Skip to main content
EFSA Journal logoLink to EFSA Journal
. 2024 Jul 19;22(7):e8930. doi: 10.2903/j.efsa.2024.8930

Avian influenza overview March–June 2024

European Food Safety Authority; European Centre for Disease Prevention and Control; European Union Reference Laboratory for Avian Influenza, Leonidas Alexakis, Alice Fusaro, Thijs Kuiken, Gražina Mirinavičiūtė, Karl Ståhl, Christoph Staubach, Olov Svartström, Calogero Terregino, Katriina Willgert, Roxane Delacourt, Sonagnon Martin Goudjihounde, Malin Grant, Stefania Tampach, Lisa Kohnle
PMCID: PMC11258884  PMID: 39036773

Abstract

Between 16 March and 14 June 2024, 42 highly pathogenic avian influenza (HPAI) A(H5) virus detections were reported in domestic (15) and wild (27) birds across 13 countries in Europe. Although the overall number of detections in Europe has not been this low since the 2019–2020 epidemiological year, HPAI viruses continue to circulate at a very low level. Most detections in poultry were due to indirect contact with wild birds, but there was also secondary spread. Outside Europe, the HPAI situation intensified particularly in the USA, where a new A(H5N1) virus genotype (B3.13) has been identified in >130 dairy herds in 12 states. Infection in cattle appears to be centred on the udder, with milk from infected animals showing high viral loads and representing a new vehicle of transmission. Apart from cattle, HPAI viruses were identified in two other mammal species (alpaca and walrus) for the first time. Between 13 March and 20 June 2024, 14 new human cases with avian influenza virus infection were reported from Vietnam (one A(H5N1), one A(H9N2)), Australia (with travel history to India, one A(H5N1)), USA (three A(H5N1)), China (two A(H5N6), three A(H9N2), one A(H10N3)), India (one A(H9N2)), and Mexico (one fatal A(H5N2) case). The latter case was the first laboratory‐confirmed human infection with avian influenza virus subtype A(H5N2). Most of the human cases had reported exposure to poultry, live poultry markets, or dairy cattle prior to avian influenza virus detection or onset of illness. Human infections with avian influenza viruses remain rare and no human‐to‐human transmission has been observed. The risk of infection with currently circulating avian A(H5) influenza viruses of clade 2.3.4.4b in Europe remains low for the general public in the EU/EEA. The risk of infection remains low‐to‐moderate for those occupationally or otherwise exposed to infected animals or contaminated environments.

Keywords: avian influenza, captive birds, HPAI, humans, monitoring, poultry, wild birds

Supporting information

 

EFS2-22-e8930-s001.zip (987.8KB, zip)

Suggested citation: EFSA (European Food Safety Authority), ECDC (European Centre for Disease Prevention and Control), EURL (European Union Reference Laboratory for Avian Influenza) , Alexakis L, Fusaro A, Kuiken T, Mirinavičiūtė G, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Delacourt R, Goudjihounde SM, Tampach S and Kohnle L, 2024. Scientific report: Avian influenza overview March–June 2024. EFSA Journal 2024;22(7):8930, 72 pp. 10.2903/j.efsa.2024.8930

Requestor: European Commission

Question number: EFSA‐Q‐2024‐00174 and Commission request 280 to ECDC (SANTE.B.2/IK/mo (2023)2182203)

Acknowledgements: In addition to the listed authors, EFSA, ECDC and the EURL wish to thank the Member State representatives who provided epidemiological data on avian influenza outbreaks or shared sequence data: Aldin Lika (Albania); Sandra Revilla‐Fernández, Janna Vogelgesang and Irene Zimpernik (Austria); Ingeborg Mertens, Mieke Steensels and Steven Van Borm (Belgium); Aleksandra Miteva and Emiliya Ivanova (Bulgaria); Savić Vladimir (Croatia); Vasiliki Christodoulou (Cyprus); Tomáš Jarosil, Alexander Nagy and Luděk Závada (Czechia); Heidi Huus Petersen, Charlotte Kristiane Hjulsager, Yuan Liang and Lone Thing Mortensen (Denmark); Tuija Gadd, Lauri Kareinen, Ari Kauppinen and Niina Tammiranta (Finland); Camille Boyer, François‐Xavier Briand, Béatrice Grasland, Éric Niquex and Audrey Schmitz (France); Christoph Staubach, Timm Harder, Anne Pohlmann and Carola Sauter‐Louis (Germany); Bálint Ádám, Helyes Georgina and Zsofia Szepesine Kokany (Hungary); Laura Garza Cuartero and Audrey Jenkinson (Ireland); Isabella Monne, Calogero Terregino, Lara Cavicchio, Ambra Pastori and Bianca Zecchin (Italy); Vicky Bink, Guillaume Fournier and Chantal Snoeck (Luxembourg); Oxana Groza, Oxana Popa and Vitalie Caraus (Moldova); Nancy Beerens and Marcel Spierenburg (Netherlands); Britt Gjerset, Silje Granstad and Lars Erik Lundblad Rondestveit (Norway); Krzysztof Śmietanka, Katarzyna Domańska‐Blicharz and Edyta Swieton (Poland); Dan Alexandru Enache and Iuliana Onita (Romania); Martin Tinak (Slovakia); Luis Gomero, Germán Cáceres Garrido, Elena García Villacieros, Isabel Guijarro Torvisco, Montserrat Agüero García and Azucena Sánchez (Spain); Malin Grant and Siamak Zohari (Sweden); Arlette Szelecsenyi and Claudia Bachofen (Switzerland); Anıl Demeli (Türkiye). The authors also wish to thank Ron Fouchier from Erasmus Medical Center (Netherlands); Ashley Banyard from the Animal and Plant Health Agency (United Kingdom); Camille Delavenne from Ausvet Europe for conducting the data analysis under the contract OC/EFSA/ALPHA/2021/02; the authors, originating and submitting laboratories of the sequences from GISAID's EpiFlu™ Database, which is used for this assessment (Annex C); Paolo Calistri and Christian Gortázar from EFSA's Panel on Animal Health and Welfare (AHAW); Erik Alm, Angeliki Melidou and Edoardo Colzani from ECDC, as well as Inma Aznar, Francesca Baldinelli and Barbara Lanfranchi from EFSA for the support provided to this scientific output.

Declarations of interest: If you wish to access the declaration of interests of any expert contributing to an EFSA scientific assessment, please contact interestmanagement@efsa.europa.eu

Maps disclaimer: The designations employed and the presentation of material on any maps included in this scientific output do not imply the expression of any opinion whatsoever on the part of the European Food Safety Authority concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

Amendment: On 11 July 2024, some reference information was adapted and, on p. 8, the total number of HPAI virus detections in poultry and wild birds in Europe was corrected from 46 to 42. An editorial correction was carried out that does not materially affect the contents or outcome of this scientific output. To avoid confusion, the original version of the output has been removed from the EFSA Journal, but is available on request.

Note: This article was originally published on the EFSA website http://www.efsa.europa.eu on 4 July 2024 as part of EFSA’s urgent publication procedures and amended on 11 July 2024

Annexes A‐C are available under the Supporting Information section

Approved: 3 July 2024

REFERENCES

  1. Agüero M, Monne I, Sánchez A, Zecchin B, Fusaro A, Ruano MJ, Del Valle Arrojo M, Fernández‐Antonio R, Souto AM, Tordable P, Cañás J, Bonfante F, Giussani E, Terregino C and Orejas JJ, 2023. Highly pathogenic avian influenza A(H5N1) virus infection in farmed minks, Spain, October 2022. Eurosurveillance, 28(3). 10.2807/1560-7917.ES.2023.28.3.2300001, 28 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avian Flu Diary, online . Two Reports On HPAI H5N8 Infecting Marine Mammals (Denmark & Germany). Available online: https://afludiary.blogspot.com/2022/02/two-reports-on-hpai-h5n8-infecting.html [Accessed: 29 June 2022]
  3. AVMA (American Veterinary Medical Association), online. Goat in Minnesota tests positive for HPAI. Available online. https://www.avma.org/news/goat-minnesota-tests-positive-hpai Accessed: 25 June 2024. [Google Scholar]
  4. Ärzteblatt, online . Bird flu virus detected in dead seals. Available online: https://www.aerzteblatt.de/nachrichten/127460/Vogelgrippevirus-bei-toten-Seehunden-nachgewiesen [Accessed: 20 March 2024]
  5. Bao, P. , Liu, Y. , Zhang, X. , Fan, H. , Zhao, J. , Mu, M. , Li, H. , Wang, Y. , Ge, H. , Li, S. , Yang, X. , Cui, Q. , Chen, R. , Gao, L. , Sun, Z. , Gao, L. , Qiu, S. , Liu, X. , Horby, P. W. , … Liu, W. (2022). Human infection with a reassortment avian influenza A H3N8 virus: an epidemiological investigation study. Nature. Communications, 13(6817). 10.1038/s41467-022-34601-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennison, A. , Byrne, A. M. P. , Reid, S. M. , Lynton‐Jenkins, J. G. , Mollett, B. , Silva, D. D. , Peers‐Dent, J. , Finlayson, K. , Hall, R. , Blockley, F. , Blyth, M. , Falchieri, M. , Fowler, Z. , Fitzcharles, E. M. , Brown, I. H. , James, J. , & Banyard, A. C. (2023). Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic Region. Cold Spring Harbor Laboratory. bioRxiv. Unpublished document. 10.1101/2023.11.23.568045 [DOI] [Google Scholar]
  7. Bordes, L. , Gerhards, N. M. , Peters, S. , Van Oort, S. , Roose, M. , Dresken, R. , Venema, S. , Vrieling, M. , Engelsma, M. , Van Der Poel, W. H. M. , & De Swart, R. L. (2024). H5N1 clade 2.3.4.4b avian influenza viruses replicate in differentiated bovine airway epithelial cells cultured at air‐liquid interface. Journal of General Virology, 105(6). 10.1099/jgv.0.002007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown, J. D. , Black, A. , Haman, K. H. , Diel, D. G. , Ramirez, V. E. , Ziejka, R. S. , Fenelon, H. T. , Rabinowitz, P. M. , Stevens, L. , Poulson, R. , & Stallknecht, D. E. (2024). Antibodies to Influenza A(H5N1) Virus in Hunting Dogs Retrieving Wild Fowl, Washington, USA. Emerging Infectious Diseases, 30, 1271–1274. 10.3201/eid3006.231459 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burrough, E. R. , Magstadt, D. R. , Petersen, B. , Timmermans, S. J. , Gauger, P. C. , Zhang, J. , Siepker, C. , Mainenti, M. , Li, G. , Thompson, A. C. , Gorden, P. J. , Plummer, P. J. , & Main, R. (2024). Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b Virus Infection in Domestic Dairy Cattle and Cats, United States, 2024. Emerging Infectious Diseases, 30, 1335–1343. 10.3201/eid3007.240508 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. BusinessDay, online . Chile scientists warn of Humboldt penguin extinction risk. Available online: https://www.businesslive.co.za/bd/world/americas/2024-06-11-chile-scientists-warn-of-humboldt-penguin-extinction-risk/ [Accessed: 27 June 2024]
  11. Campagna, C. , Uhart, M. , Falabella, V. , Campagna, J. , Zavattieri, V. , Vanstreels, R. E. T. , & Lewis, M. N. (2024). Catastrophic mortality of southern elephant seals caused by H5N1 avian influenza. Marine Mammal Science, 40(1), 322–325. 10.1111/mms.13101 [DOI] [Google Scholar]
  12. Caserta, L. C. , Frye, E. A. , Butt, S. L. , Laverack, M. A. , Nooruzzaman, M. , Covalenda, L. M. , Thompson, A. , Prarat Koscielny, M. , Cronk, B. , Johnson, A. , Kleinhenz, K. , Edwards, E. E. , Gomez, G. , Hitchener, G. R. , Martins, M. , Kapczynski, D. R. , Suarez, D. L. , Alexander Morris, E. R. , Hensley, T. , … Diel, D. G. (2024). From birds to mammals: spillover of highly pathogenic avian influenza H5N1 virus to dairy cattle led to efficient intra‐ and interspecies transmission. Cold Spring Harbor Laboratory. bioRxiv. Unpublished document. 10.1101/2024.05.22.595317 [DOI] [Google Scholar]
  13. Castillo, A. , Fasce, R. , Parra, B. , Andrade, W. , Covarrubias, P. , Hueche, A. , Campano, C. , Tambley, C. , Rojas, M. , Araya, M. , Hernandez, F. , Bustos, P. , & Fernandez, J. (2023). The first case of human infection with H5N1 avian Influenza A virus in Chile. Journal of Travel Medicine, 30(5). 10.1093/jtm/taad083 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. CDC (Centers for Disease Control and Prevention) , 2024. Technical Report: June 2024 Highly Pathogenic Avian Influenza A(H5N1) Viruses. Available online: https://www.cdc.gov/bird-flu/php/technical-report/h5n1-06052024.html [Google Scholar]
  15. CDC (Centers for Disease Control and Prevention) , online‐a. CDC Reports A(H5N1) Ferret Study Results. Available online: https://www.cdc.gov/bird-flu/spotlights/ferret-study-results.html [Accessed: 25 June]
  16. CDC (Centers for Disease Control and Prevention) , online‐b. CDC Reports Second Human Case of H5 Bird Flu Tied to Dairy Cow Outbreak. Available online: https://www.cdc.gov/media/releases/2024/s0522-human-case-h5.html [Accessed: 20 June 2024]
  17. CDC (Centers for Disease Control and Prevention) , online‐c. Technical Update: Summary Analysis of the Genetic Sequence of a Highly Pathogenic Avian Influenza A(H5N1) Virus Identified in a Human in Michigan. Available online: https://www.cdc.gov/bird-flu/spotlights/h5n1-technical-update-052524.html?CDC_AAref_Val=https://www.cdc.gov/flu/avianflu/spotlights/2023-2024/h5n1-technical-update-may-24-2024.html [Accessed: 20 June 2024]
  18. CDC (Centers for Disease Control and Prevention) , online‐d. Highly Pathogenic Avian Influenza A(H5N1) Virus in Animals: Interim Recommendations for Prevention, Monitoring, and Public Health Investigations. Available online: https://www.cdc.gov/bird-flu/prevention/hpai-interimrecommendations.html#cdc_generic_section_12-appendix-risk-by-exposure-table [Accessed: 15 June 2024]
  19. CFIA , online. High pathogenicity avian influenza in wildlife. Available online: https://cfia-ncr.maps.arcgis.com/apps/dashboards/89c779e98cdf492c899df23e1c38fdbc [Accessed: 20 June 2024]
  20. Chen, J. , Xu, L. , Liu, T. , Xie, S. , Li, K. , Li, X. , Zhang, M. , Wu, Y. , Wang, X. , Wang, J. , Shi, K. , Niu, B. , Liao, M. , & Jia, W. (2022). Novel Reassortant Avian Influenza A(H5N6) Virus, China, 2021. Emerging Infectious Diseases, 28, 1703–1707. 10.3201/eid2808.212241 [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. CIDRAP, online‐a . Officials warn of H5N1 avian flu reassortant circulating in parts of Asia. Available online: https://www.cidrap.umn.edu/avian-influenza-bird-flu/officials-warn-h5n1-avian-flu-reassortant-circulating-parts-asia [Accessed: 27 June 2024]
  22. CIDRAP, online‐b . Scientists expand H5N1 testing in dairy products, launch human serology study. Available online: https://www.cidrap.umn.edu/avian-influenza-bird-flu/scientists-expand-h5n1-testing-dairy-products-launch-human-serology-study [Accessed: 01 July 2024]
  23. Cui, P. , Shi, J. , Wang, C. , Zhang, Y. , Xing, X. , Kong, H. , Yan, C. , Zeng, X. , Liu, L. , Tian, G. , Li, C. , Deng, G. , & Chen, H. (2022). Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China. Emerging Microbes and Infections, 11, 1693–1704. 10.1080/22221751.2022.2088407 [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Des Moines Register, online . Second bird flu outbreak in 6 days infects 103K turkeys at northwest Iowa commercial facility. Available online: https://eu.desmoinesregister.com/story/money/agriculture/2024/06/02/bird-flu-outbreak-infects-103000-turkeys-at-cherokee-county-facility/73950436007/ [Accessed: 10 July 2024]
  25. Du, W. , Dai, M. , Li, Z. , Boons, G. J. , Peeters, B. , van Kuppeveld, F. J. M. , de Vries, E. , & de Haan, C. A. M. (2018). Substrate Binding by the Second Sialic Acid‐Binding Site of Influenza A Virus N1 Neuraminidase Contributes to Enzymatic Activity. Journal of Virology, 92(20). 10.1128/JVI.01243-18 [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. ECDC (European Centre for Disease Prevention and Control) , 2022. Testing and detection of zoonotic influenza virus infections in humans in the EU/EEA, and occupational safety and health measures for those exposed at work. ECDC,.32 pp. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/zoonotic-influenza-virus-infections-testing-detection_0.pdf [Google Scholar]
  27. ECDC (European Centre for Disease Prevention and Control) , 2023a. Enhanced surveillance of severe avian influenza virus infections in hospital settings in the EU/EEA – 26 June 2023. ECDC, Stockholm. 5 pp. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/severe-avian-influenza-enhanced-surveillance-hospital-settings_0.pdf
  28. ECDC (European Centre for Disease Prevention and Control) , 2023b. Investigation protocol for human exposures and cases of avian influenza in the EU/EEA. ECDC, Stockholm. 46 pp. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Investigation-protocol-human-exposures-cases-avian-influenza.pdf [Google Scholar]
  29. ECDC (European Centre for Disease Prevention and Control) , 2024a. Communicable disease threats report, 25‐31 May 2024, week 22. ECDC,.17 pp. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Communicable-disease-threats-report-week-22-2024.pdf [Google Scholar]
  30. ECDC (European Centre for Disease Prevention and Control) , 2024b. Communicable disease threats report, 18‐25 May 2024, week 21. ECDC,.14 pp. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Communicable-disease-threats-report-week-21-2024_0.pdf [Google Scholar]
  31. ECDC (European Centre for Disease Prevention and Control) , 2024c. Communicable disease threats report, 15‐21 June 2024, week 25. ECDC,.7 pp. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Communicable-disease-threats-report-week-25-2024.pdf [Google Scholar]
  32. ECDC (European Centre for Disease Prevention and Control) , 2024d. Communicable disease threats report, 7–13 April 2024, week 15. ECDC,.16 pp. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Communicable-disease-threats-report-week-15-2024.pdf [Google Scholar]
  33. ECDC (European Centre for Disease Prevention and Control) , 2024e. Enhanced influenza surveillance to detect avian influenza virus infections in the EU/EEA during the inter‐seasonal period – 20 June 2024. ECDC,.7 pp. Available online: https://www.ecdc.europa.eu/en/publications-data/enhanced-influenza-surveillance-detect-avian-influenza-virus-infections-eueea [Google Scholar]
  34. ECDC (European Centre for Disease Prevention and Control) online. Risk assessment H5 clade 2.3.4.4b viruses. Available online. https://www.ecdc.europa.eu/en/infectious-disease-topics/z-disease-list/avian-influenza/threats-and-outbreaks/risk-assessment-h5 Accessed: 15 June 2024.
  35. EFSA (European Food Safety Authority), ECDC (European Centre for Disease Prevention and Control), EURL (European Reference Laboratory) , Brown I, Kuiken T, Mulatti P, Smietanka K, Staubach C, Stroud D, Therkildsen OR, Willeberg P, Baldinelli F, Verdonck F and Adlhoch C, 2017. Avian influenza overview September – November 2017. EFSA Journal 2017;15(12):5141, 70 pp. 10.2903/j.efsa.2017.5141 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. EFSA (European Food Safety Authority), ECDC (European Centre for DiseasePrevention and Control), EURL (European Reference Laboratory for Avian Influenza) , Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Lima E, Muñoz Guajardo I and Baldinelli F, 2021. Scientific report: Avian influenza overview December 2020 – February 2021. EFSA Journal 2021;19(3):6497, 74 pp. 10.2903/j.efsa.2021.649710.2903/j.efsa.2021.6497 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. EFSA (European Food Safety Authority), ECDC (European Centre for Disease Prevention and Control), EURL (European Reference Laboratory) , Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Melidou A, Mirinavičiūtė G, Niqueux É, Ståhl K, Staubach C, Terregino C, Baldinelli F, Broglia A and Kohnle, 2023. Scientific report: Avian influenza overview April – June 2023. EFSA Journal 2023;21(7):8191, 54 pp. 10.2903/j.efsa.2023.8191 [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. EFSA (European Food Safety Authority), ECDC (European Centre for Disease Prevention and Control), EURL (European Union Reference Laboratory for Avian Influenza) , Fusaro A, Gonzales JL, Kuiken T, Mirinavičiūtė G, Niqueux É, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Baldinelli F, Delacourt R, Georganas A and Kohnle L, 2024. Scientific report: Avian influenza overview December 2023–March 2024. EFSA Journal 2024;22(3):8754, 69 pp. 10.2903/j.efsa.2024.8754 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. EFSA (European Food Safety Authority), ECDC (European Centre for Disease Prevention and Control) , Melidou A, Enkirch T, Willgert K, Adlhoch C, Alm E, Lamb F, Marangon S, Monne I, Stegeman JA, Delacourt R, Baldinelli F and Broglia A, 2024. Drivers for a pandemic due to avian influenza and options for One Health mitigation measures. EFSA Journal;22(4);e8735, 24 pp. 10.2903/j.efsa.2024.8735 [DOI] [PMC free article] [PubMed]
  40. EFSA (European Food Safety Authority) , online. Avian influenza. Available online: https://www.efsa.europa.eu/en/topics/topic/avian-influenza [Accessed: 10 June 2024] [Google Scholar]
  41. European Commission , online. PAFF committees. Available online: https://food.ec.europa.eu/horizontal-topics/committees/paff-committees_en [Accessed: 10 June 2024] [Google Scholar]
  42. Falchieri M, Reid SM, Dastderji A, Cracknell J, Warren CJ, Mollett BC, Peers‐Dent J, Schlachter A‐LD, McGinn N, Hepple R, Thomas S, Ridout S, Quayle J, Pizzi R, Núñez A, Byrne AMP, James J and Banyard AC, 2024. Rapid mortality in captive bush dogs (Speothos venaticus) caused by influenza A of avian origin (H5N1) at a wildlife collection in the United Kingdom. bioRxiv. Unpublished document. 10.1101/2024.04.18.590032 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. FAO (Food and Agriculture Organization of the United Nations) , 2024. Preliminary rapid risk assessment of foodborne avian influenza A (H5N1) virus. FAO,.2pp. Available online: https://openknowledge.fao.org/items/abf49022-5302-4a70-900e-f22b540e08c2 [Google Scholar]
  44. FAO (Food and Agriculture Organization of the United Nations), WOAH (World Organisation for Animal Health) and WHO (World Health Organization) , 2024. Joint FAO/WHO/WOAH preliminary assessment of recent influenza A(H5N1) viruses. 8pp. Available online: https://cdn.who.int/media/docs/default-source/global-influenza-programme/2024_04_23_fao-woah-who_h5n1_assessment.pdf
  45. FDA (Food and Drug Administration) , online‐a. Updates on Highly Pathogenic Avian Influenza (HPAI). Available online: https://www.fda.gov/food/alerts-advisories-safety-information/updates-highly-pathogenic-avian-influenza-hpai#testing [Accessed: 26 June 2024]
  46. FDA (Food and Drug Administration) , online‐b. Open letter to state regulatory partners regarding HPAIV and intrastate raw milk recommendations Available online: https://www.fda.gov/media/179194/download?attachment [Accessed: 28 June 2024]
  47. FLI (Friedrich‐Loeffler‐Institut) , 2024. International team of scientists determine further spread of High Pathogenicity Avian Influenza (HPAI) in the Antarctic Peninsula Region. Available online: https://www.fli.de/en/press/press-releases/press-singleview/international-team-of-scientists-determine-further-spread-of-high-pathogenicity-avian-influenza-hpai-in-the-antarctic-peninsula-region/ [Accessed: 24 June 2024]
  48. FLI (Friedrich‐Loeffler‐Institut) , online. Avian influenza: No evidence of H5N1 infection in dairy cows outside the USA. Available online: https://www.fli.de/en/news/short-messages/short-message/gefluegelpest-keine-hinweise-auf-h5n1-infektionen-bei-milchkuehen-ausserhalb-der-usa/ [Accessed: 20 June 2024]
  49. Floyd T, Banyard AC, Lean FZX, Byrne AMP, Fullick E, Whittard E, Mollett BC, Bexton S, Swinson V, Macrelli M, Lewis NS, Reid SM, Núñez A, Duff JP, Hansen R and Brown IH, 2021. Systemic infection with highly pathogenic H5N8 of avian origin produces encephalitis and mortality in wild mammals at a UK rehabilitation centre. bioRxiv: bioRxiv. Unpublished document. 10.1101/2021.05.26.445666 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. FSA (Food Standards Agency) , 2024. Rapid Risk Assessment: Risk to UK consumers from Highly Pathogenic Avian Influenza (HPAI) H5N1 B3.13 in US dairy products. 13 pp. Available online: https://www.food.gov.uk/print/pdf/node/23191
  51. Fusaro, A. , Zecchin, B. , Giussani, E. , Palumbo, E. , Agüero‐Garcia, M. , Bachofen, C. , Balint, A. , Banihashem, F. , Banyard, A. C. , Beerens, N. , Bourg, M. , Briand, F. X. , Brojer, C. , Brown, I. H. , Brugger, B. , Byrne, A. M. P. , Cana, A. , Christodoulou, V. , Dirbakova, Z. , … Monne, I. (2024). High pathogenic avian influenza A(H5) viruses of clade 2.3.4.4b in Europe‐Why trends of virus evolution are more difficult to predict. Virus. Evolution, 10(1). 10.1093/ve/veae027 [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Gao, W. , Zu, Z. , Liu, J. , Song, J. , Wang, X. , Wang, C. , Liu, L. , Tong, Q. , Wang, M. , Sun, H. , Sun, Y. , Liu, J. , Chang, K.‐C. , & Pu, J. (2019). Prevailing I292V PB2 mutation in avian influenza H9N2 virus increases viral polymerase function and attenuates IFN‐β induction in human cells. Journal of General Virology, 100(9), 1273–1281. 10.1099/jgv.0.001294 [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. GISAID , online. Available online: https://gisaid.org/
  54. Github izsvenezie‐virology , online‐a. FlutMut. Available online: https://github.com/izsvenezie-virology/FluMut [Accessed: 3 July 2024]
  55. Github izsvenezie‐virology , online‐b. FlutMutDB with v5.0 mutations. Available online: https://github.com/izsvenezie-virology/FluMutGUI/releases/tag/v.3.0.0 [Accessed: 28 June 2024]
  56. Golke, A. , Jańczak, D. , Szaluś‐Jordanow, O. , Dzieciątkowski, T. , Sapierzyński, R. , Moroz‐Fik, A. , Mickiewicz, M. , & Frymus, T. (2024). Natural Infection with Highly Pathogenic Avian Influenza A/H5N1 Virus in Pet Ferrets. Viruses, 16(931). 10.3390/v16060931 [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Good MR, Ji W, Fernández‐Quintero ML, Ward AB and Guthmiller JJ, 2024. A single mutation in dairy cow‐associated H5N1 viruses increases receptor binding breadth. bioRxiv. Unpublished document. 10.1101/2024.06.22.600211 [DOI] [Google Scholar]
  58. GovAU (Government of Australia) , online. Avian influenza ‐ Detection in Australia. Available online: https://www.outbreak.gov.au/current-outbreaks/avian-influenza#toc_0 [Accessed: 27 June 2024]
  59. GovCan (Government of Canada) , online. Commercial milk sampling and testing for highly pathogenic avian influenza (HPAI) viral fragments in Canada. Available online: https://inspection.canada.ca/en/animal-health/terrestrial-animals/diseases/reportable/avian-influenza/latest-bird-flu-situation/commercial-milk-sampling-and-testing-hpai-vira [Accessed: 25 June 2024]
  60. GovMEX (Government of Mexico) , online. Senasica confirms case of AH5N2 avian influenza in backyard flock in Michoacán. Available online: https://www.gob.mx/senasica/articulos/confirma-senasica-caso-de-influenza-aviar-ah5n2-en-traspatio-de-michoacan?idiom=es [Accessed: June 27 2024]
  61. Grant M, 2024. SVA (Swedish Veterinary Agency). July 2024. Personal communication by e‐mail
  62. Gu, W. , Shi, J. , Cui, P. , Yan, C. , Zhang, Y. , Wang, C. , Zhang, Y. , Xing, X. , Zeng, X. , Liu, L. , Tian, G. , Suzuki, Y. , Li, C. , Deng, G. , & Chen, H. (2022). Novel H5N6 reassortants bearing the clade 2.3.4.4b HA gene of H5N8 virus have been detected in poultry and caused multiple human infections in China. Emerging Microbes and Infections, 11, 1174–1185. 10.1080/22221751.2022.2063076 [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Guan, L. , Eisfeld, A. J. , Pattinson, D. , Gu, C. , Biswas, A. , Maemura, T. , Trifkovic, S. , Babujee, L. , Presler, R. , Dahn, R. , Halfmann, P. J. , Barnhardt, T. , Neumann, G. , Thompson, A. , Swinford, A. K. , Dimitrov, K. M. , Poulsen, K. , & Kawaoka, Y. (2024). Cow's Milk Containing Avian Influenza A(H5N1) Virus — Heat Inactivation and Infectivity in Mice. New England Journal of Medicine, 391, 87–90. 10.1056/NEJMc2405495 [DOI] [PubMed] [Google Scholar]
  64. Guo, H. , De Vries, E. , McBride, R. , Dekkers, J. , Peng, W. , Bouwman, K. M. , Nycholat, C. , Verheije, M. H. , Paulson, J. C. , Van Kuppeveld, F. J. M. , & De Haan, C. A. M. (2017). Highly Pathogenic Influenza A(H5Nx) Viruses with Altered H5 Receptor‐Binding Specificity. Emerging Infectious Diseases, 23, 220–231. 10.3201/eid2302.161072 [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. HCDC, online . Ho Chi Minh City: first human case of avian influenza A(H9N2) recorded in the country. Available online: https://hcdc.vn/tphcm-ghi-nhan-ca-mac-cum-gia-cam-ah9n2-tren-nguoi-dau-tien-cua-ca-nuoc-8EcfhD.html [Accessed: 22 June 2024]
  66. Herve, S. , Schmitz, A. , Briand, F.‐X. , Gorin, S. , Queguiner, S. , Niqueux, É. , Paboeuf, F. , Scoizec, A. , Le Bouquin‐Leneveu, S. , Eterradossi, N. , & Simon, G. (2021). Serological Evidence of Backyard Pig Exposure to Highly Pathogenic Avian Influenza H5N8 Virus during 2016‐2017 Epizootic in France. Pathogens, 10. 10.3390/pathogens10050621 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Hindustan Times online. Bird flu outbreak in Kerala's Alappuzha: Should you be concerned? Symptoms, prevention tips of H5N1 flu. Available online. https://www.hindustantimes.com/lifestyle/health/bird-flu-outbreak-in-keralas-alappuzha-should-you-be-concerned-symptoms-prevention-tips-of-h5n1-flu-101713429108016.html Accessed: 27 June 2024. [Google Scholar]
  68. Kaiser, F. , Morris, D. H. , Wickenhagen, A. , Mukesh, R. , Gallogly, S. , Yinda, K. C. , De Wit, E. , Lloyd‐Smith, J. O. , & Munster, V. J. (2024). Inactivation of Avian Influenza A(H5N1) Virus in Raw Milk at 63°C and 72°C. New England Journal of Medicine, 391, 90–92. 10.1056/nejmc2405488 [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Kareinen L, Tammiranta N, Kauppinen A, Zecchin B, Pastori A, Monne I, Terregino C, Giussani E, Kaarto R, Karkamo V, Lahteinen T, Lounela H, Kantala T, Laamanen I, Nokireki T, London L, Helve O, Kaariainen S, Ikonen N, Jalava J, Kalin‐Manttari L, Katz A, Savolainen‐Kopra C, Lindh E, Sironen T, Korhonen EM, Aaltonen K, Galiano M, Fusaro A and Gadd T, 2024. Highly pathogenic avian influenza A(H5N1) virus infections on fur farms connected to mass mortalities of black‐headed gulls, Finland, July to October 2023. EuroSurveillance, 29(25). 10.2807/1560-7917.ES.2024.29.25.2400063, Highly pathogenic avian influenza A(H5N1) virus infections on fur farms connected to mass mortalities of black‐headed gulls, Finland, July to October 2023, 29 [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Kristensen C, Jensen HE, Trebbien R, Webby RJ and Larsen LE, 2024. The avian and human influenza A virus receptors sialic acid (SA)‐α2,3 and SA‐α2,6 are widely expressed in the bovine mammary gland. biorxviv. Unpublished document. 10.1101/2024.05.03.592326 [DOI]
  71. Kwon, T. , Trujillo, J. D. , Carossino, M. , Lyoo, E. L. , McDowell, C. D. , Cool, K. , Matias‐Ferreyra, F. S. , Jeevan, T. , Morozov, I. , Gaudreault, N. N. , Balasuriya, U. B. R. , Webby, R. J. , Osterrieder, N. , & Richt, J. A. (2024). Pigs are highly susceptible to but do not transmit mink‐derived highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b. Emerging Microbes and Infections, 13(1). 10.1080/22221751.2024.2353292 [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Le Sage V, Campbell AJ, Reed D, Duprex WP and Lakdawala S, 2024. Influenza H5N1 and H1N1 viruses remain infectious in unpasteurized milk on milking machinery surfaces. medRxiv. Unpublished document. 10.1101/2024.05.22.24307745 [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Lee, E. K. , Lee, Y. N. , Kye, S. J. , Lewis, N. S. , Brown, I. H. , Sagong, M. , Heo, G. B. , Kang, Y. M. , Cho, H. K. , Kang, H. M. , Cheon, S. H. , Lee, M. , Park, B. K. , Kim, Y. J. , & Lee, Y. J. (2018). Characterization of a novel reassortant H5N6 highly pathogenic avian influenza virus clade 2.3.4.4 in Korea, 2017. Emerging Microbes and Infections, 7(103), 1–3. 10.1038/s41426-018-0104-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Leguia, M. , Garcia‐Glaessner, A. , Muñoz‐Saavedra, B. , Juarez, D. , Barrera, P. , Calvo‐Mac, C. , Jara, J. , Silva, W. , Ploog, K. , Amaro, L. , Colchao‐Claux, P. , Johnson, C. K. , Uhart, M. M. , Nelson, M. I. , & Lescano, J. (2023). Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. Nature Communications, 14, 5489. 10.1038/s41467-023-41182-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. León F, Le Bohec C, Pizarro EJ, Baille L, Cristofari R, Houstin A, Zitterbart DP, Barriga G, Poulin E and Vianna JA, 2024. Highly Pathogenic Avian Influenza A (H5N1) Suspected in penguins and shags on the 2 Antarctic Peninsula and West Antarctic Coast. bioRxiv. Unpublished document. 10.1101/2024.03.16.585360 [DOI] [Google Scholar]
  76. Lindh E, Lounela H, Ikonen N, Kantala T, Savolainen‐Kopra C, Kauppinen A, Österlund P, Kareinen L, Katz A, Nokireki T, Jalava J, London L, Pitkäpaasi M, Vuolle J, Punto‐Luoma AL, Kaarto R, Voutilainen L, Holopainen R, Kalin‐Mänttäri L, Laaksonen T, Kiviranta H, Pennanen A, Helve O, Laamanen I, Melin M, Tammiranta N, Rimhanen‐Finne R, Gadd T and Salminen M, 2023. Highly pathogenic avian influenza A(H5N1) virus infection on multiple fur farms in the South and Central Ostrobothnia regions of Finland, July 2023. Eurosurveillance, 28(31), pii=2300400. 10.2807/1560-7917.ES.2023.28.31.2300400, 28 [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Liu, K. , Qi, X. , Bao, C. , Wang, X. , & Liu, X. (2024a). Novel H10N3 avian influenza viruses: a potential threat to public health. The Lancet. Microbe, 5(1). 10.1016/S2666-5247(23)00409-3 [DOI] [PubMed] [Google Scholar]
  78. Liu, G. , Dai, J. , Zhao, J. , Xia, J. , Zhang, P. , Ding, Y. , Li, Q. , Hou, M. , Xiong, X. , Jian, Q. , & Liu, Y. (2024b). First human case of avian influenza A (H10N3) in Southwest China. Unpublished document. 10.21203/rs.3.rs-4181286/v1 [DOI] [Google Scholar]
  79. Mattilsynet, online . To private practicing veterinarians about avian influenza in mammals. Available online: https://www.mattilsynet.no/dyr/dyresykdommer/fugleinfluensa/informasjon-til-privatpraktiserende-veterinaerer-om-fugleinfluensa-hos-pattedyr [Accessed: 25 June 2024]
  80. MDHHS (The Michigan Department of Health and Human Services), online. Additional influenza A(H5) case detected in Michigan. Available online. https://www.michigan.gov/mdhhs/inside-mdhhs/newsroom/2024/05/30/h5n1-updates Accessed: 20 June 2024. [Google Scholar]
  81. Muñoz, G. , Mendieta, V. , Ulloa, M. , Agüero, B. , Torres, C. G. , Kruger, L. , & Neira, V. (2024a). Lack of Highly Pathogenic Avian Influenza H5N1 in the South Shetland Islands in Antarctica, Early 2023. Animals, 14(7). 10.3390/ani14071008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Muñoz, G. , Ulloa, M. , Alegria, R. , Quezada, B. , Bennett, B. , Enciso, N. , Atavales, J. , Johow, M. , Aguayo, C. , Araya, H. , & Neira, V. (2024b). Stranding and mass mortality in humboldt penguins (Spheniscus humboldti), associated to HPAIV H5N1 outbreak in Chile. Preventive Veterinary Medicine, 227, 106206. 10.1016/j.prevetmed.2024.106206 [DOI] [PubMed] [Google Scholar]
  83. Nébih, online . The Nébih confirmed a bird flu infection in a cat. Available online: https://portal.nebih.gov.hu/-/madarinfluenza-fertozest-igazolt-egy-macskanal-a-nebih [Accessed: 27 June 2024]
  84. Nelli, R. K. , Harm, T. A. , Siepker, C. , Groeltz‐Thrush, J. M. , Jones, B. , Twu, N.‐C. , Nenninger, A. S. , Magstadt, D. R. , Burrough, E. R. , Piñeyro, P. E. , Mainenti, M. , Carnaccini, S. , Plummer, P. J. , & Bell, T. M. (2024). Sialic Acid Receptor Specificity in Mammary Gland of Dairy Cattle Infected with Highly Pathogenic Avian Influenza A(H5N1) Virus. Emerging Infectious Diseases, 30(7), 1361–1373. 10.3201/eid3007.240689 [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Nguyen T‐Q, Hutter C, Markin A, Thomas M, Lantz K, Killian ML, Janzen GM, Vijendran S, Wagle S, Inderski B, Magstadt DR, Li G, Diel DG, Frye EA, Dimitrov KM, Swinford AK, Thompson AC, Snevik KR, Suarez DL, Spackman E, Lakin SM, Ahola SC, Johnson KR, Baker AL, Robbe‐Austerman S, Torchetti MK and Anderson TK, 2024. Emergence and interstate spread of highly pathogenic avian influenza A(H5N1) in dairy cattle. bioRxiv. Unpublished document. 10.1101/2024.05.01.591751 [DOI]
  86. Noticias Agricolas online. Philippines reports H5N1 bird flu outbreak on poultry farms. Available online. https://www.noticiasagricolas.com.br/noticias/granjeiros/373823-filipinas-relata-surto-de-gripe-aviaria-h-5-n-1-em-granjas-avicolas.html Accessed: 26 June 2024. [Google Scholar]
  87. Ogata, T. , Yamazaki, Y. , Okabe, N. , Nakamura, Y. , Tashiro, M. , Nagata, N. , Itamura, S. , Yasui, Y. , Nakashima, K. , Doi, M. , Izumi, Y. , Fujieda, T. , Yamato, S. I. , & Kawada, Y. (2008). Human H5N2 Avian Influenza Infection in Japan and the Factors Associated with High H5N2‐Neutralizing Antibody Titer. Journal of Epidemiology, 18(4), 160–166. 10.2188/jea.je2007446 [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Okoye, J. , Eze, D. , Krueger, W. S. , Heil, G. L. , Friary, J. A. , & Gray, G. C. (2013). Serologic evidence of avian influenza virus infections among Nigerian agricultural workers. Journal of Medical Virology, 85(4), 670–676. 10.1002/jmv.23520 [DOI] [PubMed] [Google Scholar]
  89. Outbreak News online. Denmark reports 1st highly pathogenic avian influenza case in harbor seal. Available online. http://outbreaknewstoday.com/denmark-reports-1st-highly-pathogenic-avian-influenza-case-in-harbor-seal-89870/ Accessed: 29 June 2022. [Google Scholar]
  90. Pardo‐Roa C, Nelson MI, Ariyama N, Aguayo C, Almonacid LI, Muñoz G, Navarro C, Avila C, Ulloa M, Reyes R, Luppichini EF, Mathieu C, Vergara R, Gonzalez A, Gonzalez CG, Araya H, Fernandez J, Fasce R, Johow M, Medina RA and Neira V, 2023. Cross‐species transmission and PB2 mammalian adaptations of highly pathogenic avian influenza A/H5N1 viruses in Chile. bioRxiv. Unpublished document. 10.1101/2023.06.30.547205 [DOI]
  91. Pinto, R. M. , Bakshi, S. , Lytras, S. , Zakaria, M. K. , Swingler, S. , Worrell, J. C. , Herder, V. , Hargrave, K. E. , Varjak, M. , Cameron‐Ruiz, N. , Collados Rodriguez, M. , Varela, M. , Wickenhagen, A. , Loney, C. , Pei, Y. , Hughes, J. , Valette, E. , Turnbull, M. L. , Furnon, W. , … Palmarini, M. (2023). BTN3A3 evasion promotes the zoonotic potential of influenza A viruses. Nature, 619, 338–347. 10.1038/s41586-023-06261-8 [DOI] [PubMed] [Google Scholar]
  92. Plaza, P. I. , Gamarra‐Toledo, V. , Rodriguez Eugui, J. , Rosciano, N. , & Lambertucci, S. A. (2024a). Pacific and Atlantic sea lion mortality caused by highly pathogenic Avian Influenza A(H5N1) in South America. Travel Medicine and Infectious Diseases, 59, 102712. 10.1016/j.tmaid.2024.102712 [DOI] [PubMed] [Google Scholar]
  93. Plaza, P. I. , Gamarra‐Toledo, V. , Euguí, J. R. , & Lambertucci, S. A. (2024b). Recent Changes in Patterns of Mammal Infection with Highly Pathogenic Avian Influenza A(H5N1) Virus Worldwide. Emerging Infectious Diseases, 30, 444–452. 10.3201/eid3003.231098 [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Pulit‐Penaloza, J. A. , Brock, N. , Belser, J. A. , Sun, X. , Pappas, C. , Kieran, T. J. , Basu Thakur, P. , Zeng, H. , Cui, D. , Frederick, J. , Fasce, R. , Tumpey, T. M. , & Maines, T. R. (2024). Highly pathogenic avian influenza A(H5N1) virus of clade 2.3.4.4b isolated from a human case in Chile causes fatal disease and transmits between co‐housed ferrets. Emerging Microbes and Infections, 13(1). 10.1080/22221751.2024.2332667 [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Rabalski L, Milewska A, Pohlmann A, Gackowska K, Lepionka T, Szczepaniak K, Swiatalska A, Sieminska I, Arent Z, Beer M, Koopmans M, Grzybek M and Pyrc K, 2023. Emergence and potential transmission route of avian influenza A (H5N1) virus in domestic cats in Poland, June 2023. Eurosurveillance, 28(31). 10.2807/1560-7917.es.2023.28.31.2300390, 28 [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Restori, K. H. , Septer, K. M. , Field, C. J. , Patel, D. R. , VanInsberghe, D. , Raghunathan, V. , Lowen, A. C. , & Sutton, T. C. (2024). Risk assessment of a highly pathogenic H5N1 influenza virus from mink. Nature. Communications, 15(1). 10.1038/s41467-024-48475-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Reuters, online‐a . Scientists investigate thousands of dead Antarctic penguins for bird flu. Available online: https://www.reuters.com/business/healthcare-pharmaceuticals/scientists-investigate-thousands-dead-antarctic-penguins-bird-flu-2024-04-04/ [Accessed: 27 June 2024]
  98. Reuters, online‐b . Cows infected with bird flu have died in five US states. Available online: https://www.reuters.com/world/us/cows-infected-with-bird-flu-have-died-five-us-states-2024-06-06/ [Accessed: 25 June 2024]
  99. Revilla‐Fernández S, Höflechner‐Pöltl A, Zimpernik I and Vogelgesang J, 2024. AGES (Austrian Agency for Health and Food Safety GmbH). June 2024. Personal communication by e‐mail
  100. Rimondi, A. , Vanstreels, R. E. T. , Olivera, V. , Donini, A. , Lauriente, M. M. , & Uhart, M. M. (2024). Highly Pathogenic Avian Influenza A(H5N1) Viruses from Multispecies Outbreak, Argentina, August 2023. Emerging Infectious Diseases, 30, 812–814. 10.3201/eid3004.231725 [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Ríos Carrasco, M. , Gröne, A. , Van Den Brand, J. M. A. , & De Vries, R. P. (2024). The mammary glands of cows abundantly display receptors for circulating avian H5 viruses. Cold Spring Harbor Laboratory. bioRxiv. Unpublished document. 10.1101/2024.05.24.595667 [DOI] [Google Scholar]
  102. Rosone, F. , Bonfante, F. , Sala, M. G. , Maniero, S. , Cersini, A. , Ricci, I. , Garofalo, L. , Caciolo, D. , Denisi, A. , Napolitan, A. , Parente, M. , Zecchin, B. , Terregino, C. , & Scicluna, M. T. (2023). Seroconversion of a Swine Herd in a Free‐Range Rural Multi‐Species Farm against HPAI H5N1 2.3.4.4b Clade Virus. Microorganisms, 11(5), 1162. 10.3390/microorganisms11051162 [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. SCAR (Scientific Committee on Antarctic Research) online. Sub‐Antarctic and Antarctic Highly Pathogenic Avian Influenza H5N1 monitoring project Available online. https://scar.org/library-data/avian-flu#database Accessed: 27 June 2024.
  104. Schafers J, Warren CJ, Yang J, Zhang J, Cole SJ, Cooper J, Drewek K, Kolli BR, McGinn N, Qureshi M, Reid SM, Peacock TP, Brown I, James J, Banyard AC, Iqbal M, Digard P and Hutchinson E, 2024. Pasteurisation temperatures effectively inactivate influenza A viruses in milk. medRxiv. Unpublished document. 10.1101/2024.05.30.24308212 [DOI]
  105. Schülein, A. , Ritzmann, M. , Christian, J. , Schneider, K. , & Neubauer‐Juric, A. (2021). Exposure of wild boar to Influenza A viruses in Bavaria: Analysis of seroprevalences and antibody subtype specificity before and after the panzootic of highly pathogenic avian influenza viruses A (H5N8). Zoonoses and Public Health, 68(5), 503–515. 10.1111/zph.12841 [DOI] [PubMed] [Google Scholar]
  106. Scott, A. , Hernandez‐Jover, M. , Groves, P. , & Toribio, J.‐A. (2020). An overview of avian influenza in the context of the Australian commercial poultry industry. One Health, 10, 100139. 10.1016/j.onehlt.2020.100139 [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. SGGP, online . New case of H5N1 human infection reported in Khanh Hoa. Available online: https://en.sggp.org.vn/new-case-of-h5n1-human-infection-reported-in-khanh-hoa-post108915.html [Accessed: 20 June 2024]
  108. Shin, D. L. , Siebert, U. , Lakemeyer, J. , Grilo, M. , Pawliczka, I. , Wu, N. H. , Valentin‐Weigand, P. , Haas, L. , & Herrler, G. (2019). Highly Pathogenic Avian Influenza A(H5N8) Virus in Gray Seals. Baltic Sea. Emerging Infectious Diseases, 25(12), 2295–2298. 10.3201/eid2512.181472 [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Shu, Y. , & McCauley, J. (2017). GISAID: Global initiative on sharing all influenza data – from vision to reality. Eurosurveillance, 22(13). 10.2807/1560-7917.es.2017.22.13.30494 [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Sit, T. H. C. , Sun, W. , Tse, A. C. N. , Brackman, C. J. , Cheng, S. M. S. , Tang, A. W. Y. , Cheung, J. T. L. , Peiris, M. , & Poon, L. L. M. (2022). Novel Zoonotic Avian Influenza A(H3N8) Virus in Chicken, Hong Kong. China. Emerging Infectious Diseases, 28(10), 2009–2015. 10.3201/eid2810.221067 [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Smith, G. J. , Donis, R. O. , & WHO (World Health Organization), WOAH (World Organisation for Animal Health) and FAO (Food and Agriculture Organization of the United Nations) . (2015). Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013–2014. Influenza and Other Respiratory Viruses, 9(5), 271–276. 10.1111/irv.12324 [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Spackman E, Jones DR, McCoig AM, Colonius TJ, Goraichuk I and Suarez DL, 2024. Characterization of highly pathogenic avian influenza virus in retail dairy products in the US. medRxiv. Unpublished document. 10.1101/2024.05.21.24307706 [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Stech, O. , Veits, J. , Abdelwhab, E.‐S. M. , Wessels, U. , Mettenleiter, T. C. , & Stech, J. (2015). The Neuraminidase Stalk Deletion Serves as Major Virulence Determinant of H5N1 Highly Pathogenic Avian Influenza Viruses in Chicken. Scientific Reports, 5, 13493. 10.1038/srep13493 [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Su, Y. , Yang, H. Y. , Zhang, B. J. , Jia, H. L. , & Tien, P. (2008). Analysis of a point mutation in H5N1 avian influenza virus hemagglutinin in relation to virus entry into live mammalian cells. Archives of Virology, 153(12), 2253–2261. 10.1007/s00705-008-0255-y [DOI] [PubMed] [Google Scholar]
  115. Suttie, A. , Deng, Y. M. , Greenhill, A. R. , Dussart, P. , Horwood, P. F. , & Karlsson, E. A. (2019). Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes, 55(6), 739–768. 10.1007/s11262-019-01700-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Szaluś‐Jordanow, O. , Golke, A. , Dzieciątkowski, T. , Czopowicz, M. , Kardas, M. , Mickiewicz, M. , Moroz‐Fik, A. , Łobaczewski, A. , Markowska‐Daniel, I. , & Frymus, T. (2024). Upper Respiratory Tract Disease in a Dog Infected by a Highly Pathogenic Avian A/H5N1 Virus. Microorganisms, 12(4). 10.3390/microorganisms12040689 [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Terregino C, 2024. EURL for Avian Influenza and Newcastle Disease. July 2024. Personal communication by e‐mail
  118. Thanawongnuwech, R. , Amonsin, A. , Tantilertcharoen, R. , Damrongwatanapokin, S. , Theamboonlers, A. , Payungporn, S. , Nanthapornphiphat, K. , Ratanamungklanon, S. , Tunak, E. , Songserm, T. , Vivatthanavanich, V. , Lekdumrongsak, T. , Kesdangsakonwut, S. , Tunhikorn, S. , & Poovorawan, Y. (2005). Probable Tiger‐to‐Tiger Transmission of Avian Influenza H5N1. Emerging Infectious Diseases, 11(5), 699–701. 10.3201/eid1105.050007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. The Guardian online‐a. Bird flu detected at egg farm in Sydney's Hawkesbury. Available online. https://www.theguardian.com/australia-news/article/2024/jun/19/bird-flu-detected-egg-farm-hawkesbury-sydney-nsw Accessed: 25 June 2024. [Google Scholar]
  120. The Guardian online‐b. First case of walrus dying from bird flu recorded in Arctic. Available online. https://www.theguardian.com/world/2024/apr/30/first-walrus-bird-flu-death-arctic-islands Accessed: 27 June 2024. [Google Scholar]
  121. The Hindu online. Avian flu confirmed at nine more places in Alappuzha. Available online. https://www.thehindu.com/news/national/kerala/avian-flu-confirmed-at-nine-more-places-in-alappuzha/article68304828.ece Accessed: 26 June 2024. [Google Scholar]
  122. The Poultry Site, online . Bird flu spreads to seventh Australian poultry farm. Available online: https://www.thepoultrysite.com/news/2024/06/bird-flu-spreads-to-seventh-australian-poultry-farm [Accessed: 27 June 2024]
  123. Tomás, G. , Marandino, A. , Panzera, Y. , Rodriguez, S. , Wallau, G. L. , Dezordi, F. Z. , Perez, R. , Bassetti, L. , Negro, R. , Williman, J. , Uriarte, V. , Grazioli, F. , Leizagoyen, C. , Riveron, S. , Coronel, J. , Bello, S. , Paez, E. , Lima, M. , Mendez, V. , & Perez, R. (2024). Highly pathogenic avian influenza H5N1 virus infections in pinnipeds and seabirds in Uruguay: Implications for bird‐mammal transmission in South America. Virus. Evolution, 10(1). 10.1093/ve/veae031 [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Turner, J. C. M. , Barman, S. , Feeroz, M. M. , Hasan, M. K. , Akhtar, S. , Jeevan, T. , Walker, D. , Franks, J. , Seiler, P. , Mukherjee, N. , Kercher, L. , McKenzie, P. , Lam, T. , El‐Shesheny, R. , & Webby, R. J. (2021). Highly Pathogenic Avian Influenza A(H5N6) Virus Clade 2.3.4.4h in Wild Birds and Live Poultry Markets, Bangladesh. Emerging Infectious Diseases, 27(8), 2492–2494. 10.3201/eid2709.210819 [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Uhart M, Vanstreels RET, Nelson MI, Olivera V, Campagna J, Zavattieri V, Lemey P, Campagna C, Falabella V and Rimondi A, 2024. Massive outbreak of Influenza A H5N1 in elephant seals at Península Valdés, : increased evidence for mammal‐to‐mammal transmission. bioRxiv. Unpublished document. 10.1101/2024.05.31.596774 [DOI]
  126. UKHSA (United Kingdom Health Agency), online‐a. Influenza A(H5N1) 2.3.4.4b B3.13: US cattle outbreak Human health risk assessment ratified 13 May. Available online. https://assets.publishing.service.gov.uk/media/6655f2f2d470e3279dd332dc/influenza-A_H5N1_-human-health-risk-assessment-23-May-2024.pdf Accessed: 20 June 2024. [Google Scholar]
  127. UKHSA (United Kingdom Health Agency), online‐b. HAIRS risk statement: Avian influenza A(H5N1) in livestock. Available online. https://www.gov.uk/government/publications/hairs-risk-statement-avian-influenza-ah5n1-in-livestock/hairs-risk-statement-avian-influenza-ah5n1-in-livestock Accessed: 10 June 2024. [Google Scholar]
  128. UNMC (University of Nebraska Medical Center), online‐a. Two chickens test positive for bird flu at San Francisco live bird market. Available online. https://www.unmc.edu/healthsecurity/transmission/2024/06/04/two-chickens-test-positive-for-bird-flu-at-san-francisco-live-bird-market/ Accessed: 15 June 2024. [Google Scholar]
  129. UNMC (University of Nebraska Medical Center), online‐b. Svalbard, Norway: Walrus dies from bird flu on Arctic island. Available online. https://www.unmc.edu/healthsecurity/transmission/2024/04/30/svalbard-norway-walrus-dies-from-bird-flu-on-arctic-island/ Accessed: 27 June 2024. [Google Scholar]
  130. USDA (United States Department of Agriculture), online‐a. Detections of Highly Pathogenic Avian Influenza in Wild Birds. Available online. https://www.aphis.usda.gov/livestock-poultry-disease/avian/avian-influenza/hpai-detections/wild-birds Accessed 26 June 2024. [Google Scholar]
  131. USDA (United States Department of Agriculture), online‐b. Highly Pathogenic Avian Influenza (H5N1) ‐ Michigan Dairy Herd and Poultry Flock Summary. Epidemiological Investigations of HPAI H5N1 Genotype B3.13 in Michigan Dairy Herds and Poultry Flocks. Available online. https://www.aphis.usda.gov/sites/default/files/hpai-h5n1-dairy-cattle-mi-epi-invest.pdf Accessed 25 June 2024. [Google Scholar]
  132. USDA (United States Department of Agriculture), online‐c. Highly Pathogenic Avian Influenza H5N1 Genotype B3.13 in Dairy Cattle: National Epidemiologic Brief. Place U.S. Department of Agriculture, U.S. Department of Agriculture. Available online. https://www.aphis.usda.gov/sites/default/files/hpai-dairy-national-epi-brief.pdf Accessed 26 June 2024. [Google Scholar]
  133. USDA (United States Department of Agriculture), online‐d. USDA Announces $824 Million in New Funding to Protect Livestock Health; Launches Voluntary H5N1 Dairy Herd Status Pilot Program. Available online. https://www.usda.gov/media/press-releases/2024/05/30/usda-announces-824-million-new-funding-protect-livestock-health Accessed: 25 June 2024. [Google Scholar]
  134. USDA (United States Department of Agriculture), online‐e. Detections of Highly Pathogenic Avian Influenza in Mammals. Available online. https://www.aphis.usda.gov/livestock-poultry-disease/avian/avian-influenza/hpai-detections/mammals Accessed: 25 June 2024. [Google Scholar]
  135. USDA (United States Department of Agriculture), online‐f. Highly Pathogenic Avian Influenza (HPAI) H5N1 Detections in Alpacas. Available online. https://www.aphis.usda.gov/livestock-poultry-disease/avian/avian-influenza/hpai-detections/mammals/highly‐pathogenic‐avian Accessed: 25 June 2024. [Google Scholar]
  136. USDA (United States Department of Agriculture) , online‐g. USDA Actions to Protect Livestock Health From Highly Pathogenic H5N1 Avian Influenza. Available online: https://www.usda.gov/media/press-releases/2024/04/24/usda-actions-protect-livestock-health-highly-pathogenic-h5n1-avian [25 June 2024]
  137. USDA‐APHIS (United States Department of Agriculture Animal and Plant Health Inspection Service) , online‐a. Federal and State Veterinary, Public Health Agencies Share Update on HPAI Detection in Kansas, Texas Dairy Herds. Available online: https://www.aphis.usda.gov/news/agency-announcements/federal-state-veterinary-public-health-agencies-share-update-hpai [Accessed 2 July 2024]
  138. USDA‐APHIS (United States Department of Agriculture Animal and Plant Health Inspection Service) , online‐b. HPAI Confirmed Cases in Livestock. Available online: https://www.aphis.usda.gov/livestock-poultry-disease/avian/avian-influenza/hpai-detections/hpai-confirmed-cases-livestock [Accessed: 3 July 2024]
  139. USDA‐APHIS (United States Department of Agriculture Animal and Plant Health Inspection Service) , online‐c. Federal Order Requiring Testing for and Reporting of Highly Pathogenic Avian Influenza (HPAI) in Livestock. Available online: https://www.aphis.usda.gov/sites/default/files/dairy-federal-order.pdf [Accessed 28 June 2024]
  140. USDA‐APHIS (United States Department of Agriculture Animal and Plant Health Inspection Service) , online‐d. Updates on H5N1 Beef Safety Studies. Available online: https://www.aphis.usda.gov/livestock-poultry-disease/avian/avian-influenza/hpai-detections/livestock/h5n1-beef-safety-studies [Accessed: 25 June 2024]
  141. Uyeki, T. M. , Milton, S. , Abdul Hamid, C. , Reinoso Webb, C. , Presley, S. M. , Shetty, V. , Rollo, S. N. , Martinez, D. L. , Rai, S. , Gonzales, E. R. , Kniss, K. L. , Jang, Y. , Frederick, J. C. , De La Cruz, J. A. , Liddell, J. , Di, H. , Kirby, M. K. , Barnes, J. R. , & Davis, C. T. (2024). Highly Pathogenic Avian Influenza A(H5N1) Virus Infection in a Dairy Farm Worker. New England Journal of Medicine, 390(21), 2028–2029. 10.1056/nejmc2405371 [DOI] [PubMed] [Google Scholar]
  142. Wan, H. , & Perez, D. R. (2007). Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. Journal of Virology, 81(10), 5181–5191. 10.1128/JVI.02827-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Wan, H. , Sorrell, E. M. , Song, H. , Hossain, M. J. , Ramirez‐Nieto, G. , Monne, I. , Stevens, J. , Cattoli, G. , Capua, I. , Chen, L. M. , Donis, R. O. , Busch, J. , Paulson, J. C. , Brockwell, C. , Webby, R. , Blanco, J. , Al‐Natour, M. Q. , & Perez, D. R. (2008). Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PLoS One, 3(8), e2923. 10.1371/journal.pone.0002923 [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Wang, W. , Lu, B. , Zhou, H. , Suguitan, A. L., Jr. , Cheng, X. , Subbarao, K. , Kemble, G. , & Jin, H. (2010). Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. Journal of Virology, 84(13), 6570–6577. 10.1128/JVI.00221-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Watanabe, Y. , Ibrahim, M. S. , Ellakany, H. F. , Kawashita, N. , Mizuike, R. , Hiramatsu, H. , Sriwilaijaroen, N. , Takagi, T. , Suzuki, Y. , & Ikuta, K. (2011). Acquisition of Human‐Type Receptor Binding Specificity by New H5N1 Influenza Virus Sublineages during Their Emergence in Birds in Egypt. PLoS Pathogens, 7(5), e1002068. 10.1371/journal.ppat.1002068 [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Wessels, U. , Abdelwhab, E. M. , Veits, J. , Hoffmann, D. , Mamerow, S. , Stech, O. , Hellert, J. , Beer, M. , Mettenleiter, T. C. , & Stech, J. (2018). A Dual Motif in the Hemagglutinin of H5N1 Goose/Guangdong‐Like Highly Pathogenic Avian Influenza Virus Strains Is Conserved from Their Early Evolution and Increases both Membrane Fusion pH and Virulence. Journal of Virology, 92(17), JVI.00778‐00718. 10.1128/jvi.00778-18 [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. WHO (World Health Organization) . (2023). Genetic and antigenic characteristics of zoonotic influenza A viruses and development of candidate vaccine viruses for pandemic preparedness. Geneva., 12 pp. Available online:. https://cdn.who.int/media/docs/default-source/influenza/who-influenza-recommendations/vcm-northern-hemisphere-recommendation-2023-2024/20230224_zoonotic_recommendations.pdf [Google Scholar]
  148. WHO (World Health Organization) , online‐a. Avian Influenza A(H5N2) ‐ Mexico. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON524 [Accessed: 20 June 2024]
  149. WHO (World Health Organization) , online‐b. Avian Influenza A(H5N1) ‐ Viet Nam. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON511 [Accessed: 20 June 2024]
  150. WHO (World Health Organization) , online‐c. Avian Influenza A(H5N1) ‐ United States of America. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON512 [Accessed: 20 June 2024]
  151. WHO (World Health Organization) , online‐d. Avian Influenza A (H5N1) ‐ Australia. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON519 [Accessed: 7 June 2024]
  152. WHO (World Health Organization) , online‐e. Avian Influenza A (H9N2) ‐ India. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON523 [Accessed: 21 June 2024]
  153. WOAH (World Organisation for Animal Health), online. Canada ‐ Highly Pathogenic Influenza A (other than poultry, including wild birds) (2017‐) ‐ Monitoring Report 5. Available online. https://wahis.woah.org/#/in-review/5065 Accessed: 27 June 2024. [Google Scholar]
  154. Xiao, C. , Ma, W. , Sun, N. , Huang, L. , Li, Y. , Zeng, Z. , Wen, Y. , Zhang, Z. , Li, H. , Li, Q. , Yu, Y. , Zheng, Y. , Liu, S. , Hu, P. , Zhang, X. , Ning, Z. , Qi, W. , & Liao, M. (2016). PB2‐588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses. Scientific Reports, 19(6), 19474. 10.1038/srep19474 [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Xing, X. , Shi, J. , Cui, P. , Yan, C. , Zhang, Y. , Zhang, Y. , Wang, C. , Chen, Y. , Zeng, X. , Tian, G. , Liu, L. , Guan, Y. , Li, C. , Suzuki, Y. , Deng, G. , & Chen, H. (2024). Evolution and biological characterization of H5N1 influenza viruses bearing the clade 2.3.2.1 hemagglutinin gene. Emerging Microbes and Infections, 13(1). 10.1080/22221751.2023.2284294 [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Yamazaki, Y. , Doy, M. , Okabe, N. , Yasui, Y. , Nakashima, K. , Fujieda, T. , Yamato, S.‐I. , Kawata, Y. , & Ogata, T. (2009). Serological survey of avian H5N2‐subtype influenza virus infections in human populations. Archives of Virology, 154, 421–427. 10.1007/s00705-009-0319-7 [DOI] [PubMed] [Google Scholar]
  157. Yao, X. Y. , Lian, C. Y. , Lv, Z. H. , Zhang, X. L. , & Shao, J. W. (2023). Emergence of a novel reassortant H5N6 subtype highly pathogenic avian influenza virus in farmed dogs in China. Journal of Infection, 87(4), e70–e72. 10.1016/j.jinf.2023.07.013 [DOI] [PubMed] [Google Scholar]
  158. Yang, Z. Y. , Wei, C. J. , Kong, W. P. , Wu, L. , Xu, L. , Smith, D. F. , & Nabel, G. J. (2007). Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity. Science, 317(5839), 825–828. 10.1126/science.1135165 [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Zhang, X. , Xu, G. , Wang, C. , Jiang, M. , Gao, W. , Wang, M. , Sun, H. , Sun, Y. , Chang, K.‐C. , Liu, J. , & Pu, J. (2017). Enhanced pathogenicity and neurotropism of mouse‐adapted H10N7 influenza virus are mediated by novel PB2 and NA mutations. Journal of General Virology, 98(6), 1185–1195. 10.1099/jgv.0.000770 [DOI] [PubMed] [Google Scholar]
  160. Zhang, Y. , Shi, J. , Cui, P. , Zhang, Y. , Chen, Y. , Hou, Y. , Liu, L. , Jiang, Y. , Guan, Y. , Chen, H. , Kong, H. , & Deng, G. (2023a). Genetic analysis and biological characterization of H10N3 influenza A viruses isolated in China from 2014 to 2021. Journal of Medical Virology, 95(2), e28476. 10.1002/jmv.28476 [DOI] [PubMed] [Google Scholar]
  161. Zhang, J. , Wang, X. , Chen, Y. , Ye, H. , Ding, S. , Zhang, T. , Liu, Y. , Li, H. , Huang, L. , Qi, W. , & Liao, M. (2023b). Mutational antigenic landscape of prevailing H9N2 influenza virus hemagglutinin spectrum. Cell Reports, 42(11), 113409. 10.1016/j.celrep.2023.113409 [DOI] [PubMed] [Google Scholar]
  162. Zhong, G. , Le, M. Q. , Lopes, T. J. S. , Halfmann, P. , Hatta, M. , Fan, S. , Neumann, G. , & Kawaoka, Y. (2018). Mutations in the PA Protein of Avian H5N1 Influenza Viruses Affect Polymerase Activity and Mouse Virulence. Journal of Virology, 92(4). 10.1128/JVI.01557-17 [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Zhu, W. , Li, X. , Dong, J. , Bo, H. , Liu, J. , Yang, J. , Zhang, Y. , Wei, H. , Huang, W. , Zhao, X. , Chen, T. , Yang, J. , Li, Z. , Zeng, X. , Li, C. , Tang, J. , Xin, L. , Gao, R. , Liu, L. , … Wang, D. (2022). Epidemiologic, Clinical, and Genetic Characteristics of Human Infections with Influenza A(H5N6) Viruses. China. Emerging Infectious Diseases, 28(7), 1332–1344. 10.3201/eid2807.212482 [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

 

EFS2-22-e8930-s001.zip (987.8KB, zip)

Articles from EFSA Journal are provided here courtesy of Wiley

RESOURCES