Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2024 Apr 28;49(4):578–587. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2024.230324

LARS肿瘤管在肿瘤型人工髋关节置换术关节功能重建中的临床应用

Clinical application of LARS tumor tube in joint function reconstruction of tumor type artificial hip replacement

ZENG Hao 1,2, HE Hongbo 1, ZHANG Can 1, LIU Yupeng 1, TONG Xiaopeng 1, QIU Xinzhu 1, LIU Qing 1,
Editor: 彭 敏宁
PMCID: PMC11255192  PMID: 39019786

Abstract

Objective

Proximal femur tumor resection often leads to hip joint instability and functional loss. Various methods have been clinically applied to repair hip joint soft tissue function, but deficiencies remain. This study aims to evaluate the advantages and disadvantages of the ligament advanced reinforcement system (LARS) tumor tube in assisting soft tissue function reconstruction in patients undergoing tumor type artificial hip replacement surgery.

Methods

This study included 85 patients (41 males, 44 females) with proximal femoral tumors treated at the Xiangya Bone Tumor Treatment Center from January 2012 to January 2022, aged 10 to 79 (38.5±18.2) years. Among them, 13 cases had benign aggressive tumors, 45 had primary malignant bone tumors, and 27 had bone metastases. Clinical data, imaging data, and intraoperative photos were collected. Patients were followed up and postoperative functional evaluations were conducted using the Musculoskeletal Tumor Society (MSTS) scoring system and Harris hip joint scoring system to assess limb function and hip joint function.

Results

Preoperative pathological fractures were present in 37 cases (43.5%), with a lesion length of (9.4±2.9) cm. Among non-metastatic tumor patients, 7 experienced postoperative recurrence, including 6 cases of osteosarcoma and 1 case of fibrosarcoma. Pulmonary metastases occurred in 9 osteosarcoma patients. Five patients required reoperation due to postoperative complications, including 3 cases of deep vein thrombosis, 1 case of giant cell granuloma, and 1 case of prosthesis infection. Postoperatively, 5 patients exhibited Trendelenburg gait, and 6 had leg length discrepancies. The postoperative MSTS score was 26.7±1.4, and the Harris score was 89.6±5.3.

Conclusion

The LARS tumor tube can effectively assist in reconstructing the soft tissue function of the hip joint and greatly reduce postoperative complications, making it an effective technical improvement in joint function reconstruction in tumor type artificial hip replacement surgery.

Keywords: ligament advanced reinforcement system tumor tube, tumor type artificial hip, soft tissue reconstruction, joint function, dynamic system


随着化学治疗(以下简称“化疗”)、放射治疗(以下简称“放疗”)和肿瘤综合治疗的不断精进,恶性骨与软组织肿瘤的外科治疗已全面进入保肢时代 [ 1- 2]。精确的术前分期、清晰的术前影像学、准确的计算机辅助设计以及外科治疗设备的革新为保肢治疗提供了优越的外部条件,保肢手术已成为原发性恶性骨与软组织肉瘤的首选治疗方法 [ 3- 6]

股骨近端是良性侵袭性肿瘤和原发性恶性肿瘤的常见发生部位,也是骨转移瘤的常见转移位置,该部位的保肢治疗一直是骨肿瘤外科医生讨论的焦点 [ 7- 8]。股骨近端的保肢治疗主要包括肿瘤病灶的切除、骨缺损的修复及关节功能的重建。肿瘤的广泛切除常导致大段的骨关节缺损,随着生物材料和重建技术的发展,骨关节缺损的修复也由同种异体骨关节移植 [ 9- 10]发展到异体骨——人工假体复合移植(autograft prosthesis composite,APC) [ 11],进一步发展到模块化人工假体移植 [ 12]。模块化人工假体降低了治疗成本、缩短了治疗周期、增加了适用性和操作的灵活性,并且不用担心骨愈合的问题,目前已广泛应用于临床。人工假体重建技术的成熟也让研究者关注的焦点逐渐由骨缺损的修复转移到关节功能的重建。

尽管人工假体完美地修复了骨关节缺损,但假体周围软组织无法在其表面实现牢固的生物愈合,因此难以获得满意的远期功能,这又为关节功能的重建提出了新的难题。自体肌腱、自体肌瓣及同种异体肌腱等被用作软组织缺损修复的常用替代物 [ 12- 15],但供区有限及远期机械并发症问题使其应用受限。随着材料科学的进步和新一代人工韧带的推出,韧带高级加固系统(ligament advanced reinforce-ment system,LARS)逐步应用于临床 [ 16- 17]。LARS是一种合成韧带,已成功用于肩袖修复、交叉韧带重建、跟腱重建及伸膝装置的重建 [ 18- 19],但其在肿瘤保肢治疗的软组织功能重建中的应用却鲜有报道。本研究观察于湘雅骨肿瘤治疗中心接受LARS肿瘤管辅助肿瘤型人工髋关节置换术进行关节功能重建患者的临床效果,评价LARS肿瘤管辅助关节功能重建的优缺点,以优化LARS肿瘤管辅助关节功能重建的实施流程。

1. 资料与方法

1.1. 纳入标准与排除标准

纳入标准:1)患有股骨近端良恶性骨与软组织肿瘤;2)行股骨近端肿瘤段关节内切除;3)使用模块化人工髋关节假体修复骨关节缺损;4)LARS肿瘤管辅助髋关节功能重建;5)有完整的临床资料;6)术后随访>12个月。排除标准:1)行关节外切除或全股切除术;2)行翻修手术;3)未行LARS肿瘤管修复软组织缺损。

1.2. 一般资料

回顾性收集2012年1月至2022年1月在湘雅骨肿瘤治疗中心接受股骨近端肿瘤段切除和肿瘤型人工髋关节置换术的股骨近端肿瘤患者85例。其中男41例,女44例。年龄10~79(38.5±18.2)岁。患者的病理类型包括:骨转移瘤27例,骨肉瘤21例,软骨肉瘤12例,骨巨细胞瘤13例,淋巴瘤3例,纤维肉瘤6例,磷酸尿性间叶瘤、棕色瘤和腺泡样软组织肉瘤各1例( 表1)。所有骨肉瘤的患者均接受阿霉素、顺铂、异环磷酰胺三药序贯化疗方案化疗(2周期术前化疗及4周期术后化疗)。术前影像学评估包括:X线、增强计算机断层扫描(computed tomography,CT)、增强磁共振(magnetic resonance imaging,MRI)和核素骨扫描,对骨转移瘤患者行额外的全身PET/CT检查。所有患者的临床治疗方案均由湘雅骨与软组织肿瘤多学科团队(multidisciplinary team,MDT)讨论后制订,均由同一医疗组成员实施保肢手术,使用水泥型组配式髋关节假体进行骨关节缺损修复。参与本研究的所有患者或其法定监护人均签署了知情同意书,本研究获得中南大学湘雅医院医学伦理委员会临床研究医学伦理分委员会批准(审批号:20221008023)。

表1.

患者的临床资料

Table 1 Clinical data of patients

项目 数值
年龄/岁 38.5±18.2
病灶长度/cm 9.4±2.9
随访时间/月 45.9±26.6
性别/[例(%)]
41(48.2)
44(51.8)
病理类型/[例(%)]
骨转移瘤 27(31.8)
骨肉瘤 21(24.7)
软骨肉瘤 12(14.1)
骨巨细胞瘤 13(15.3)
淋巴瘤 3(3.5)
纤维肉瘤 6(7.0)
磷酸尿性间叶瘤 1(1.2)
棕色瘤 1(1.2)
腺泡样软组织肉瘤 1(1.2)
Enneking分级 [ 20- 21]/[例(%)]
3级 13(15.3)
ⅠB 1(1.1)
ⅡA 5(5.9)
ⅡB 27(31.8)
ⅢB 39(45.9)
病理性骨折/[例(%)] 37(43.5)

计量资料以均数±标准差表示。

1.3. 手术方法

保肢手术包括股骨肿瘤段切除、组配式髋关节假体重建、髋关节软组织功能重建3个步骤( 图1)。肿瘤切除遵循肿瘤学原则,努力实现原发性肿瘤的扩大切除;对于骨转移瘤、合并病理性骨折和病灶可能累及髋关节的患者,进行姑息性重建,避免关节外切除。以术前增强MRI的T1WI成像确定肿瘤切除边界和截骨长度。

图1.

图1

LARS肿瘤管辅助肿瘤型人工髋关节置换术中软组织重建的手术细节

Figure 1 Operative details of soft tissue reconstruction in LARS tumor tube assisted tumor type artificial hip replacement

A: Labeled muscle stump around the hip joint after tumor resection; B: Modular tumor prosthesis and LARS tumor tube; C: Joint reduction after fixation of prosthesis in distal medullary cavity; D: Suturing the periphery of joint capsule with LARS tumor tube to strengthen joint capsule; E: Liopsoas and piriformis muscles sutured with LARS tumor tube at the proximal prosthesis; F: Suturing the stump of gluteus medius muscle with LARS tumor tube at the greater trochanter; G: Vastus lateralis and external rotator sutured sequentially on the LARS tumor tube surface to properly cover the prosthesis; H: Tensor fascia lata sutured continuously. LARS: Ligament advanced reinforcement system.

肿瘤切除采用Watson-Jones入路,梭形切除活体组织检查(以下简称“活检”)通道。暴露臀大肌止点,予以切断并带线标记;将臀中肌和股外侧肌一同从大粗隆部位剥离,尽可能保持两者的连续性便于后期重建;切断外旋肌群并带线标记,外旋股骨并将臀中肌和股外侧肌拉向内测显露关节囊;沿关节囊前外侧“T”型切开,并在股骨颈基部横向分离显露股骨头,剪断小凹韧带并行股骨头脱位;切断髂腰肌、内收肌群和股二头肌,并于超出病灶远端至少3 cm处进行截骨,以完整切除肿瘤。

测量股骨头大小并行股骨扩髓,使用模型假体进行肢体长度比较和髋关节稳定性测试。确定假体长度和股骨头大小后予以组配髋关节假体,利用LARS肿瘤管包裹假体并用不可吸收缝线将两者牢固固定,最后使用骨水泥将假体柄固定于股骨髓腔。所有患者均使用双动头,其中3例患者实施了全髋关节置换术( 图2)。

图2.

图2

股骨近端软骨肉瘤术后复发患者行肿瘤型人工髋关节置换术

Figure 2 Tumor type artificial hip replacement for patients with recurrent chondrosarcoma of the proximal femur after surgery

A: Anteroposterior X-ray examination one year after the initial surgery; B: Anteroposterior and lateral X-ray examination before reoperation; C: From left to right, the excised proximal femur tumor specimen, the LARS tumor tube wrapped around the surface of the artificial prosthesis, and the intraoperative scene after covering the LARS tumor tube with a muscle flap; D: Satisfactory prosthesis position and equal length of lower limbs by postoperative anyeropodterior X-rays. LARS: Ligament advanced reinforcement system.

采用荷包缝合法将关节囊紧缩,用可吸收线加强关节囊的纵行切口。将关节囊四周与LARS肿瘤管依次进行环形缝合,进一步强化关节囊。将髂腰肌与假体内侧表面的LARS肿瘤管缝合,并用缝线将内收肌群的残端与LARS肿瘤管缝合,以减少因肿瘤切除而残留的死腔。然后将臀中肌与股外侧肌缝合于假体粗隆部,尽可能覆盖LARS肿瘤管并恢复软组织原有解剖位置。最后于LARS肿瘤管表面将外旋肌群和臀大肌的残端缝合,确保假体拥有优良的肌瓣覆盖。予以留置2根伤口引流管,接着连续缝合阔筋膜张肌,逐层闭合切口。

1.4. 术后管理与随访

所有患者术后行规范化的康复治疗:术后严格卧床4周,保持患肢轻度外展,穿“丁”字鞋以确保下肢处于中立位置;术后2周内以肢体等长收缩锻炼为主;2周后在康复师指导下开始行被动功能锻炼;4周后开始拄拐下地,逐步过渡到主动功能性运动,直至恢复正常活动。术后前2年每3个月随访1次,第3至5年每6个月随访1次,第5年后每年随访1次。随访主要评估肿瘤学预后和肢体功能预后,记录各种并发症的发生情况。术后肢体功能评分采用肌肉骨骼肿瘤学会(Musculoskeletal Tumor Society,MSTS)评分系统 [ 22],髋关节功能评分采用Harris髋关节评分系统 [ 23],疼痛采用视觉模拟评分(Visual Analog Scale,VAS)进行评估 [ 24]

1.5. 统计学处理

采用SPSS 26.0统计学软件进行数据分析。计数资料以频数(率)表示;计量资料以均数±标准差表示,比较采用配对 t检验。 P<0.05为差异有统计学意义。

2. 结 果

本组85例患者中,骨转移瘤患者27例(31.8%),术前合并病理性骨折患者( 图3)37例(43.5%)。肿瘤病灶长度为(9.4±2.9) cm,术后随访时间为(45.9±26.6)个月( 表1)。

图3.

图3

股骨近端淋巴瘤保肢治疗的细节

Figure 3 Details of limb salvage treatment for proximal femoral lymphoma

A: Preoperative anteroposterior X-ray reveals pathological fracture of right femoral neck. B: Preoperative MRI shows extensive involvement of the proximal femur. C: Tumor is completely resected and modular prosthesis is wrapped with LARS tumortube. D: From left to right, the iliopsoas muscle is sutured after hip reduction, the gluteus media insert is sutured to the LARS tumor tube surface of the greater trochanter of the prosthesis, and the intraoperative view of the tensor fascia lata muscle is sutured successively. E: Postoperative anteroposterior X-ray shows satisfactory prosthesis position and equal length of lower limbs.

2.1. 肿瘤学预后

27例骨转移瘤患者至末次随访时均未在原手术部位出现再手术相关并发症。7例原发性骨肿瘤术后复发,其中骨肉瘤6例,纤维肉瘤1例。9例骨肉瘤患者术后发生肺转移,其中6例并发骨肉瘤原位复发;2名肺转移患者在转移灶切除后随访结束时仍存活,7例患者在肺转移进展后1年内死亡。余下48例患者在随访期内均未发现原位肿瘤复发及肿瘤远处转移的证据。

2.2. 功能预后

术后MSTS评分为26.7±1.4,与术前比较差异有统计学意义( P<0.001)。髋关节术后Harris评分为89.6±5.3,提示髋关节的活动范围和稳定性令人满意( 表2)。5名(5.9%)骨肉瘤患者因肿瘤侵犯关节周围软组织而牺牲了部分臀中肌和关节囊( 图4),导致术后出现Trendelenburg步态。6名患者在随访期间出现双下肢不等长,患肢短缩最长者达9.5 cm,以上患者均通过穿戴特制增高鞋垫来平衡健侧肢体长度,未行任何手术干预。

表2.

患者术后功能评价

Table 2 Postoperative functional evaluation for the patients

时间 Harris评分 MSTS评分 VAS评分
术前 13.0±5.4 4.4±1.2
术后 89.6±5.3 26.7±1.4 0.3±0.4
t 21.4 -31.4
P <0.001 <0.001

MSTS:肌肉骨骼肿瘤学会;VAS:视觉模拟评分。

图4.

图4

铆钉强化牺牲了关节囊患者的软组织功能重建

Figure 4 Reconstruction of soft tissue function in joint capsule patients is sacrificed due to rivet reinforcement

A and B: Preoperative anteroposterior X-ray and MRI show extensive involvement of the proximal femur. C: The tumor is removed completely, 6 rivets are placed in the acetabulum, and the LARS tumor tube is sutured to the rivet line to reconstruct the artificial joint capsule structure. D: Postoperative anteroposterior X-ray shows satisfactory prosthesis position and equal length of lower limbs. LARS: Ligament advanced reinforcement system.

2.3. 术后并发症

5例患者因术后并发症再次手术,其中3例为深静脉血栓形成,1例为巨细胞肉芽肿,1例为假体周围感染。以上患者经过介入手术取栓、局部肿块切除和彻底清创均得以成功保留假体。至末次随访未观察到任何机械相关并发症,如假体松动和假体周围骨折,以及功能重建相关并发症,如髋关节脱位。

3. 讨 论

髋关节是人体下肢最重要的活动关节,股骨近端肿瘤的保肢治疗具有重要意义 [ 25]。肿瘤切除后骨缺损修复和关节功能重建是临床保肢实践的核心。骨缺损修复材料的选择一直是医生关注的焦点,同种异体半关节移植和APC重建都曾被推崇,但是随着逐渐增多的移植物相关并发症,如感染、骨不连、骨折、软骨塌陷等 [ 26- 27],以及高概率的再次手术发生率和移植物失败率的出现 [ 28- 29],这2种重建选择被逐步弃用,取而代之的是适用性更好的组配式假体重建 [ 4, 30]。组配式假体重建完美地修复了骨关节缺损,但周围软组织无法在假体表面实现生物附着,这又为关节的稳定性和肌肉动力系统的连续性提出了新的难题。

肿瘤性骨关节缺损修复后的关节功能重建是患者术后功能恢复的重要前提。关节囊能够维持关节的正常位置,是静态稳定结构,肌肉动力系统通过力学作用能够动态稳定关节结构。由于肿瘤侵犯导致肌肉组织和关节囊的完整性被破坏,关节缺少动态和静态稳定结构的完整性,常引起不同程度的关节功能障碍和术后并发症,因此,修复这些结构对于肢体关节功能的恢复至关重要。本研究利用LARS肿瘤管辅助肿瘤型人工髋关节置换术的关节功能重建,充分利用LARS肿瘤管自身优异的生物相容性和力学强度特性,用以修复或加强关节的静态稳定结构 [ 16];并以LARS肿瘤管为载体,实现关节周围肌肉在假体表面的附着,为肿瘤型人工髋关节提供动态的稳定结构。

关节稳定性的修复主要是修复关节囊结构的完整性并平衡髋外展肌与髂腰肌的肌力。Chandrasekar等 [ 12]报道的52例肿瘤型人工髋关节置换术的患者在完全保留关节囊的情况下,术后髋关节脱位率为12%。Döring等 [ 31]报道的28例用组配式假体修复股骨近端非肿瘤性骨缺损的研究中,术后髋关节脱位率更是高达29%。而本研究未观察到术后髋关节脱位的情况,这可能得益于大部分患者的关节囊均尽可能予以了保留,在缝合过程中采用荷包缝合的方式进行严密缝合,并且用LARS肿瘤管对关节囊四周进行了加强。由于股骨近端恶性肿瘤很少突破关节软骨累及关节囊,因此在股骨近端肿瘤切除时关节囊大多可以保留。而对于合并关节内病理性骨折的患者,本研究采用关节内热消融辅助的方式保留关节囊;对于关节囊部分切除的患者,则是通过铆钉将LARS肿瘤管固定于髋臼周围,然后将股骨头限制其中,待周围疤痕组织长入后则可以有效预防股骨头的脱出。

重建肌肉止点在假体表面的再附着(尤其是外展肌和髂腰肌)和恢复肌肉动力系统的连续性也是维持髋关节稳定和恢复关节功能的重要环节。在肌肉动力系统的重建方面,研究者已进行许多尝试,如Groundland等 [ 32]比较了大转子截骨和单纯软组织重建术后关节功能的差异,结果显示大转子截骨术组和单独软组织重建组中分别只有10%和38%的患者恢复了正常活动。Bickels等 [ 33]使用涤纶带通过金属环将外展肌腱连接到假体的侧面以重建关节的肌肉动力系统。Crenn等 [ 34]对大转子进行截骨,随后用大转子复位板和螺钉或电缆夹线将其复位到假体表面。这些肌肉附着点的重建均属于点状的机械固定,失败率随着运动的增加逐步升高,只有将肌肉止点以面状附着于假体表面,实现生物愈合才是最理想的重建选择。本研究利用LARS肿瘤管包裹假体并将两者缝合牢固,以LARS肿瘤管为载体,将肌肉止点与之缝合。鉴于LARS肿瘤管优异的生物相容性、抗疲劳性和多孔性特征,纤维组织很快即可长入并与之融合为一个结构单元,实现肌肉止点在假体表面的生物愈合。稳定的肌肉止点重建可将肌肉收缩力直接传导至假体,从而有效改善肢体功能。

LARS肿瘤管在假体周围软组织功能重建中具有一定的优势,但这种重建方式的并发症发生情况同样值得研究。感染是恶性骨肿瘤保肢手术后的一个严重并发症,似乎与假体难以实现足够的软组织覆盖、术区残留死亡空间、术后化疗和放疗有关。LARS肿瘤管作为一种人工材料,属于异物,理论上会增加假体深部感染的风险。然而,本研究术后随访,仅有1例出现了深部感染,对比既往研究 [ 35- 36]感染率显著降低。这可能与LARS能够有效增加假体软组织覆盖和消灭术区死腔密不可分。LARS韧带使肌肉组织附着于假体的载体,其多孔结构能够加快纤维组织的长入并与之融为一体,任何关节周围肌肉组织均可以直接缝合于LARS韧带表面,恢复原有解剖位置。

本研究也存在一些不足:研究样本诊断的异质性导致偏倚,这可能对结果产生影响;样本量较小,需增加样本量以提高数据的有效性;随访时间不够长,长期随访将有助于获得更准确、更全面的术后并发症发生情况。

总之,本研究论证了LARS肿瘤管在辅助肿瘤型人工髋关节置换术患者的术后功能重建中的积极作用,其可以有效加强关节静态稳定结构,重建肌肉动力系统,为假体表面软组织复位提供新介质并极大地降低术后并发症的发生,为LARS肿瘤管在假体周围软组织功能重建中的应用推广提供了研究基础和实践经验。由于LARS肿瘤管辅助假体周围功能重建是一种不适合前瞻性随机研究的手术方法,因此大样本量的多中心前瞻性临床对比研究将是未来的研究方向。

基金资助

湖南省自然科学基金(2022JJ40802, 2022JJ30928);长沙市自然科学基金(kq2202382);中国博士后科学基金(2022M713525)。This work was supported by the Natural Science Foundation of Hunan Province (2022JJ40802 and 2022JJ30928), the Changsha Natural Science Foundation (kq2202382), and the China Postdoctoral Science Foundation (2022M713525), China.

利益冲突声明

作者声称无任何利益冲突。

作者贡献

曾昊、童小鹏 研究实施,数据采集,论文撰写;何洪波 研究设计和实施,论文修改;章灿 研究设计和实施,数据采集,论文修改;刘育鹏 研究实施,数据分析和解释,论文修改,对文章的知识性内容作批评性审阅;邱新铸 研究设计和实施,数据采集,论文撰写和修改;刘擎 研究设计和实施,数据采集,论文修改,对文章的知识性内容作批评性审阅。所有作者阅读并同意最终的文本。

Footnotes

http://dx.chinadoi.cn/10.11817/j.issn.1672-7347.2024.230324

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202404578.pdf

参考文献

  • 1. Malek F, Somerson JS, Mitchel S, et al. Does limb-salvage surgery offer patients better quality of life and functional capacity than amputation?[J]. Clin Orthop Relat Res, 2012, 470( 7): 2000- 2006. 10.1007/s11999-012-2271-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Errani C, Mavrogenis AF, Cevolani L, et al. Treatment for long bone metastases based on a systematic literature review[J]. Eur J Orthop Surg Traumatol, 2017, 27( 2): 205- 211. 10.1007/s00590-016-1857-9. [DOI] [PubMed] [Google Scholar]
  • 3. Houdek MT, Wyles CC, Labott JR, et al. Durability of hemiarthroplasty for pathologic proximal femur fractures[J]. J Arthroplasty, 2017, 32( 12): 3607- 3610. 10.1016/j.arth.2017.06.040. [DOI] [PubMed] [Google Scholar]
  • 4. Bischel OE, Suda AJ, Böhm PM, et al. En-bloc resection of metastases of the proximal femur and reconstruction by modular arthroplasty is not only justified in patients with a curative treatment option-an observational study of a consecutive series of 45 patients[J]. J Clin Med, 2020, 9( 3): 758. 10.3390/jcm9030758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Saglam F, Baysal O, Sirin E, et al. Is bipolar hemiarthroplasty an appropriate type of hip articulation following proximal femoral or total femoral resections for musculoskeletal malignancies?[J]. Arch Orthop Trauma Surg, 2022, 142( 2): 331- 341. 10.1007/s00402-021-03980-3. [DOI] [PubMed] [Google Scholar]
  • 6. Varady NH, Ameen BT, Schwab PE, et al. Trends in the surgical treatment of pathological proximal femur fractures in the United States[J]. J Surg Oncol, 2019, 120( 6): 994- 1007. 10.1002/jso.25669. [DOI] [PubMed] [Google Scholar]
  • 7. Willeumier JJ, van de Sande MAJ, van der Wal RJP, et al. Trends in the surgical treatment of pathological fractures of the long bones: based on a questionnaire among members of the Dutch Orthopaedic Society and the European Musculo-Skeletal Oncology Society (EMSOS)[J]. Bone Joint J, 2018, 100-B( 10): 1392- 1398. 10.1302/0301-620X.100B10.BJJ-2018-0239.R1. [DOI] [PubMed] [Google Scholar]
  • 8. Hage WD, Aboulafia AJ, Aboulafia DM. Incidence, location, and diagnostic evaluation of metastatic bone disease[J]. Orthop Clin North Am, 2000, 31( 4): 515- 528, vii. 10.1016/s0030-5898(05)70171-1. [DOI] [PubMed] [Google Scholar]
  • 9. Gebhardt MC, Flugstad DI, Springfield DS, et al. The use of bone allografts for limb salvage in high-grade extremity osteosarcoma[J]. Clin Orthop Relat Res, 1991( 270): 181- 196. [PubMed] [Google Scholar]
  • 10. Liu Q, He HB, Duan ZX, et al. Intercalary allograft to reconstruct large-segment diaphysis defects after resection of lower extremity malignant bone tumor[J]. Cancer Manag Res, 2020, 12: 4299- 4308. 10.2147/CMAR.S257564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Jamshidi K, Mirkazemi M, Gharedaghi M, et al. Bipolar hemiarthroplasty versus total hip arthroplasty in allograft-prosthesis composite reconstruction of the proximal femur following primary bone tumour resection[J]. Bone Joint J, 2020, 102-B( 4): 524- 529. 10.1302/0301-620X.102B4.BJJ-2019-0925.R2. [DOI] [PubMed] [Google Scholar]
  • 12. Chandrasekar CR, Grimer RJ, Carter SR, et al. Modular endoprosthetic replacement for tumours of the proximal femur[J]. J Bone Joint Surg Br, 2009, 91( 1): 108- 112. 10.1302/0301-620X.91B1.20448. [DOI] [PubMed] [Google Scholar]
  • 13. Peterson JR, Decilveo AP, O’Connor IT, et al. What are the functional results and complications with long stem hemiarthroplasty in patients with metastases to the proximal femur?[J]. Clin Orthop Relat Res, 2017, 475( 3): 745- 756. 10.1007/s11999-016-4810-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Lin JS, Santiago-Torres JE, Everhart JS, et al. When is hemiarthroplasty preferable to intramedullary prophylactic fixation of malignant lesions of the proximal femur?[J]. J Surg Oncol, 2017, 116( 8): 1132- 1140. 10.1002/jso.24792. [DOI] [PubMed] [Google Scholar]
  • 15. Ropars M, Lambotte JC, Maximen J, et al. Techniques and outcomes of hip abductor reconstruction following tumor resection in adults[J]. Orthop Traumatol Surg Res, 2021, 107( 1S): 102765. 10.1016/j.otsr.2020.102765. [DOI] [PubMed] [Google Scholar]
  • 16. Ji T, Tang XD, Guo W. The use of Ligament advanced reinforcement system (LARS) in limb salvage surgery: a pilot clinical study[J]. J Arthroplasty, 2013, 28( 6): 892- 894. 10.1016/j.arth.2012.11.011. [DOI] [PubMed] [Google Scholar]
  • 17. 汤小东. 假体置换联合LARS韧带软组织重建术治疗肱骨近端恶性肿瘤[J]. 中华肩肘外科电子杂志, 2015, 3( 2): 62. 10.3877/cma.j.issn.2095-5790.2015.02.015. [DOI] [Google Scholar]; TANG Xiaodong. Prosthesis replacement combined with soft tissue reconstruction of LARS ligament in the treatment of malignant tumor of proximal humerus[J]. Chinese Journal of Shoulder and Elbow. Electronic Edition, 2015, 3( 2): 62. 10.3877/cma.j.issn.2095-5790.2015.02.015. [DOI] [Google Scholar]
  • 18. Hobusch GM, Funovics PT, Hourscht C, et al. LARS ® band and tube for extensor mechanism reconstructions in proximal tibial modular endoprostheses after bone tumors[J]. Knee, 2016, 23( 5): 905- 910. 10.1016/j.knee.2016.04.002. [DOI] [PubMed] [Google Scholar]
  • 19. Du ZY, Tang S, Yang RL, et al. Use of an artificial ligament decreases hip dislocation and improves limb function after total femoral prosthetic replacement following femoral tumor resection[J]. J Arthroplasty, 2018, 33( 5): 1507- 1514. 10.1016/j.arth.2017.12.017. [DOI] [PubMed] [Google Scholar]
  • 20. Enneking WF, Spanier SS, Goodman MA. A system for the surgical staging of musculoskeletal sarcoma[J]. Clin Orthop Relat Res, 2003( 415): 4- 18. 10.1097/01.blo.0000093891.12372.0f. [DOI] [PubMed] [Google Scholar]
  • 21. Enneking WF. A system of staging musculoskeletal neoplasms[J]. Clin Orthop Relat Res, 1986( 204): 9- 24. [PubMed] [Google Scholar]
  • 22. Enneking WF, Dunham W, Gebhardt MC, et al. A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system[J]. Clin Orthop Relat Res, 1993( 286): 241- 246. [PubMed] [Google Scholar]
  • 23. Edwards PK, Queen RM, Butler RJ, et al. Are range of motion measurements needed when calculating the Harris hip score?[J]. J Arthroplasty, 2016, 31( 4): 815- 819. 10.1016/j.arth.2015.10.016. [DOI] [PubMed] [Google Scholar]
  • 24. Carlsson AM. Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale[J]. Pain, 1983, 16( 1): 87- 101. 10.1016/0304-3959(83)90088-X. [DOI] [PubMed] [Google Scholar]
  • 25. Simon MA, Aschliman MA, Thomas N, et al. Limb-salvage treatment versus amputation for osteosarcoma of the distal end of the femur. 1986[J]. J Bone Joint Surg Am, 2005, 87( 12): 2822. 10.2106/JBJS.8712.cl. [DOI] [PubMed] [Google Scholar]
  • 26. Muscolo DL, Ayerza MA, Aponte-Tinao L, et al. Allograft reconstruction after sarcoma resection in children younger than 10 years old[J]. Clin Orthop Relat Res, 2008, 466( 8): 1856- 1862. 10.1007/s11999-008-0303-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Rollo G, Pichierri P, Grubor P, et al. The challenge of nonunion and malunion in distal femur surgical revision[J/OL]. Med Glas, 2019, 16( 2)[ 2023-02-21]. 10.17392/1016-19. [DOI] [PubMed] [Google Scholar]
  • 28. Ramseier LE, Malinin TI, Temple HT, et al. Allograft reconstruction for bone sarcoma of the tibia in the growing child[J]. J Bone Joint Surg Br, 2006, 88( 1): 95- 99. 10.1302/0301-620X.88B1.16253. [DOI] [PubMed] [Google Scholar]
  • 29. Dheenadhayalan J, Devendra A, Velmurugesan P, et al. Reconstruction of massive segmental distal femoral metaphyseal bone defects after open injury: a study of 20 patients managed with intercalary gamma-irradiated structural allografts and autologous cancellous grafts[J]. J Bone Joint Surg Am, 2022, 104( 2): 172- 180. 10.2106/JBJS.21.00065. [DOI] [PubMed] [Google Scholar]
  • 30. 郭卫. 肿瘤型人工关节置换术[J]. 北京大学学报(医学版), 2013, 45( 5): 667- 672. 10.3969/j.issn.1671-167X.2013.05.001. [DOI] [Google Scholar]; GUO Wei. Tumor artificial joint replacement[J]. Journal of Peking University. Health Sciences, 2013, 45( 5): 667- 672. 10.3969/j.issn.1671-167X.2013.05.001. [DOI] [Google Scholar]
  • 31. Döring K, Vertesich K, Martelanz L, et al. Proximal femoral reconstruction with modular megaprostheses in non-oncological patients[J]. Int Orthop, 2021, 45( 10): 2531- 2542. 10.1007/s00264-021-05080-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Groundland J, Brown J, Jones K, et al. Is osseous reattachment of the greater trochanter necessary compared to soft-tissue-only abductor repair in proximal femoral megaprosthesis reconstruction?[J]. J Surg Oncol, 2021, 124( 1): 115- 123. 10.1002/jso.26477. [DOI] [PubMed] [Google Scholar]
  • 33. Bickels J, Meller I, Henshaw RM, et al. Reconstruction of hip stability after proximal and total femur resections[J]. Clin Orthop Relat Res, 2000( 375): 218- 230. 10.1097/00003086-200006000-00027. [DOI] [PubMed] [Google Scholar]
  • 34. Crenn V, Briand S, Rosset P, et al. Clinical and dynamometric results of hip abductor system repair by trochanteric hydroxyapatite plate with modular implant after resection of proximal femoral tumors[J]. Orthop Traumatol Surg Res, 2019, 105( 7): 1319- 1325. 10.1016/j.otsr.2019.08.011. [DOI] [PubMed] [Google Scholar]
  • 35. Hardes J, Gebert C, Schwappach A, et al. Characteristics and outcome of infections associated with tumor endoprostheses[J]. Arch Orthop Trauma Surg, 2006, 126( 5): 289- 296. 10.1007/s00402-005-0009-1. [DOI] [PubMed] [Google Scholar]
  • 36. Kwong LM, Kistler KD, Mills R, et al. Thromboprophylaxis, bleeding and post-operative prosthetic joint infection in total hip and knee arthroplasty: a comprehensive literature review[J]. Expert Opin Pharmacother, 2012, 13( 3): 333- 344. 10.1517/14656566.2012.652087. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES