Skip to main content
Frontiers in Microbiology logoLink to Frontiers in Microbiology
. 2024 Jul 8;15:1444678. doi: 10.3389/fmicb.2024.1444678

Corrigendum: Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects

Xian-Guang Yang 1,, Ping-Ping Wen 1,2,, Yi-Fan Yang 1,2, Pan-Pan Jia 2, Wei-Guo Li 1, De-Sheng Pei 2,*
PMCID: PMC11261735  PMID: 39040902

In the published article, there was an error in a section title. Instead of Biodegradation of plastics by insects, it should be Biodegradation of plastics by insects and other invertebrate.

In the published article, there was an error in Tables 2, 3 as published. The heading Insect species in the first cell of the first column and row of Tables 2, 3 were incorrect, due to the fact that not all species listed in these tables are insects. For instance, Achatina fulica is not an insect but rather a mollusk belonging to the class Gastropoda. Sphaeroma terebrans is not an insect but rather an Arthropoda belonging to the class Crustacea.

Table 2.

The confirmed plastic-degrading insects and their ability to degrade diverse plastic materials.

Insect species Types of plastic Degradation efficiency Mechanisms References
Tenebrio molitor PE, PS 49.0 ± 1.4% loss of PE and PS weight for 32 days Gut microbiome- Citrobacter sp. and Kosakonia sp. Brandon et al., 2018
PS / Gut Microbiome- eight unique bacterial species Brandon et al., 2021
Polyether-PU foam 67% loss of PE-PU foam for 35 days Gut Microbiome- the families Enterobacteriaceae and Streptococcaceae Liu et al., 2022
PE 1.818 g PE of loss on the 58th day Gut microbiome Bulak et al., 2021
PS 0.07 mg PE/larvae/day Gut Microbiome- Enterococcus, Enterobacteriaceae, Escherichia-Shigell, and Lactococcus. Jiang et al., 2021a
PS 22.0 ± 0.5 g PS loss in 2 weeks Cronobacter sakazakii and Lactococcus garvieae Bae et al., 2021
PVC 65.4% loss of ingested PVC for 16 days Gut microbiome Peng et al., 2020a
Zophobas atratus PS foam 36.7% loss of PS weight for 28 days Gut microbiota Yang et al., 2020
PS / Gut Microbiome-Pseudomonas sp. EDB1, Bacillus sp. EDA4 and Brevibacterium sp. EDX Arunrattiyakorn et al., 2022
PS 2.78 mg PS/larvae/day Gut Microbiome-Enterococcus, Enterobacteriaceae, Kluyvera, and Lactococcus NDa Jiang et al., 2021b
PS, LDPE 43.3 ± 1.5 mg PS/100 larvae per day, 52.9 ± 3.1 mg LDPE/100 larvae per day Gut microbiota and microbial functional enzymes Peng et al., 2022
LDPE, EPS 58.7 ± 1.8 mg/100 larvae per day, 61.5 ± 1.6 mg EPS/100 larvae per day Gut microbiota Peng et al., 2020b
Galleria mellonella PE, PS 0.88 and 1.95 g loss of PE and PS weight for 21days Intestinal bacteria- Bacillus and Serratia Lou et al., 2020
LDPE / Gut Microbiome-Acinetobacter, Cloacibacterium, Corynebacterium, Curvibacter, Enhydrobacter and Staphylococcus genera Latour et al., 2021
LDPE / Gut microbiome Réjasse et al., 2021
PS / Gut microbiota Wang et al., 2022
PS 12.97 ± 1.05% loss weight of PS for 30 days Intestinal bacteria-Massilia sp. FS1903 Jiang et al., 2021b
Plodia interpunctella PE 6.1 ± 0.3% and 10.7 ± 0.2% loss of PE weight for 28 days Two bacterial strains-Enterobacter asburiae YT1 and Bacillus sp. YP1 Yang et al., 2014
PE 15.87% loss of PE weight for 60 days Meyerozyma guilliermondii ZJC1 (MgZJC1) and Serratia marcescens ZJC2 (SmZJC2) Lou et al., 2022
Tribolium castaneum PS 12.14% loss of mass weight and 13%/25% (Mw/Mn) reduction of molecular weight for 60 days An intestinal bacterium- Acinetobacter bacterium Wang et al., 2020
Tenebrio obscurus PS 32.44 ± 0.51 mg/100 larvae per day Intestinal bacteria- Enterobacteriaceae, Spiroplasmataceae, and Enterococcaceae Peng et al., 2019
Tribolium confusum PS, PE, and EVA (Ethyl vinyl acetate) 51.92, 46.84, and 2.9% loss of PS, PE, and EVA, respectively, for 30 days / Abdulhay, 2020
Achroia grisella HDPE (high-density polyethylene) Loss weight of PE- (43.3 ± 1.6%) and PE + wax (69.6 ± 3.2%) for 8 days / Kundungal et al., 2019
Spodoptera frugiperda PVC 19.57% loss of PVC weight for Intestinal bacterium -Strain EMBL-1 Zhu et al., 2022
Alphitobius diaperinus PS / Intestinal bacteria- Pseudomonas sp. 2 m/c Cucini et al., 2022
Uloma sp. PS 37.14 mg of PS per day per 100 larvae Gut microbiota Kundungal et al., 2021
Corcyra cephalonica (Stainton) LDPE Weight loss: without antibiotic feeding - 25% with antibiotic feeding - 21% Gut microbiota Kesti and Sharana, 2019
Plesiophthalmus davidis PS 34.27 ± 4.04 mg PS loss/larva Gut microbiota Woo et al., 2020

Table 3.

The reported plastics-eating insects and the corresponding plastic types.

Insect species Types of plastic References
Ephestia cautella PVC, PP Graham Bowditch, 1997
Rhyzopertha dominica PP, PE, PEST Graham Bowditch, 1997
Lasioderma serricorne PP, PE, PEST Riudavets et al., 2007
Sitophilus oryzae PP, PE, PEST Riudavets et al., 2007
Oryzaephilus surinamensis PE Shukla et al., 1993
Callosobruchus maculates PE Shukla et al., 1993
Stegobium paniceum PS Davidson, 2012

The corrected Tables 2, 3 and their captions appear below.

In the published article, there was an error. A correction has been made to the Biodegradation of plastics by insects, paragraph two. The statement is incomplete, as the species enumerated in Tables 2, 3 are not entirely composed of insects. This sentence previously stated:

“Due to different insect species, plastic materials, and evaluation methods, it is difficult to simply describe the differences in the degradation rates of various insects, but specific degradation efficiency data are summarized in Table 2. In addition, except for the insects that confirmed their capabilities of plastic biodegradation, other insects were also reported to eat plastics (Table 3), but their degradation abilities need further studies”.

The corrected sentence appears below:

“Due to different invertebrate species, plastic materials, and evaluation methods, it is difficult to simply describe the differences in the degradation rates of various insects, but specific degradation efficiency data are summarized in Table 2. In addition, except for the invertebrates that confirmed their capabilities of plastic biodegradation, other invertebrates were also reported to eat plastics (Table 3), but their degradation abilities need further studies”.

The authors apologize for these errors and state that they do not change the scientific conclusions of the article in any way. The original article has been updated.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

  1. Abdulhay H. (2020). Biodegradation of plastic wastes by confused flour beetle Tribolium confusum Jacquelin du Val larvae. Asian J. Agric. Biol. 8, 201–206. 10.35495/ajab.2019.11.515 [DOI] [Google Scholar]
  2. Arunrattiyakorn P., Ponprateep S., Kaennonsang N., Charapok Y., Punphuet Y., Krajangsang S., et al. (2022). Biodegradation of polystyrene by three bacterial strains isolated from the gut of Superworms (Zophobas atratus larvae). J. Appl. Microbiol. 132, 2823–2831. 10.1111/jam.15474 [DOI] [PubMed] [Google Scholar]
  3. Bae J., Cho H. W., Jung H., Park J., Yun S., Ha S., et al. (2021). Changes in Intestinal Microbiota Due to the Expanded Polystyrene Diet of Mealworms (Tenebrio molitor). Indian J. Microbiol. 61, 130–136. 10.1007/s12088-021-00922-w [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brandon A. M., Gao S. H., Tian R., Ning D., Yang S. S., Zhou J., et al. (2018). Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environ. Sci. Technol. 52, 6526–6533. 10.1021/acs.est.8b02301 [DOI] [PubMed] [Google Scholar]
  5. Brandon A. M., Garcia A. M., Khlystov N. A., Wu W. M., Criddle C. S. (2021). Enhanced bioavailability and microbial biodegradation of polystyrene in an enrichment derived from the gut microbiome of tenebrio molitor (Mealworm Larvae). Environ. Sci. Technol. 55, 2027–2036. 10.1021/acs.est.0c04952 [DOI] [PubMed] [Google Scholar]
  6. Bulak P., Proc K., Pytlak A., Puszka A., Gawdzik B., Bieganowski A. (2021). Biodegradation of different types of plastics by tenebrio molitor insect. Polymers 13, 3508. 10.3390/polym13203508 [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cucini C., Funari R., Mercati D., Nardi F., Carapelli A., Marri L. (2022). Polystyrene shaping effect on the enriched bacterial community from the plastic-eating Alphitobius diaperinus (Insecta: Coleoptera). Symbiosis 86, 305–313. 10.1007/s13199-022-00847-y [DOI] [Google Scholar]
  8. Davidson T. M. (2012). Boring crustaceans damage polystyrene floats under docks polluting marine waters with microplastic. Mar. Pollut. Bull. 64, 1821–1828. 10.1016/j.marpolbul.2012.06.005 [DOI] [PubMed] [Google Scholar]
  9. Graham Bowditch T. (1997). Penetration of Polyvinyl Chloride and Polypropylene Packaging Films by Ephestia cautella (Lepidoptera: Pyralidae) and Plodia interpunctella (Lepidoptera: Pyralidae) Larvae, and Tribolium confusum (Coleoptera: Tenebrionidae) Adults. J. Econ. Entomol. 90, 1028–1031 [Google Scholar]
  10. Jiang S., Su T., Zhao J., Wang Z. (2021a). Biodegradation of polystyrene by tenebrio molitor, galleria mellonella, and zophobas atratus larvae and comparison of their degradation effects. Polymers 13, 3539. 10.3390/polym13203539 [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jiang S., Su T., Zhao J., Wang Z. (2021b). Isolation, identification, and characterization of polystyrene-degrading bacteria from the gut of galleria mellonella (Lepidoptera: Pyralidae) Larvae. Front. Bioeng. Biotechnol. 9, 736062. 10.3389/fbioe.2021.736062 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kesti S., Sharana S. (2019). First report on biodegradation of low density polyethylene by rice moth larvae, Corcyra cephalonica (Stainton). Holistic Appr. Environ. 9, 79–83. 10.33765/thate.9.4.2 [DOI] [Google Scholar]
  13. Kundungal H., Gangarapu M., Sarangapani S., Patchaiyappan A., Devipriya S. P. (2019). Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). Environ. Sci. Pollut. Res. Int. 26, 18509–18519. 10.1007/s11356-019-05038-9 [DOI] [PubMed] [Google Scholar]
  14. Kundungal H., Synshiang K., Devipriya S. P. (2021). Biodegradation of polystyrene wastes by a newly reported honey bee pest Uloma sp. larvae: An insight to the ability of polystyrene-fed larvae to complete its life cycle. Environ. Chall. 4, 100083. 10.1016/j.envc.2021.100083 [DOI] [Google Scholar]
  15. Latour S., Noël G., Serteyn L., Sare A. R., Massart S., Delvigne F., et al. (2021). Multi-omics approach reveals new insights into the gut microbiome of Galleria mellonella (Lepidoptera:Pyralidae) exposed to polyethylene diet. bioRxiv.2021.2006.2004.446152. 10.1101/2021.06.04.446152 [DOI] [Google Scholar]
  16. Liu J., Liu J., Xu B., Xu A., Cao S., Wei R., et al. (2022). Biodegradation of polyether-polyurethane foam in yellow mealworms (Tenebrio molitor) and effects on the gut microbiome. Chemosphere 304, 135263. 10.1016/j.chemosphere.2022.135263 [DOI] [PubMed] [Google Scholar]
  17. Lou H., Fu R., Long T., Fan B., Guo C., Li L., et al. (2022). Biodegradation of polyethylene by Meyerozyma guilliermondii and Serratia marcescens isolated from the gut of waxworms (larvae of Plodia interpunctella). Sci. Total Environ. 853, 158604. 10.1016/j.scitotenv.2022.158604 [DOI] [PubMed] [Google Scholar]
  18. Lou Y., Ekaterina P., Yang S. S., Lu B., Liu B., Ren N., et al. (2020). Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environ. Sci. Technol. 54, 2821–2831. 10.1021/acs.est.9b07044 [DOI] [PubMed] [Google Scholar]
  19. Peng B.-Y., Chen Z., Chen J., Yu H., Zhou X., Criddle C. S., et al. (2020a). Biodegradation of Polyvinyl Chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environ. Int. 145, 106106. 10.1016/j.envint.2020.106106 [DOI] [PubMed] [Google Scholar]
  20. Peng B.-Y., Li Y., Fan R., Chen Z., Chen J., Brandon A. M., et al. (2020b). Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environ. Pollut. 266, 115206. 10.1016/j.envpol.2020.115206 [DOI] [PubMed] [Google Scholar]
  21. Peng B.-Y., Sun Y., Wu Z., Chen J., Shen Z., Zhou X., et al. (2022). Biodegradation of polystyrene and low-density polyethylene by Zophobas atratus larvae: Fragmentation into microplastics, gut microbiota shift, and microbial functional enzymes. J. Cleaner Prod. 367, 132987. 10.1016/j.jclepro.2022.132987 [DOI] [Google Scholar]
  22. Peng B. Y., Su Y., Chen Z., Chen J., Zhou X., Benbow M. E., et al. (2019). Biodegradation of Polystyrene by Dark (Tenebrio obscurus) and Yellow (Tenebrio molitor) Mealworms (Coleoptera: Tenebrionidae). Environ. Sci. Technol. 53, 5256–5265. 10.1021/acs.est.8b06963 [DOI] [PubMed] [Google Scholar]
  23. Réjasse A., Waeytens J., Deniset-Besseau A., Crapart N., Nielsen-Leroux C., Sandt C. (2021). Plastic biodegradation: do Galleria mellonella larvae - bio-assimilate polyethylene? A spectral histology approach using isotopic labelling and infrared microspectroscopy. bioRxiv.2021.2010.2008.463624. 10.1101/2021.10.08.463624 [DOI] [PubMed] [Google Scholar]
  24. Riudavets J., Salas I., Pons M. J. (2007). Damage characteristics produced by insect pests in packaging film. J. Stored Prod. Res. 43, 564–570. 10.1016/j.jspr.2007.03.006 [DOI] [Google Scholar]
  25. Shukla R. M., Chand G., Chandra M., Saini M. L. (1993). Comparative resistance of different packaging materials to stored grain insects. Plant Prot. Bull. 45, 21–23.35429272 [Google Scholar]
  26. Wang S., Shi W., Huang Z., Zhou N., Xie Y., Tang Y., et al. (2022). Complete digestion/biodegradation of polystyrene microplastics by greater wax moth (Galleria mellonella) larvae: Direct in vivo evidence, gut microbiota independence, and potential metabolic pathways. J. Hazardous Mater. 423, 127213. 10.1016/j.jhazmat.2021.127213 [DOI] [PubMed] [Google Scholar]
  27. Wang Z., Xin X., Shi X., Zhang Y. (2020). A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum. Sci. Total Environ. 726, 138564. 10.1016/j.scitotenv.2020.138564 [DOI] [PubMed] [Google Scholar]
  28. Woo S., Song I., Cha H. J. (2020). Fast and Facile Biodegradation of Polystyrene by the Gut Microbial Flora of Plesiophthalmus davidis Larvae. Appl. Environ. Microbiol. 86, e01361–e01320. 10.1128/AEM.01361-20 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yang J., Yang Y., Wu W. M., Zhao J., Jiang L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ. Sci. Technol. 48, 13776–13784. 10.1021/es504038a [DOI] [PubMed] [Google Scholar]
  30. Yang Y., Wang J., Xia M. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Sci. Total Environ. 708, 135233. 10.1016/j.scitotenv.2019.135233 [DOI] [PubMed] [Google Scholar]
  31. Zhu P., Shen Y., Li X., Liu X., Qian G., Zhou J. (2022). Feeding preference of insect larvae to waste electrical and electronic equipment plastics. Sci. Total Environ. 807, 151037. 10.1016/j.scitotenv.2021.151037 [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Microbiology are provided here courtesy of Frontiers Media SA

RESOURCES