaka  JA, Ratovitski  EA, Ravanan  P, Ravegnini  G, Ray  SK, Razani  B, Rebecca  V, Reggiori  F, Régnier-Vigouroux  A, Reichert  AS, Reigada  D, Reiling  JH, Rein  T, Reipert  S, Rekha  RS, Ren  H, Ren  J, Ren  W, Renault  T, Renga  G, Reue  K, Rewitz  K, Ribeiro de Andrade Ramos  B, Riazuddin  SA, Ribeiro-Rodrigues  TM, Ricci  JE, Ricci  R, Riccio  V, Richardson  DR, Rikihisa  Y, Risbud  MV, Risueño  RM, Ritis  K, Rizza  S, Rizzuto  R, Roberts  HC, Roberts  LD, Robinson  KJ, Roccheri  MC, Rocchi  S, Rodney  GG, Rodrigues  T, Rodrigues Silva  VR, Rodriguez  A, Rodriguez-Barrueco  R, Rodriguez-Henche  N, Rodriguez-Rocha  H, Roelofs  J, Rogers  RS, Rogov  VV, Rojo  AI, Rolka  K, Romanello  V, Romani  L, Romano  A, Romano  PS, Romeo-Guitart  D, Romero  LC, Romero  M, Roney  JC, Rongo  C, Roperto  S, Rosenfeldt  MT, Rosenstiel  P, Rosenwald  AG, Roth  KA, Roth  L, Roth  S, Rouschop  KMA, Roussel  BD, Roux  S, Rovere-Querini  P, Roy  A, Rozieres  A, Ruano  D, Rubinsztein  DC, Rubtsova  MP, Ruckdeschel  K, Ruckenstuhl  C, Rudolf  E, Rudolf  R, Ruggieri  A, Ruparelia  AA, Rusmini  P, Russell  RR, Russo  GL, Russo  M, Russo  R, Ryabaya  OO, Ryan  KM, Ryu  KY, Sabater-Arcis  M, Sachdev  U, Sacher  M, Sachse  C, Sadhu  A, Sadoshima  J, Safren  N, Saftig  P, Sagona  AP, Sahay  G, Sahebkar  A, Sahin  M, Sahin  O, Sahni  S, Saito  N, Saito  S, Saito  T, Sakai  R, Sakai  Y, Sakamaki  JI, Saksela  K, Salazar  G, Salazar-Degracia  A, Salekdeh  GH, Saluja  AK, Sampaio-Marques  B, Sanchez  MC, Sanchez-Alcazar  JA, Sanchez-Vera  V, Sancho-Shimizu  V, Sanderson  JT, Sandri  M, Santaguida  S, Santambrogio  L, Santana  MM, Santoni  G, Sanz  A, Sanz  P, Saran  S, Sardiello  M, Sargeant  TJ, Sarin  A, Sarkar  C, Sarkar  S, Sarrias  MR, Sarkar  S, Sarmah  DT, Sarparanta  J, Sathyanarayan  A, Sathyanarayanan  R, Scaglione  KM, Scatozza  F, Schaefer  L, Schafer  ZT, Schaible  UE, Schapira  AHV, Scharl  M, Schatzl  HM, Schein  CH, Scheper  W, Scheuring  D, Schiaffino  MV, Schiappacassi  M, Schindl  R, Schlattner  U, Schmidt  O, Schmitt  R, Schmidt  SD, Schmitz  I, Schmukler  E, Schneider  A, Schneider  BE, Schober  R, Schoijet  AC, Schott  MB, Schramm  M, Schröder  B, Schuh  K, Schüller  C, Schulze  RJ, Schürmanns  L, Schwamborn  JC, Schwarten  M, Scialo  F, Sciarretta  S, Scott  MJ, Scotto  KW, Scovassi  AI, Scrima  A, Scrivo  A, Sebastian  D, Sebti  S, Sedej  S, Segatori  L, Segev  N, Seglen  PO, Seiliez  I, Seki  E, Selleck  SB, Sellke  FW, Selsby  JT, Sendtner  M, Senturk  S, Seranova  E, Sergi  C, Serra-Moreno  R, Sesaki  H, Settembre  C, Setty  SRG, Sgarbi  G, Sha  O, Shacka  JJ, Shah  JA, Shang  D, Shao  C, Shao  F, Sharbati  S, Sharkey  LM, Sharma  D, Sharma  G, Sharma  K, Sharma  P, Sharma  S, Shen  HM, Shen  H, Shen  J, Shen  M, Shen  W, Shen  Z, Sheng  R, Sheng  Z, Sheng  ZH, Shi  J, Shi  X, Shi  YH, Shiba-Fukushima  K, Shieh  JJ, Shimada  Y, Shimizu  S, Shimozawa  M, Shintani  T, Shoemaker  CJ, Shojaei  S, Shoji  I, Shravage  BV, Shridhar  V, Shu  CW, Shu  HB, Shui  K, Shukla  AK, Shutt  TE, Sica  V, Siddiqui  A, Sierra  A, Sierra-Torre  V, Signorelli  S, Sil  P, Silva  BJA, Silva  JD, Silva-Pavez  E, Silvente-Poirot  S, Simmonds  RE, Simon  AK, Simon  HU, Simons  M, Singh  A, Singh  LP, Singh  R, Singh  SV, Singh  SK, Singh  SB, Singh  S, Singh  SP, Sinha  D, Sinha  RA, Sinha  S, Sirko  A, Sirohi  K, Sivridis  EL, Skendros  P, Skirycz  A, Slaninová  I, Smaili  SS, Smertenko  A, Smith  MD, Soenen  SJ, Sohn  EJ, Sok  SPM, Solaini  G, Soldati  T, Soleimanpour  SA, Soler  RM, Solovchenko  A, Somarelli  JA, Sonawane  A, Song  F, Song  HK, Song  JX, Song  K, Song  Z, Soria  LR, Sorice  M, Soukas  AA, Soukup  SF, Sousa  D, Sousa  N, Spagnuolo  PA, Spector  SA, Srinivas Bharath  MM, St Clair  D, Stagni  V, Staiano  L, Stalnecker  CA, Stankov  MV, Stathopulos  PB, Stefan  K, Stefan  SM, Stefanis  L, Steffan  JS, Steinkasserer  A, Stenmark  H, Sterneckert  J, Stevens  C, Stoka  V, Storch  S, Stork  B, Strappazzon  F, Strohecker  AM, Stupack  DG, Su  H, Su  LY, Su  L, Suarez-Fontes  AM, Subauste  CS, Subbian  S, Subirada  PV, Sudhandiran  G, Sue  CM, Sui  X, Summers  C, Sun  G, Sun  J, Sun  K, Sun  MX, Sun  Q, Sun  Y, Sun  Z, Sunahara  KKS, Sundberg  E, Susztak  K, Sutovsky  P, Suzuki  H, Sweeney  G, Symons  JD, Sze  SCW, Szewczyk  NJ, Tabęcka-Łonczynska  A, Tabolacci  C, Tacke  F, Taegtmeyer  H, Tafani  M, Tagaya  M, Tai  H, Tait  SWG, Takahashi  Y, Takats  S, Talwar  P, Tam  C, Tam  SY, Tampellini  D, Tamura  A, Tan  CT, Tan  EK, Tan  YQ, Tanaka  M, Tanaka  M, Tang  D, Tang  J, Tang  TS, Tanida  I, Tao  Z, Taouis  M, Tatenhorst  L, Tavernarakis  N, Taylor  A, Taylor  GA, Taylor  JM, Tchetina  E, Tee  AR, Tegeder  I, Teis  D, Teixeira  N, Teixeira-Clerc  F, Tekirdag  KA, Tencomnao  T, Tenreiro  S, Tepikin  AV, Testillano  PS, Tettamanti  G, Tharaux  PL, Thedieck  K, Thekkinghat  AA, Thellung  S, Thinwa  JW, Thirumalaikumar  VP, Thomas  SM, Thomes  PG, Thorburn  A, Thukral  L, Thum  T, Thumm  M, Tian  L, Tichy  A, Till  A, Timmerman  V, Titorenko  VI, Todi  SV, Todorova  K, Toivonen  JM, Tomaipitinca  L, Tomar  D, Tomas-Zapico  C, Tomić  S, Tong  BC, Tong  C, Tong  X, Tooze  SA, Torgersen  ML, Torii  S, Torres-López  L, Torriglia  A, Towers  CG, Towns  R, Toyokuni  S, Trajkovic  V, Tramontano  D, Tran  QG, Travassos  LH, Trelford  CB, Tremel  S, Trougakos  IP, Tsao  BP, Tschan  MP, Tse  HF, Tse  TF, Tsugawa  H, Tsvetkov  AS, Tumbarello  DA, Tumtas  Y, Tuñón  MJ, Turcotte  S, Turk  B, Turk  V, Turner  BJ, Tuxworth  RI, Tyler  JK, Tyutereva  EV, Uchiyama  Y, Ugun-Klusek  A, Uhlig  HH, Ułamek-Kozioł  M, Ulasov  IV, Umekawa  M, Ungermann  C, Unno  R, Urbe  S, Uribe-Carretero  E, Üstün  S, Uversky  VN, Vaccari  T, Vaccaro  MI, Vahsen  BF, Vakifahmetoglu-Norberg  H, Valdor  R, Valente  MJ, Valko  A, Vallee  RB, Valverde  AM, Van den Berghe  G, van der Veen  S, Van Kaer  L, van Loosdregt  J, van Wijk  SJL, Vandenberghe  W, Vanhorebeek  I, Vannier-Santos  MA, Vannini  N, Vanrell  MC, Vantaggiato  C, Varano  G, Varela-Nieto  I, Varga  M, Vasconcelos  MH, Vats  S, Vavvas  DG, Vega-Naredo  I, Vega-Rubin-de-Celis  S, Velasco  G, Velázquez  AP, Vellai  T, Vellenga  E, Velotti  F, Verdier  M, Verginis  P, Vergne  I, Verkade  P, Verma  M, Verstreken  P, Vervliet  T, Vervoorts  J, Vessoni  AT, Victor  VM, Vidal  M, Vidoni  C, Vieira  OV, Vierstra  RD, Viganó  S, Vihinen  H, Vijayan  V, Vila  M, Vilar  M, Villalba  JM, Villalobo  A, Villarejo-Zori  B, Villarroya  F, Villarroya  J, Vincent  O, Vindis  C, Viret  C, Viscomi  MT, Visnjic  D, Vitale  I, Vocadlo  DJ, Voitsekhovskaja  OV, Volonté  C, Volta  M, Vomero  M, Von Haefen  C, Vooijs  MA, Voos  W, Vucicevic  L, Wade-Martins  R, Waguri  S, Waite  KA, Wakatsuki  S, Walker  DW, Walker  MJ, Walker  SA, Walter  J, Wandosell  FG, Wang  B, Wang  CY, Wang  C, Wang  C, Wang  C, Wang  CY, Wang  D, Wang  F, Wang  F, Wang  F, Wang  G, Wang  H, Wang  H, Wang  H, Wang  HG, Wang  J, Wang  J, Wang  J, Wang  J, Wang  K, Wang  L, Wang  L, Wang  MH, Wang  M, Wang  N, Wang  P, Wang  P, Wang  P, Wang  P, Wang  QJ, Wang  Q, Wang  QK, Wang  QA, Wang  WT, Wang  W, Wang  X, Wang  X, Wang  Y, Wang  Y, Wang  Y, Wang  YY, Wang  Y, Wang  Y, Wang  Y, Wang  Y, Wang  Z, Wang  Z, Wang  Z, Warnes  G, Warnsmann  V, Watada  H, Watanabe  E, Watchon  M, Wawrzyńska  A, Weaver  TE, Wegrzyn  G, Wehman  AM, Wei  H, Wei  L, Wei  T, Wei  Y, Weiergräber  OH, Weihl  CC, Weindl  G, Weiskirchen  R, Wells  A, Wen  RH, Wen  X, Werner  A, Weykopf  B, Wheatley  SP, Whitton  JL, Whitworth  AJ, Wiktorska  K, Wildenberg  ME, Wileman  T, Wilkinson  S, Willbold  D, Williams  B, Williams  RSB, Williams  RL, Williamson  PR, Wilson  RA, Winner  B, Winsor  NJ, Witkin  SS, Wodrich  H, Woehlbier  U, Wollert  T, Wong  E, Wong  JH, Wong  RW, Wong  VKW, Wong  WW, Wu  AG, Wu  C, Wu  J, Wu  J, Wu  KK, Wu  M, Wu  SY, Wu  S, Wu  SY, Wu  S, Wu  WKK, Wu  X, Wu  X, Wu  YW, Wu  Y, Xavier  RJ, Xia  H, Xia  L, Xia  Z, Xiang  G, Xiang  J, Xiang  M, Xiang  W, Xiao  B, Xiao  G, Xiao  H, Xiao  HT, Xiao  J, Xiao  L, Xiao  S, Xiao  Y, Xie  B, Xie  CM, Xie  M, Xie  Y, Xie  Z, Xie  Z, Xilouri  M, Xu  C, Xu  E, Xu  H, Xu  J, Xu  J, Xu  L, Xu  WW, Xu  X, Xue  Y, Yakhine-Diop  SMS, Yamaguchi  M, Yamaguchi  O, Yamamoto  A, Yamashina  S, Yan  S, Yan  SJ, Yan  Z, Yanagi  Y, Yang  C, Yang  DS, Yang  H, Yang  HT, Yang  H, Yang  JM, Yang  J, Yang  J, Yang  L, Yang  L, Yang  M, Yang  PM, Yang  Q, Yang  S, Yang  S, Yang  SF, Yang  W, Yang  WY, Yang  X, Yang  X, Yang  Y, Yang  Y, Yao  H, Yao  S, Yao  X, Yao  YG, Yao  YM, Yasui  T, Yazdankhah  M, Yen  PM, Yi  C, Yin  XM, Yin  Y, Yin  Z, Yin  Z, Ying  M, Ying  Z, Yip  CK, Yiu  SPT, Yoo  YH, Yoshida  K, Yoshii  SR, Yoshimori  T, Yousefi  B, Yu  B, Yu  H, Yu  J, Yu  J, Yu  L, Yu  ML, Yu  SW, Yu  VC, Yu  WH, Yu  Z, Yu  Z, Yuan  J, Yuan  LQ, Yuan  S, Yuan  SF, Yuan  Y, Yuan  Z, Yue  J, Yue  Z, Yun  J, Yung  RL, Zacks  DN, Zaffagnini  G, Zambelli  VO, Zanella  I, Zang  QS, Zanivan  S, Zappavigna  S, Zaragoza  P, Zarbalis  KS, Zarebkohan  A, Zarrouk  A, Zeitlin  SO, Zeng  J, Zeng  JD, Žerovnik  E, Zhan  L, Zhang  B, Zhang  DD, Zhang  H, Zhang  H, Zhang  H, Zhang  H, Zhang  H, Zhang  H, Zhang  H, Zhang  HL, Zhang  J, Zhang  J, Zhang  JP, Zhang  KYB, Zhang  LW, Zhang  L, Zhang  L, Zhang  L, Zhang  L, Zhang  M, Zhang  P, Zhang  S, Zhang  W, Zhang  X, Zhang  XW, Zhang  X, Zhang  X, Zhang  X, Zhang  X, Zhang  XD, Zhang  Y, Zhang  Y, Zhang  Y, Zhang  YD, Zhang  Y, Zhang  YY, Zhang  Y, Zhang  Z, Zhang  Z, Zhang  Z, Zhang  Z, Zhang  Z, Zhang  Z, Zhao  H, Zhao  L, Zhao  S, Zhao  T, Zhao  XF, Zhao  Y, Zhao  Y, Zhao  Y, Zhao  Y, Zheng  G, Zheng  K, Zheng  L, Zheng  S, Zheng  XL, Zheng  Y, Zheng  ZG, Zhivotovsky  B, Zhong  Q, Zhou  A, Zhou  B, Zhou  C, Zhou  G, Zhou  H, Zhou  H, Zhou  H, Zhou  J, Zhou  J, Zhou  J, Zhou  J, Zhou  K, Zhou  R, Zhou  XJ, Zhou  Y, Zhou  Y, Zhou  Y, Zhou  ZY, Zhou  Z, Zhu  B, Zhu  C, Zhu  GQ, Zhu  H, Zhu  H, Zhu  H, Zhu  WG, Zhu  Y, Zhu  Y, Zhuang  H, Zhuang  X, Zientara-Rytter  K, Zimmermann  CM, Ziviani  E, Zoladek  T, Zong  WX, Zorov  DB, Zorzano  A, Zou  W, Zou  Z, Zou  Z, Zuryn  S, Zwerschke  W, Brand-Saberi  B, Dong  XC, Kenchappa  CS, Li  Z, Lin  Y, Oshima  S, Rong  Y, Sluimer  JC, Stallings  CL, Tong  CK. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy  2021;17:1–382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Schiffrin  EL. Does endothelin-1 raise or lower blood pressure in humans?  Nephron  2018;139:47–50. [DOI] [PubMed] [Google Scholar]
  • 43. Stankova  J, Rola-Pleszczynski  M, D'Orleans-Juste  P. Endothelin 1 and thrombin synergistically stimulate IL-6 mRNA expression and protein production in human umbilical vein endothelial cells. J Cardiovasc Pharmacol  1995;26:S505–S507. [PubMed] [Google Scholar]
  • 44. Zhou  HY, Sui  H, Zhao  YJ, Qian  HJ, Yang  N, Liu  L, Guan  Q, Zhou  Y, Lin  HL, Wang  DP. The impact of inflammatory immune reactions of the vascular niche on organ fibrosis. Front Pharmacol  2021;12:750509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Kopp  HP, Kopp  CW, Festa  A, Krzyzanowska  K, Kriwanek  S, Minar  E, Roka  R, Schernthaner  G. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler Thromb Vasc Biol  2003;23:1042–1047. [DOI] [PubMed] [Google Scholar]
  • 46. Mossmann  M, Wainstein  MV, Mariani  S, Machado  GP, de Araujo  GN, Andrades  M, Gonçalves  SC, Bertoluci  MC. Increased serum IL-6 is predictive of long-term cardiovascular events in high-risk patients submitted to coronary angiography: an observational study. Diabetol Metab Syndr  2022;14:125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Rose-John  S, Jenkins  BJ, Garbers  C, Moll  JM, Scheller  J. Targeting IL-6 trans-signalling: past, present and future prospects. Nat Rev Immunol  2023;23:666–681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Tang  WH, Kitai  T, Hazen  SL. Gut Microbiota in cardiovascular health and disease. Circ Res  2017;120:1183–1196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Gubatan  J, Boye  TL, Temby  M, Sojwal  RS, Holman  DR, Sinha  SR, Rogalla  SR, Nielsen  OH. Gut microbiome in inflammatory bowel disease: role in pathogenesis, dietary modulation, and colitis-associated colon cancer. Microorganisms  2022;10:1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Ridker  PM, Everett  BM, Thuren  T, MacFadyen  JG, Chang  WH, Ballantyne  C, Fonseca  F, Nicolau  J, Koenig  W, Anker  SD, Kastelein  JJP, Cornel  JH, Pais  P, Pella  D, Genest  J, Cifkova  R, Lorenzatti  A, Forster  T, Kobalava  Z, Vida-Simiti  L, Flather  M, Shimokawa  H, Ogawa  H, Dellborg  M, Rossi  PRF, Troquay  RPT, Libby  P, Glynn  RJ; CANTOS Trial Group . Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med  2017;377:1119–1131. [DOI] [PubMed] [Google Scholar]
  • 51. Ridker  PM, MacFadyen  JG, Thuren  T, Libby  P. Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1beta inhibition with canakinumab: further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis. Eur Heart J  2020;41:2153–2163. [DOI] [PubMed] [Google Scholar]
  • 52. IL6R Genetics Consortium Emerging Risk Factors Collaboration; Sarwar  N, Butterworth  AS, Freitag  DF, Gregson  J, Willeit  P, Gorman  DN, Gao  P, Saleheen  D, Rendon  A, Nelson  CP, Braund  PS, Hall  AS, Chasman  DI, Tybjærg-Hansen  A, Chambers  JC, Benjamin  EJ, Franks  PW, Clarke  R, Wilde  AA, Trip  MD, Steri  M, Witteman  JC, Qi  L, van der Schoot  CE, de Faire  U, Erdmann  J, Stringham  HM, Koenig  W, Rader  DJ, Melzer  D, Reich  D, Psaty  BM, Kleber  ME, Panagiotakos  DB, Willeit  J, Wennberg  P, Woodward  M, Adamovic  S, Rimm  EB, Meade  TW, Gillum  RF, Shaffer  JA, Hofman  A, Onat  A, Sundström  J, Wassertheil-Smoller  S, Mellström  D, Gallacher  J, Cushman  M, Tracy  RP, Kauhanen  J, Karlsson  M, Salonen  JT, Wilhelmsen  L, Amouyel  P, Cantin  B, Best  LG, Ben-Shlomo  Y, Manson  JE, Davey-Smith  G, de Bakker  PI, O'Donnell  CJ, Wilson  JF, Wilson  AG, Assimes  TL, Jansson  JO, Ohlsson  C, Tivesten  Å, Ljunggren  Ö, Reilly  MP, Hamsten  A, Ingelsson  E, Cambien  F, Hung  J, Thomas  GN, Boehnke  M, Schunkert  H, Asselbergs  FW, Kastelein  JJ, Gudnason  V, Salomaa  V, Harris  TB, Kooner  JS, Allin  KH, Nordestgaard  BG, Hopewell  JC, Goodall  AH, Ridker  PM, Hólm  H, Watkins  H, Ouwehand  WH, Samani  NJ, Kaptoge  S, Di Angelantonio  E, Harari  O, Danesh  J. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet  2012;379:1205–1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Schieffer  B, Schieffer  E, Hilfiker-Kleiner  D, Hilfiker  A, Kovanen  PT, Kaartinen  M, Nussberger  J, Harringer  W, Drexler  H. Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: potential implications for inflammation and plaque instability. Circulation  2000;101:1372–1378. [DOI] [PubMed] [Google Scholar]
  • 54. Huber  SA, Sakkinen  P, Conze  D, Hardin  N, Tracy  R. Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler Thromb Vasc Biol  1999;19:2364–2367. [DOI] [PubMed] [Google Scholar]
  • 55. Fernandez-Ruiz  I. Promising anti-IL-6 therapy for atherosclerosis. Nat Rev Cardiol  2021;18:544. [DOI] [PubMed] [Google Scholar]
  • 56. Ridker  PM, Devalaraja  M, Baeres  FMM, Engelmann  MDM, Hovingh  GK, Ivkovic  M, Lo  L, Kling  D, Pergola  P, Raj  D, Libby  P, Davidson  M. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet  2021;397:2060–2069. [DOI] [PubMed] [Google Scholar]
  • 57. Madan  M, Bishayi  B, Hoge  M, Amar  S. Atheroprotective role of interleukin-6 in diet- and/or pathogen-associated atherosclerosis using an ApoE heterozygote murine model. Atherosclerosis  2008;197:504–514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Schieffer  B, Selle  T, Hilfiker  A, Hilfiker-Kleiner  D, Grote  K, Tietge  UJ, Trautwein  C, Luchtefeld  M, Schmittkamp  C, Heeneman  Sa, Daemen  MJAP, Drexler  H. Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation  2004;110:3493–3500. [DOI] [PubMed] [Google Scholar]
  • 59. Wassmann  S, Stumpf  M, Strehlow  K, Schmid  A, Schieffer  B, Bohm  M, Nickenig  G. Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ Res  2004;94:534–541. [DOI] [PubMed] [Google Scholar]
  • 60. Fielding  CA, McLoughlin  RM, McLeod  L, Colmont  CS, Najdovska  M, Grail  D, Ernst  M, Jones  SA, Topley  N, Jenkins  BJ. IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. J Immunol  2008;181:2189–2195. [DOI] [PubMed] [Google Scholar]
  • 61. Wenzel  P, Knorr  M, Kossmann  S, Stratmann  J, Hausding  M, Schuhmacher  S, Karbach  SH, Schwenk  M, Yogev  N, Schulz  E, Oelze  M, Grabbe  S, Jonuleit  H, Becker  C, Daiber  A, Waisman  A, Münzel  T. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation  2011;124:1370–1381. [DOI] [PubMed] [Google Scholar]
  • 62. Didion  SP. Cellular and oxidative mechanisms associated with interleukin-6 signaling in the vasculature. Int J Mol Sci  2017;18:2563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Yabluchanskiy  A, Ma  Y, Iyer  RP, Hall  ME, Lindsey  ML. Matrix metalloproteinase-9: many shades of function in cardiovascular disease. Physiology (Bethesda)  2013;28:391–403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Gomez  D, Owens  GK. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc Res  2012;95:156–164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Baumer  Y, McCurdy  S, Alcala  M, Mehta  N, Lee  BH, Ginsberg  MH, Boisvert  WA. CD98 regulates vascular smooth muscle cell proliferation in atherosclerosis. Atherosclerosis  2017;256:105–114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Rautureau  Y, Coelho  SC, Fraulob-Aquino  JC, Huo  KG, Rehman  A, Offermanns  S, Paradis  P, Schiffrin  EL. Inducible human endothelin-1 overexpression in endothelium raises blood pressure via endothelin type A receptors. Hypertension  2015;66:347–355. [DOI] [PubMed] [Google Scholar]
  • 67. Hocher  B, Thone-Reineke  C, Rohmeiss  P, Schmager  F, Slowinski  T, Burst  V, van der Woude  F, Bauer  C, Theuring  F. Endothelin-1 transgenic mice develop glomerulosclerosis, interstitial fibrosis, and renal cysts but not hypertension. J Clin Invest  1997;99:1380–1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Montgomery  A, Tam  F, Gursche  C, Cheneval  C, Besler  K, Enns  W, Manku  S, Rey  K, Hanson  PJ, Rose-John  S, McManus  BM, Choy  JC. Overlapping and distinct biological effects of IL-6 classic and trans-signaling in vascular endothelial cells. Am J Physiol Cell Physiol  2021;320:C554–C565. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

oeae046_Supplementary_Data

Data Availability Statement

The data underlying this article will be shared on request to the corresponding author.


Articles from European Heart Journal Open are provided here courtesy of Oxford University Press on behalf of the European Society of Cardiology

RESOURCES