Skip to main content
Heliyon logoLink to Heliyon
. 2024 Jul 3;10(13):e33842. doi: 10.1016/j.heliyon.2024.e33842

Analysis of nonlinear Burgers equation with time fractional Atangana-Baleanu-Caputo derivative

Abdul Ghafoor a, Muhammad Fiaz a, Kamal Shah b,c, Thabet Abdeljawad b,d,e,
PMCID: PMC11269874  PMID: 39055819

Abstract

This paper demonstrates, a numerical method to solve the one and two dimensional Burgers' equation involving time fractional Atangana-Baleanu Caputo (ABC) derivative with a non-singular kernel. The numerical stratagem consists of a quadrature rule for time fractional (ABC) derivative along with Haar wavelet (HW) approximations of one and two dimensional problems. The key feature of the scheme is to reduce fractional problems to the set of linear equations via collocation procedure. Solving the system gives the approximate solution of the given problem. To verify the effectiveness of the developed method five numerical examples are considered. Besides this, the obtained simulations are compared with some published work and identified that proposed technique is better. Moreover, computationally the convergence rate in spatiotemporal directions is presented which shows order two convergence. The stability of the proposed scheme is also described via Lax-Richtmyer criterion. From simulations it is obvious that the scheme is quite useful for the time fractional problems.

Keywords: Atangana-Baleanu-Caputo derivative, Nonlinear problems, Order of convergence, Stability analysis

1. Introduction

Fractional calculus (FC) remains an active area of research from the past few decades. It generalizes the concept of integrals and derivatives to an arbitrary order (fractional order), which is hard to describe in classical calculus. The recent growing attraction of researchers in this particular area reveals that it has distinctive applications in the disparate sites of science and engineering disciplines. Some recent papers which involve fractional formulations include, anomalous heat conduction and quantum mechanics processes [1], [2], [3], diffusion processes [4], [5], [6], Stokes problem [7], financial models [8], stochastic processes [9], [10], infiltration phenomena [11], biological models [12], and many others for which we refer to. The fundamental results which are devoted to FC relative to classical calculus is the long and short term memories. These results can be distinguished via global and local fractional derivatives.

In this work, we will examine the numerical solutions of the following global time fractional Burgers' equation (TFBE) involving Atangana-Baleanu-Caputo (ABC) operator [13]:

Dtα0ABCC(X,t)+C(X,t)C(X,t)ϱ2C(X,t)=q(X,t),XΩRs,s=1,2,t[t0,T],0<α<1, (1.1)

where X=ξ for s=1 and X=(ξ,ζ) for s=2, Dtα0ABC is the time-fractional ABC operator, ∇ is the gradient operator, ϱ represents the kinematic viscosity, q(X,t), is the smooth source function, and C(X,t) is the unknown function. The associated conditions are prescribed below:

C(X,t0)=ε(X),XΩ,C(X,t)=μ(t),XΩ,t0,

where Ω and ∂Ω indicate the solution domain and its boundary, respectively.

The TFBE is like a sub-diffusion convection model which is ubiquitous in different research areas. For instance, it describes the weak shock propagation, turbulence phenomena, unidirectional propagation of acoustic waves, etc. [14], [15], [16]. In previous work, Eq. (1.1) has been investigated by several authors with integer and time fractional derivatives. For instance, Mukundan and Awasthi suggested an implicit technique [17]. Shao et al. [18] proposed local discontinuous Galerkin finite element method. Guo [19] and his co-authors implemented fifth order finite volume technique. Quartic b-spline collocation procedure was addressed in [20]. Besides these, several other methods like, differential quadrature method [21], Lagrange polynomials based method [22], radial basis functions (RBFs) based strategies [23] and some wavelet numerical methods [24], [25], [26], have been studied in literature.

In the recent past, wavelet numerical techniques became fabulous in numerical computations. These methods have pretty good features like regularity, supporting width, symmetry, vanishing moments, and orthogonality. Broadly, wavelet transforms are divided into continuous and discrete forms. Poisson wavelet, Meyer wavelet, Shannon wavelet etc. are the examples of continuous transforms while discrete wavelet transforms include Haar wavelet (HW), the dual-tree complex wavelet etc. Amongst the discrete wavelets, HW attained special attraction, because they are composed of a pair of piecewise constant mathematical functions which are easy to analyze. Few finest aspects of HW include normalization, orthogonality and the existence of the closed form expressions of their integrals. The foundation of HW started from Haar functions which were introduced by Alfréd Haar in the 1990s. Initially, HW based numerical strategies were addressed by Chen and Hsiao [27] in 1997s. Chen and Hsiao proposed HW numerical scheme for the solutions of ordinary differential equations (ODEs), via approximating the highest order derivative with truncated Haar series. Later on, Lepik contributed in this direction and advised several numerical strategies [28]. In further studies, HW technique has been used in astrophysical Lane-Emden equations [29], biharmonic and Poisson equations [30], fluid flow layer problems [31] and telegraph equations [32]. To further explore the role of HW in different numerical computations, the interested readers are referred to see [33], [34], [35], [36].

In general, the analytical techniques are difficult to apply for the fractional models and require rigorous mathematical analysis. In order to cope with these challenges, numerical techniques are preferable. This work aims, to propose a new numerical strategy to solve the specified problem by coupling HW with quadrature rule for the ABC derivative. Based on our analysis, the proposed idea has not described in existing work for the solutions of the aforementioned models in one and two space dimensions. This would be a fruitful contribution in this particular area of research and will provide an easy and efficient numerical way to tackle such complex problems.

Rest of the manuscript is divided into the following sections. Some fundamental results are reported in Section 2. Proposed method and stability analysis are portrayed in Sections 3 and 4, respectively. Illustrative numerical experiments are discussed in Section 6. Finally, conclusion is given in Section 8.

2. Preliminaries

In this section, we recall some basic definitions which will be used in main results.

2.1. Definition

Let us consider X=[υ,ω) such that υ=X0<X1<<X2ϖ, where ℵ is the space interval and is divided into N=2ϖ equivalent subintervals, where width of each sub interval is ΔX=ωυ2ϖ, ϖ=2j and j stand for the resolution level. Let i=m+k+1 represent the wavelet number, where m=2λ,λ=0,1,...,j, and k=0,1,...,2λ1. The HW functions for ı1 are defined as [33]:

ϒ1(X)={1,X[υ,ω)0,otherwise, (2.1)
ϒı(X)={(1)ȷ+1,X[ςȷ(ı),ςȷ+1(ı)),ȷ=1,20,otherwise, (2.2)

where ςη+1(ı)=υ+(2κ+η)μΔX,η=0,1,2andμ=ϖ/m=2jλ. To estimate the numerical solution of TFBE by using HW, the following recurrent integrals are required:

Pı,γ(X)=AXυXυXϒı(z)dzγ=1(γ1)!υX(Xz)γ1ϒı(z)dz, (2.3)

where γ=1,2,n,ı=1,2,2ϖ. Utilizing Eqs. (2.1)-(2.3) the resultant expressions are given by:

R1,γ(X)=1γ!(Xυ)γ, (2.4)
Pı,γ(X)={0,if X<ς1(ı),1γ!{Xς1(ı)}γ,if X[ς1(ı),ς2(ı)),1γ![{Xς1(ı)}γ2{Xς2(ı)}γ],if X[ς2(ı),ς3(ı)),1γ![{Xς1(ı)}γ2{(Xς2(ı)}γ+{Xς3(ı)}γ],if X[ς3(ı),ω). (2.5)

2.2. Definition

The ABC fractional derivative is denoted by αC(X,t)tα and is defined as follows: [37]:

Dtα0ABCC(X,t)=αC(X,t)tα={R(α)1α0tC(X,ν)νEα(α1α(tν)α)dν,0<α<1,Ct,α=1, (2.6)

where R(α) is a normalization function which satisfies R(0)=R(1)=1 and Eα is the Mittag-Leffler function. The ABC derivative is important because it has non-local and non-singular kernel which was a critical problem in the Riemann-Liouville and Caputo derivative definitions. This is the recent and generalized definition which uses the Mittag-Leffler function in the kernel which remove the singularity problem.

This definition has been used by different authors in the analysis of various problems for which the readers may refer to see ([38], [39], [40]), and the references therein.

2.3. Definition

The Mittag-Leffler function has one or two parameters are defined as follows [37]:

Eθ(φ)=k=0φkΓ(θk+1),θ>0, (2.7)
Eθ,ϑ(φ)=k=0φkΓ(θk+ϑ),θ,ϑ>0. (2.8)

Incorporating Mittag-Leffler function (Eqs. (2.7)-(2.8)), the ABC derivative of algebraic, exponential and trigonometric functions can be expressed as:

Dtα0ABC(tn)=R(α)1αn!tnEα,n+1(α1α(t)α),Dtα0ABC(eλt)=k=1R(α)1α(λt)kEα,k+1(α1α(t)α),Dtα0ABCsin(λt)=k=1R(α)1α(1)k1(λt)2k1Eα,2k(α1α(t)α),Dtα0ABCcos(λt)=k=1R(α)1α(1)k(λt)2kEα,2k+1(α1α(t)α). (2.9)

2.4. Quadrature rule for ABC derivative

Partitioning the time domain into M equally subintervals as 0=t0<t1<<tM with interval width Δt=tM. The quadrature rule for the ABC derivative (Eq. (2.6)) is given below [37]:

Dtα0ABCC(ξ,tn+1)=R(α)1α0tn+1C(X,ν)νEα(α1α(tn+1ν)α)dν,0<α<1,=R(α)1αȷ=0ntȷtȷ+1C(X,ν)νEα(α1α(tn+1ν)α)dν.

Using C(X,ν)ν=Cȷ+1(X)Cȷ(X)Δt, where Cn(X)=C(X,tn) in the above integral we have:

Dtα0ABCC(X,tn+1)=R(α)1αȷ=0nCȷ+1(X)Cȷ(X)Δttȷtȷ+1Eα(α1α(tn+1ν)α)dν+χΔtn+1,=R(α)1αȷ=0n[Cnȷ+1(X)Cnȷ(X)]{(ȷ+1)Eα,2(α1α((ȷ+1)Δt)α)ȷEα,2(α1α((ȷ)Δt)α)}+χΔtn+1,=R(α)1αȷ=0n[Cnȷ+1(X)Cnȷ(X)][(ȷ+1)Eȷ+1ȷEȷ]+χΔtn+1,
Dtα0ABCC(X,tn+1)=R(α)1αȷ=0nγȷ[Cnȷ+1(X)Cnȷ(X)]+χΔtn+1, (2.10)

where Eȷ=Eα,2(α1α(ȷΔt)α) and γȷ=(ȷ+1)Eȷ+1ȷEȷ.

Following are the properties of γȷ:

  • γȷ>0 and γ0=E1, ȷ=0,1,,n,

  • γ0>γ1>>γȷ,γȷ0 as ȷ

3. Proposed methodology

Here, we discuss the proposed methodology for one and two dimensional problems.

3.1. Case 1

First, consider the one space dimension problem for which we take s=1 and X=ξ. Using Eq. (2.10) and the following implicit scheme to Eq. (1.1) the resultant is:

R(α)1αȷ=0nγȷ[Cnȷ+1(ξ)Cnȷ(ξ)]+[Cn+1(ξ)Cξn+1(ξ)ϱCξξn+1(ξ)]=q(ξ,tn+1). (3.1)

In Eq. (3.1) the nonlinear term is linearized as follows [37]:

Cn+1(ξ)Cξn+1(ξ)Cn+1(ξ)Cξn(ξ)+Cn(ξ)Cξn+1(ξ)Cn(ξ)Cξn(ξ). (3.2)

Incorporating Eq. (3.2) in Eq. (3.1) and some algebraic manipulation, gives the following equation:

(E1+ρCξn(ξ))Cn+1(ξ)+ρCnCξn+1(ξ)ρϱCξξn+1(ξ)=E1Cn(ξ)+ρCn(ξ)Cξn(ξ)+ρqn+1ȷ=1nγȷ[Cnȷ+1(ξ)Cnȷ(ξ)], (3.3)

where ρ=1αR(α) and q(ξ,tn+1)=qn+1.

The method is based on integral approach, therefore, the highest order derivative is estimated by a truncated Haar wavelet series as:

Cξξn+1(ξ)=i=12ϖηin+1ϒi(ξ), (3.4)

where ηin+1 represent the unknown coefficients of wavelet and ϒi stand for HW basis. Twice integration of Eq. (3.4) gives:

Cξn+1(ξ)=i=12ϖηin+1Pi,1(ξ)+Cξn+1(0), (3.5)
Cn+1(ξ)=i=12ϖηin+1Pi,2(ξ)+ξCξn+1(0)+Cn+1(0). (3.6)

Integration of Eq. (3.5) from 0 to 1 gives the following unknown value:

Cξn+1(0)=Cn+1(1)Cn+1(0)i=12ϖηin+1Pi,2(1). (3.7)

Substituting Eq. (3.7) into and Eqs. (3.5)-(3.6), the resulting equations can be written as:

Cξn+1(ξ)=i=12ϖηin+1[Pi,1(ξ)Pi,2(1)]+Cn+1(1)Cn+1(0). (3.8)
Cn+1(ξ)=i=12ϖηin+1[Pi,2(ξ)ξPi,2(1)]+ξ[Cn+1(1)Cn+1(0)]+Cn+1(0). (3.9)

Substitution of Eqs. (3.4), (3.8) and (3.9) in Eq. (3.3) and also the evaluation at ξξσ=σ0.52ϖ, σ=1,2,...,2ϖ, yields:

i=12ϖηin+1[(E1+ρCξn(ξ))Ωi,2(ξσ)+ξσCn(ξ)Ωi,1(ξσ)ξσϱϒ(ξσ)]=B(ξσ), (3.10)

where

Ωi,1(ξσ)=Pi,1(ξσ)Pi,1(1),Ωi,2(ξσ)=Pi,2(ξσ)ξσPi,2(1)B(ξσ)=E1Cn(ξσ)+ρCn(ξσ)Cξn(ξσ)+ρqn+1ȷ=1nγȷ[Cnȷ+1Cnȷ](E1+ρCξn(ξσ))×[ξσ{Cn+1(1)Cn+1(0)}+Cn+1(0))]ρCn(ξσ)[Cn+1(1)Cn+1(0)].

Solution of the system (Eq. (2.10)), produces the unknown coefficients and then they can be used in Eq. (3.9) to determine the numerical solution of the given fractional model.

3.2. Case 2

Here, the proposed scheme is described using s=2 for which X=(ξ,ζ). Using Eq. (2.10) and the numerical strategy presented before, Eq. (1.1) transforms to:

R(α)1αȷ=0nγȷ[Cnȷ+1(ξ,ζ)Cnȷ(ξ,ζ)]+{Cn+1(ξ,ζ)Cξn+1(ξ,ζ)+Cn+1(ξ,ζ)Cζn+1(ξ,ζ)ϱCξξn+1(ξ,ζ)ϱCζζn+1(ξ,ζ)}. (3.11)

Further simplification of Eq. (3.11) leads to:

(E1+ρCξn(ξ,ζ)+ρCζn(ξ,ζ))Cn+1(ξ,ζ)+ρCnCξn+1(ξ,ζ)+ρCnCζn+1(ξ,ζ)ρϱCξξn+1(ξ,ζ)ρϱCζζn+1(ξ,ζ)=E1Cn(ξ,ζ)+ρCn(ξ,ζ)Cξn(ξ,ζ)+ρCn(ξ,ζ)Cζn(ξ,ζ)+ρqn+1ȷ=1nγȷ[Cnȷ+1(ξ,ζ)Cnȷ(ξ,ζ)]. (3.12)

Assume the mixed highest order derivative by two dimensional Haar wavelet truncated series as follows:

Cξξζζn+1(ξ,ζ)=i=12ϖι=12ϖηi,ιn+1ϒi(ξ)ϒι(ζ), (3.13)

where ηi,ιn+1 represent the coefficient of wavelet to be measured numerically. Taking integration of Eq. (3.13) with respect to y from 0 to ζ one gets:

Cξξζn+1(ξ,ζ)=i=12ϖι=12ϖηi,ιn+1ϒi(ξ)Pι,1(ζ)+Cξξζn+1(ξ,0). (3.14)

Integration of Eq. (3.14) from 0 to 1 with respect to y, produces:

Cξξζn+1(ξ,0)=Cξξn+1(ξ,1)Cξξn+1(ξ,0)i=12ϖι=12ϖηi,ιn+1ϒi(ξ)Pι,2(1). (3.15)

Using Eq. (3.15) in Eq. (3.14) the resultant is:

Cξξζn+1(ξ,ζ)=i=12ϖι=12ϖηi,ιn+1ϒi(ξ)[Pι,1(ζ)Pι,2(1)]+Cξξn+1(ξ,1)Cξξn+1(ξ,0). (3.16)

Again integration of Eq. (3.16) with respect to y from 0 to y gives:

Cξξn+1(ξ,ζ)=i=12ϖι=12ϖηi,ιn+1ϒi(ξ)[Pι,2(ζ)ζPι,2(1)]+ζCξξn+1(ξ,1)+(1ζ)Cξξn+1(ξ,0). (3.17)

In light of the above calculations the following results can be extracted:

Cζζn+1(ξ,ζ)=i=12ϖι=12ϖηi,ιn+1[Pi,2(ξ)ξPi,2(1)]ϒι(ζ)+ξCζζn+1(1,ζ)+(1ξ)Cζζn+1(0,ζ), (3.18)
Cξn+1(ξ,ζ)=i=12ϖι=12ϖηi,ιn+1[Pi,2(ξ)Pi,2(1)][Pι,2(ζ)ζPι,2(1)]+ζCξn+1(ξ,1)+(1ζ)Cξn+1(ξ,0)+Cn+1(1,ζ)Cn+1(0,ζ)ζCn+1(1,1)+ζCn+1(0,1)+(ζ1)Cn+1(1,0)+(1ζ)Cn+1(0,0), (3.19)
Cζn+1(ξ,ζ)=i=12ϖι=12ϖηi,ιn+1[Pi,2(ξ)ξPi,2(1)][Pι,2(ζ)Pι,2(1)]+ξCζn+1(1,ζ)+(1ξ)Cζn+1(0,ζ)+Cn+1(ξ,1)Cn+1(ξ,0)ξCn+1(1,1)+ξCn+1(1,0)+(ξ1)Cn+1(0,1)+(1ξ)Cn+1(0,0), (3.20)
Cn+1(ξ,ζ)=i=12ϖι=12ϖηi,ιn+1[Pi,2(ξ)ξPi,2(1)][Pι,2(ζ)ζPι,2(1)]+ζ{Cn+1(ξ,1)Cn+1(0,1)}+(1ζ)[Cn+1(ξ,0)Cn+1(0,0)]+ξ{Cn+1(1,ζ)Cn+1(0,ζ)}ξζ{Cn+1(1,1)Cn+1(0,1)}+ξ(ζ1)Cn+1(1,0)+ξ(1ζ)Cn+1(0,0)+Cn+1(0,ζ). (3.21)

Further, the usage of Eqs. (3.17)-(3.21) in (3.12) and evaluation at (ξ,ζ)(ξσ,ζδ)=(σ0.52ϖ,δ0.52ϖ) where σ,δ=1,2,...,2ϖ, generates the system:

i=12ϖι=12ϖηi,ιn+1[(E1+ρCξn(ξ,ζ)+ρCζn(ξ,ζ))Ωi,ι1(σ,δ)+ρCnΩi,ι2(σ,δ)ρϱΩi,ι3(σ,δ)]=B(σ,δ), (3.22)

where

Ωi,ι1(σ,δ)=[Pi,2(ξσ)ξσPi,2(1)][Pι,2(ζδ)ζδPι,2(1)],Ωi,ι2(σ,δ)=[Pi,2(ξσ)Pi,2(1)][Pι,2(ζδ)ζδPι,2(1)]+[Pi,2(ξσ)ξσPi,2(1)][Pι,2(ζδ)Pι,2(1)],Ωi,ι3(σ,δ)=ϒi(ξσ)[Pι,2(ζδ)ζδPι,2(1)]+[Pi,2(ξσ)ξσPi,2(1)]ϒι(ζ),B(σ,δ)=E1Cn(ξσ,ζδ)+ρCn(ξσ,ζδ)Cξn(ξσ,ζδ)+ρCn(ξσ,ζδ)Cζn(ξσ,ζδ)+ρqn+1ȷ=1nγȷ{Cnȷ+1(ξσ,ζδ)Cnȷ(ξσ,ζδ)}(E1+ρCξn(ξσ,ζδ)+ρCζn(ξσ,ζδ){ζδ[Cn+1(ξσ,1)Cn+1(0,1)]+(1ζδ)[Cn+1(ξσ,0)Cn+1(0,0)]+ξσ[Cn+1(1,ζδ)Cn+1(0,ζδ)]ξσζδ[Cn+1(1,1)Cn+1(0,1)]+ξσ(ζδ1)Cn+1(1,0)+ξσ(1ζδ)Cn+1(0,0)+Cn+1(0,ζδ)}ρCn(ξσ,ζδ){ζδCξn+1(ξσ,1)+(1ζδ)Cξn+1(ξσ,0)+Cn+1(1,ζδ)Cn+1(0,ζδ)ζδCn+1(1,1)+ζδCn+1(0,1)+(ζδ1)Cn+1(1,0)+(1ζδ)Cn+1(0,0)+ξσCζn+1(1,ζδ)+(1ξσ)Cζn+1(0,ζδ)+Cn+1(ξσ,1)Cn+1(ξσ,0)ξσCn+1(1,1)+ξσCn+1(1,0)+(ξσ1)Cn+1(0,1)+(1ξσ)Cn+1(0,0)}+ρϱ{ζδCξξn+1(ξσ,1)+(1ζδ)Cξξn+1(ξσ,0)+ξσCζζn+1(1,ζδ)+(1ξ)Cζζn+1(0,ζδ)}.

The above system can be solved to obtain the required unknown wavelet coefficients which can be substituted in Eqs. (3.17)-(3.21) to refine the solution and derivative at arbitrary time.

4. Stability analysis

In this part of the paper, the computational stability of the proposed scheme for two space dimension problems is elucidated via sufficient condition.

Theorem

Suppose C is the approximate solution of problem Eq. (1.1) , then the amplification matrix can be defined as =ZA1BZ1 . The method will be stable if ||||1 .

Proof

The matrix forms of Eqs. (3.17)-(3.21) are:

Cζζn+1(ξ,ζ)=Vηn+1+V˜n+1, (4.1)
Cξξn+1(ξ,ζ)=Wηn+1+W˜n+1, (4.2)
Cζn+1(ξ,ζ)=Xηn+1+X˜n+1, (4.3)
Cξn+1(ξ,ζ)=Yηn+1+Y˜n+1, (4.4)
Cn+1(ξ,ζ)=Zηn+1+Z˜n+1, (4.5)

where ηn+1=ηi,ιn+1, V,W,X,Y,Z and V˜n+1,W˜n+1,X˜n+1,Y˜n+1,Z˜n+1 are the matrices of Cζζn+1,Cξξn+1,Cζn+1,Cξn+1 and Cn+1 at collocation points and boundary terms, respectively. Substituting Eqs. (4.1)-(4.5) in Eq. (3.22), we have:

[(E1+ρCξn(ξ,ζ)+ρCζn(ξ,ζ))Z+ρY+ρXρϱWρϱV]ηn+1=[(E1+ρCξn(ξ,ζ)+ρCζn(ξ,ζ))Z]ηn+n+1, (4.6)

where

n+1=[(E1+ρCξn(ξ,ζ)+ρCζn(ξ,ζ))Z˜n+1+ρY˜n+1+ρX˜n+1ρϱW˜n+1ρϱV˜n+1]+[(E1+ρCξn(ξ,ζ)+ρCζn(ξ,ζ))Z˜n]+ρqn+1ȷ=1nγȷ[Cnȷ+1(ξ,ζ)Cnȷ(ξ,ζ)].

The above equation (Eq. (4.6)) can also be written as:

ηn+1=A1Bηn+A1n+1, (4.7)

where A=(E1+ρCξn(ξ,ζ)+ρCζn(ξ,ζ))Z+ρY+ρXρϱWρϱV and B=(E1+ρCξn(ξ,ζ)+ρCζn(ξ,ζ))Z. Inserting Eq. (4.7) in Eq. (4.5) leads to:

Cn+1=ZA1Bηn+ZA1n+1+Z˜n+1. (4.8)

Getting the value of ηn from Eq. (4.5) then using in Eq. (4.8), we get:

Cn+1=ZA1BZ1CnZA1BZ1Z˜n+ZA1n+1+Z˜n+1. (4.9)

If Cn+1˜ is approximate solution then:

Cn+1˜=ZA1BZ1Cn˜ZA1BZ1Z˜n+ZA1n+1+Z˜n+1. (4.10)

From Eqs. (4.9) - Eq. (4.10) it follows that:

en+1=en,

where =ZA1BZ1 is the amplification matrix. If ||||1 then the scheme will be stable according to Lax-Richtmyer criterion.

5. Algorithm

Input: Specify the space domain [0,1], j, t, ϱ, and Δt.

Output: Numerical solution of Cn(ξ,t).

Step 1: Define Xi,i=1,2,3,...,2ϖ.

Step 2: At Xi define ϒ,Pı,γ given in Eqs. (2.1)-(2.5).

Step 3: For n=0 (do the following steps)

Step 4: Generate the matrices Ωi,1,Ωi,2 in Eq. (3.8).

Step 5: Compute the unknown coefficient ηi in Eq. (3.10).

Step 6: Approximate the solution Cn+1 in Eq. (3.9).

Step 7: For n=1:N.

Step 8: Repeat steps 4-6.

6. Numerical simulations

Here, the proposed scheme is implemented to solve some benchmark problems. To confirm the effectiveness, the following error measures are incorporated:

L=max1i2ϖ|(Cin)ext(Cin)app|,L2=(i=12ϖ((Cin)ext(Cin)app)2)12,Relative Error=max1i2ϖ|(Cin)ext(Cin)app|max1i2ϖ|(Cin)ext|,LRMS=(12ϖi=12ϖ((Cin)ext(Cin)app)2)12.

Besides this, the computational rate of convergence in time and space directions are calculated via the following estimation formulae:

Order=log(LΔ)log(LΔ+1)log(2),

where Δ=Δt,ΔX, in time and spatial directions, respectively.

Problem 6.1

Consider Eq. (1.1) for ξ[0,1],t[0,1],ϱ=2 and R(α)=1. The artificial analytical solution of this problem is C(ξ,t)=t2sin(πξ). The associated source function is derived using Eq. (2.9) which is given below:

2R(α)1αt2sin(πξ)Eα,3(α1αtα)+πt4cos(πξ)sin(πξ)+ϱπ2t2sin(πξ).

The proposed scheme is implemented and the error norms, L, L2, and Relative error (RE), for various values of α, M, N, and time are presented Table 1.

This table indicates that increasing the value of M also increases the accuracy. In Table 2, the outcomes of the current scheme in terms of L are compared to the existing work in literature [37] for α=0.2 and 0.5 at different times. From comparison it is clear that for small number of collocation points computed results are better from the cited work. In Table 3, Table 4 the computational order of convergence, in terms of L error norm are matched with those given in [37], [41] in the temporal and spatial directions, respectively. In Table 5, the error norms L, L2 and RE, along with the spectral radius (SR) and computational time (CT) for α=0.5 and M=27, are presented which demonstrate that the accuracy of the norms improves with the variation of resolution level. From tables one can see that present scheme converges fast in spatial direction because the computed values are more near to 2. The similar results are true in temporal direction. Additionally, the results are plotted at different times when Δt=0.01,0.001, N=100,500, and α=0.2,0.9, in two dimensional and three dimensional forms, in Figure 1, Figure 2, respectively. The close agreement of the computational and exact solutions is obvious from figures.

Table 1.

Numerical solutions for Problem 6.1 for different N, t, Δt and α.

Proposed method
L
L2
RE
t M α = 0.2,N = 512 α = 0.5,N = 256 α = 0.2,N = 512 α = 0.5,N = 256 α = 0.2,N = 512 α = 0.5,N = 256
0.2 8 2.13397e-06 4.01746e-06 2.90303e-05 3.83350e-05 5.33494e-05 1.00439e-04
0.4 8 2.95357e-05 3.84600e-05 4.43698e-04 3.53631e-04 1.84599e-04 2.40380e-04
0.6 8 1.45629e-04 1.67544e-04 2.23932e-03 1.63550e-03 4.04528e-04 4.65408e-04
0.8 8 4.58489e-04 4.99372e-04 7.07294e-03 5.06275e-03 7.16393e-04 7.80284e-04
1.0 8 1.12419e-03 1.18962e-03 1.72612e-02 1.22796e-02 1.12419e-03 1.18965e-03



0.2 16 5.39223e-07 9.07127e-07 7.57134e-06 8.38276e-06 1.34806e-05 2.26786e-05
0.4 16 7.77025e-06 9.66260e-06 1.18234e-04 9.04615e-05 4.85643e-05 6.03924e-05
0.6 16 3.86403e-05 4.34396e-05 5.97541e-04 4.31765e-04 1.07335e-04 1.20668e-04
0.8 16 1.22051e-04 1.31172e-04 1.88774e-03 1.34618e-03 1.90705e-04 2.04961e-04
1.0 16 2.99766e-04 3.14555e-04 4.60678e-03 3.27217e-03 2.99768e-04 3.14561e-04



0.2 32 1.29216e-07 1.35615e-07 1.91639e-06 1.36608e-06 3.23040e-06 3.39045e-06
0.4 32 1.91937e-06 1.98373e-06 3.04471e-05 2.14955e-05 1.19961e-05 1.23986e-05
0.6 32 9.71111e-06 1.00962e-05 1.54129e-04 1.08953e-04 2.69754e-05 2.80456e-05
0.8 32 3.10510e-05 3.19263e-05 4.87082e-04 3.44432e-04 4.85174e-05 4.98858e-05
1.0 32 7.67007e-05 7.82759e-05 1.18875e-03 8.40916e-04 7.67010e-05 7.82774e-05



0.2 64 6.75786e-08 1.88705e-07 9.02243e-07 2.06008e-06 1.68947e-06 4.71770e-06
0.4 64 6.16951e-07 1.00340e-06 8.27416e-06 9.32305e-06 3.85596e-06 6.27138e-06
0.6 64 2.71532e-06 3.49836e-06 3.96560e-05 3.19958e-05 7.54259e-06 9.71784e-06
0.8 64 8.08555e-06 9.40997e-06 1.24134e-04 9.14976e-05 1.26337e-05 1.47034e-05
1.0 64 1.90176e-05 2.10456e-05 3.02177e-04 2.16966e-04 1.90176e-05 2.10460e-05



0.2 128 5.83100e-08 2.19688e-07 9.10151e-07 2.48059e-06 1.45776e-06 5.49231e-06
0.4 128 3.00418e-07 9.01781e-07 4.07910e-06 9.91652e-06 1.87762e-06 5.63624e-06
0.6 128 9.93889e-07 2.24716e-06 1.26941e-05 2.30198e-05 2.76082e-06 6.24223e-06
0.8 128 2.58049e-06 4.70474e-06 3.41495e-05 4.45199e-05 4.03203e-06 7.35130e-06
1.0 128 5.64351e-06 8.89077e-06 7.89210e-05 8.03697e-05 5.64353e-06 8.89094e-06

Table 2.

L norm for different γ values when Δt = 0.01 of Problem 6.1.

L[37]
L Proposed method
Δ t α = 0.2 , N = 500 α = 0.5 , N = 250 α = 0.2 , N = 256 α = 0.5 , N = 128
0.2 3.08595e-07 3.24140e-07 3.3507e-07 5.1961e-07
0.4 1.48688e-06 2.19986e-06 1.2961e-06 1.4056e-06
0.6 3.46559e-06 5.59933e-06 3.0324e-06 3.7515e-06
0.8 6.21777e-06 1.04261e-05 5.4448e-06 7.0975e-06
1 9.70636e-06 1.66560e-05 8.4964e-06 1.1420e-05

Table 3.

Comparison of L norm when M = 212 in spatial direction of Problem 6.1.

[41]
[37]
Proposed method
α N L Order L Order L Order
0.2 23 1.24013e-02 ... 1.20798e-02 ... 1.52190e-03 ...
24 3.12783e-03 1.987262 3.03534e-03 1.992661 3.81452e-04 1.996308
25 7.84221e-04 1.995831 7.61955e-04 1.994081 9.54691e-05 1.998390
26 1.99548e-04 1.974526 1.90552e-04 1.999520 2.38710e-05 1.999773
27 5.47402e-05 1.866062 4.76511e-05 1.999604 5.9687e-06 1.999770



0.3 23 1.23742e-02 ... 1.20542e-02 ... 1.51861e-03 ...
24 3.12128e-03 1.987124 3.02885e-03 1.992688 3.80630e-04 1.996281
25 7.82583e-04 1.995819 7.60318e-04 1.994097 9.52652e-05 1.998371
26 1.99139e-04 1.974472 1.90142e-04 1.999523 2.38201e-05 1.999771
27 5.46367e-05 1.865829 4.75486e-05 1.999604 5.95582e-06 1.999806



0.4 23 1.23351e-02 ... 1.20173e-02 ... 1.51401e-03 ...
24 3.11185e-03 1.986927 3.019534e-03 1.992726 3.79462e-04 1.996345
25 7.80229e-04 1.995801 7.57966e-04 1.994120 9.49711e-05 1.998388
26 1.98550e-04 1.974394 1.89554e-04 1.999526 2.37470e-05 1.9997417
27 5.44879e-05 1.865497 4.74015e-05 1.999605 5.93727e-06 1.999872



0.5 23 1.22824e-02 ... 1.19678e-02 ... 1.50764e-03 ...
24 3.09911e-03 1.986662 3.00696e-03 1.992777 3.77847e-04 1.996292
25 7.77049e-04 1.995778 7.54794e-04 1.994153 9.45743e-05 1.998374
26 1.97755e-04 1.974291 1.88760e-04 1.999530 2.36475e-05 1.999786
27 5.42862e-05 1.865055 4.72029-05 1.999605 5.91227e-06 1.999874

Table 4.

L norm comparison when N = 29 in temporal direction of Problem 6.1.

[41]
[37]
Proposed method
α M L Order L Order L Order
0.2 23 4.73848e-03 ... 1.12312e-03 ... 1.12121e-03 ...
24 2.45311e-03 0.949812 2.98708e-04 1.910700 2.96782e-04 1.917578
25 1.24840e-03 0.974528 7.56481e-05 1.981362 7.49981e-05 1.984470
26 6.30558e-03 0.985385 2.008720-05 1.913028 1.90182e-05 1.979487
27 3.17781e-03 0.988597 6.77037e-06 1.568970 5.64352e-06 1.752704



0.3 23 4.75003e-03 ... 1.13793e-03 ... 1.1360e-03 ...
24 2.45506e-03 0.952182 3.02623e-04 1.910816 3.0070e-04 1.917566
25 1.24836e-03 0.975728 7.66645e-05 1.980889 7.4758e-05 2.008025
26 6.30264e-04 0.985999 1.97780e-05 1.954666 1.9019e-05 1.974787
27 3.17562e-04 0.988917 6.68258e-06 1.565417 5.5615e-06 1.773895



0.4 23 4.76689e-03 ... 1.15961e-03 ... 1.1576e-03 ...
24 2.45781e-03 0.955677 3.08263e-04 1.911400 3.0631e-04 1.918072
25 1.24824e-03 0.977474 7.81092e-05 1.980597 7.6192e-05 2.007281
26 6.29823e-04 0.986879 1.93476e-05 2.013340 1.9384e-05 1.974773
27 3.17240e-04 0.989371 6.56173e-06 1.560005 5.4489e-06 1.830829



0.5 23 4.79195e-03 ... 1.19158e-03 ... 1.1892e-03 ...
24 2.46197e-03 0.960800 3.16494e-04 1.912633 3.1445e-04 1.919089
25 1.24815e-03 0.980017 8.01948e-05 1.980595 7.8249e-05 2.006686
26 6.29224e-04 0.988149 1.88648e-05 2.087812 1.9902e-05 1.975159
27 3.16796e-04 0.990020 6.39245e-06 1.561256 5.2927e-06 1.910838

Table 5.

Variation of resolution level j when M = 27 and α = 0.5 of Problem 6.1 with CT and SR.

t j L L2 RE SR CT
0.2 3.0 5.90272e-05 1.67680e-04 1.48282e-03 0.089505 0.526569
0.2 4.0 1.48390e-05 5.94109e-05 3.71422e-04 0.089603 0.445822
0.2 5.0 3.70541e-06 2.09630e-05 9.26631e-05 0.089628 0.658877
0.2 6.0 9.16714e-07 7.33284e-06 2.29196e-05 0.089634 1.132115
0.2 7.0 2.19688e-07 2.48059e-06 5.49231e-06 0.089636 2.552979



0.4 3.0 2.37864e-04 6.74768e-04 1.49385e-03 0.089476 0.276035
0.4 4.0 5.97487e-05 2.39038e-04 3.73880e-04 0.089581 0.369590
0.4 5.0 1.49052e-05 8.42881e-05 9.31856e-05 0.089607 0.587915
0.4 6.0 3.68614e-06 2.94150e-05 2.30401e-05 0.089614 1.108766
0.4 7.0 9.01781e-07 9.91652e-06 5.63624e-06 0.089615 2.414764



0.6 3.0 5.38356e-04 1.52401e-03 1.50267e-03 0.092675 0.271826
0.6 4.0 1.35060e-04 5.39825e-04 3.75620e-04 0.092810 0.391243
0.6 5.0 3.37041e-05 1.90283e-04 9.36508e-05 0.092844 0.571425
0.6 6.0 8.40344e-06 6.64152e-05 2.33446e-05 0.092852 1.074917
0.6 7.0 2.24716e-06 2.30198e-05 6.24223e-06 0.092854 2.376389



0.8 3.0 9.61689e-04 2.71577e-03 1.50991e-03 0.101547 0.256217
0.8 4.0 2.40826e-04 9.61866e-04 3.76744e-04 0.101748 0.356182
0.8 5.0 6.02922e-05 3.39010e-04 9.42350e-05 0.101798 0.547009
0.8 6.0 1.53671e-05 1.18766e-04 2.40128e-05 0.101811 1.057461
0.8 7.0 4.70474e-06 4.45199e-05 7.35130e-06 0.101814 2.384513



1.0 3.0 1.50757e-03 4.24749e-03 1.51487e-03 0.117683 0.255672
1.0 4.0 3.78245e-04 1.50418e-03 3.78702e-04 0.117983 0.355794
1.0 5.0 9.50983e-05 5.30232e-04 9.51269e-05 0.118059 0.554251
1.0 6.0 2.51631e-05 1.87493e-04 2.51650e-05 0.118078 1.069269
1.0 7.0 8.89077e-06 8.03697e-05 8.89094e-06 0.118082 2.301954

Figure 1.

Figure 1

Comparison of two-dimensional exact and approximate solutions at various time points for Problem 6.1.

Figure 2.

Figure 2

Three dimensional exact and approximate solutions with corresponding error and the two dimensional error at t = 1, when N = 100, Δt = 0.01, α = 0.25 and ξ ∈ [0,1] for Problem 6.1.

Problem 6.2

Consider Eq. (1.1) for ξ[0,1]Rs,s=1,t[0,1],ϱ=1 and R(α)=1. The required conditions for this problem are used from the exact solution C(ξ,t)=t2cos(πξ). The relevant source term is given by:

2R(α)1αt2cos(πξ)Eα,3(α1αtα)πt4cos(πξ)sin(πξ)+ϱπ2t2cos(πξ).

Two norms L, L2 and RE for this problem are tabulated in Table 6 using different parameters α, M, N and t. In Table 7, the L norm for α=0.5 at various Δt are compared with the results in the article [37]. The spatiotemporal order of convergence using L norm are also presented and matched with the same reference work in Table 8 and Table 9, respectively. In Table 10, the error norms L, L2, and RE, along with the SR and CT for α=0.5 and M=27, are presented. These results demonstrate that as j is increasing, the accuracy also raises. Approximated and exact measures at different time with Δt=0.01,0.002, N=80,200 and α=0.3,0.7 are displayed in Fig. 3 in the form of two dimension. Also, the three dimensional view of the of computed and closed form solutions with their error, and the error in the two dimensional solutions are plotted in Fig. 4. It is observed from Figure 3, Figure 4 that computational and exact solutions overlap.

Table 6.

Computed results of Problem 6.2 for different values of N, t, Δt and α.

Proposed Method
L
L2
RE
t M α = 0.2,N = 512 α = 0.5,N = 256 α = 0.2,N = 512 α = 0.5,N = 256 α = 0.2,N = 512 α = 0.5,N = 256
0.2 8 3.15620e-06 2.07610e-06 5.03871e-05 2.30403e-05 7.89053e-05 5.19034e-05
0.4 8 5.36003e-05 4.76953e-05 8.56619e-04 5.37308e-04 3.35004e-04 2.98101e-04
0.6 8 2.75986e-04 2.60030e-04 4.40843e-03 2.93297e-03 7.66633e-04 7.22320e-04
0.8 8 8.82759e-04 8.50398e-04 1.40859e-02 9.58697e-03 1.37932e-03 1.32877e-03
1.0 8 2.18066e-03 2.12449e-03 3.47440e-02 2.39220e-02 2.18067e-03 2.12453e-03



0.2 16 8.50936e-07 6.02097e-07 1.35886e-05 6.71138e-06 2.12735e-05 1.50527e-05
0.4 16 1.43452e-05 1.29385e-05 2.29267e-04 1.45828e-04 8.96581e-05 8.08673e-05
0.6 16 7.37863e-05 6.99264e-05 1.17857e-03 7.88817e-04 2.04963e-04 1.94244e-04
0.8 16 2.35982e-04 2.28090e-04 3.76508e-03 2.57129e-03 3.68724e-04 3.56397e-04
1.0 16 5.83037e-04 5.69267e-04 9.28764e-03 6.40921e-03 5.83040e-04 5.69278e-04



0.2 32 2.28484e-07 1.93255e-07 3.65254e-06 2.17403e-06 5.71214e-06 4.83147e-06
0.4 32 3.73919e-06 3.49692e-06 5.97739e-05 3.94650e-05 2.33700e-05 2.18562e-05
0.6 32 1.91332e-05 1.84211e-05 3.05637e-04 2.07907e-04 5.31480e-05 5.11706e-05
0.8 32 6.10857e-05 5.95821e-05 9.74649e-04 6.71859e-04 9.54468e-05 9.30989e-05
1.0 32 1.50812e-04 1.48152e-04 2.40237e-03 1.66822e-03 1.50812e-04 1.48155e-04



0.2 64 6.73696e-08 8.67971e-08 1.08070e-06 9.88821e-07 1.68425e-06 2.16997e-06
0.4 64 9.87961e-07 1.04302e-06 1.58087e-05 1.18178e-05 6.17478e-06 6.51899e-06
0.6 64 4.94947e-06 5.04306e-06 7.90993e-05 5.70204e-05 1.37486e-05 1.40088e-05
0.8 64 1.56849e-05 1.58193e-05 2.50323e-04 1.78582e-04 2.45077e-05 2.47182e-05
1.0 64 3.85910e-05 3.87848e-05 6.14837e-04 4.37016e-04 3.85912e-05 3.87856e-05



0.2 128 2.65417e-08 6.00764e-08 4.28421e-07 6.88351e-07 6.63545e-07 1.50194e-06
0.4 128 2.88042e-07 4.19176e-07 4.62309e-06 4.78201e-06 1.80027e-06 2.61990e-06
0.6 128 1.33890e-06 1.63745e-06 2.14318e-05 1.86044e-05 3.71919e-06 4.54855e-06
0.8 128 4.12508e-06 4.67725e-06 6.58988e-05 5.29743e-05 6.44546e-06 7.30834e-06
1.0 128 1.00141e-05 1.09324e-05 1.59653e-04 1.23480e-04 1.00141e-05 1.09326e-05

Table 7.

L norm at t = 1 of Problem 6.2.

L[37]
L [Proposed method]
Δ t α = 0.2 , N = 500 α = 0.5 , N = 250 α = 0.2 , N = 256 α = 0.5 , N = 128
0.002 2.76831e-05 7.37909e-06 2.56318e-05 6.87741e-06
0.001 2.72299e-05 6.92220e-06 2.51776e-05 6.41905e-06
0.0005 2.71164e-05 6.80815e-06 2.50639e-05 6.30479e-06
0.00025 2.70881e-05 6.77977e-06 2.50354e-05 6.27621e-06

Table 8.

Comparison of L norm when M= 212 in spatial direction of Problem 6.2.

[37]
Proposed method
α N L Order L Order
0.2 23 2.66277e-03 ... 3.93127e-04 ...
24 6.72366e-04 1.985608 1.00340e-04 1.970101
25 1.69762e-04 1.985730 2.51733e-05 1.994924
26 4.25054e-05 1.997800 6.31072e-06 1.996020
27 1.06427e-05 1.997780 1.58526e-06 1.993087



0.3 23 2.65980e-03 ... 3.92645e-04 ...
24 6.71585e-04 1.985681 1.00214e-04 1.970137
25 1.69569e-04 1.985699 2.51420e-05 1.994917
26 4.24559e-05 1.997832 6.30280e-06 1.996034
27 1.06304e-05 1.997773 1.58323e-06 1.993121



0.4 23 2.65554e-03 ... 3.91950e-04 ...
24 6.70459e-04 1.985785 1.00033e-04 1.970189
25 1.69289e-04 1.985653 2.50967e-05 1.994906
26 4.23848e-05 1.997878 6.29137e-06 1.996054
27 1.06126e-05 1.997762 1.58031e-06 1.993166



0.5 23 2.64977e-03 ... 3.91001e-04 ...
24 6.68935e-04 1.985928 9.97861e-05 1.970261
25 1.68912e-04 1.985592 2.50350e-05 1.994892
26 4.22884e-05 1.997940 6.27577e-06 1.996082
27 1.05886e-05 1.997748 1.57632e-06 1.993229

Table 9.

L norm comparison when N = 211 in temporal direction of Problem 6.2.

[37]
Proposed method
α M L Order L Order
0.2 23 2.18033e-03 ... 2.18032e-03 ...
24 5.82692e-04 1.903742 5.82677e-04 1.903770
25 1.50464e-04 1.953316 1.50448e-04 1.953435
26 3.82424e-05 1.976175 3.82259e-05 1.976640
27 9.66513e-06 1.984311 9.64859e-06 1.986158



0.3 23 2.16774e-03 ... 2.16772e-03 ...
24 5.79372e-04 1.903630 5.79356e-04 1.903658
25 1.49603e-04 1.953348 1.49587e-04 1.953467
26 3.80217e-05 1.976247 3.80052e-05 1.976714
27 9.60898e-06 1.984370 9.59245e-06 1.986225



0.4 23 2.14944e-03 ... 2.14945e-03 ...
24 5.74606e-04 1.903320 5.745936e-04 1.903354
25 1.48382e-04 1.953253 1.48367e-04 1.953370
26 3.77122e-05 1.976219 3.76960e-05 1.976690
27 9.53096e-06 1.984338 9.51453e-06 1.986206



0.5 23 2.12314e-03 ... 2.12338e-03 ...
24 5.67809e-04 1.902718 5.67859e-04 1.902757
25 1.46655e-04 1.952975 1.46655e-04 1.953101
26 3.72772e-05 1.976067 3.72648 e-05 1.976544
27 9.42186e-06 1.984209 9.40643 e-06 1.986094

Table 10.

Variation of resolution level j when M = 27 and α = 0.5 of Problem 6.2 with SR and CT.

t j L L2 RE SR CT
0.2 3.0 1.28337e-05 3.66619e-05 3.22395e-04 0.155909 0.087431
0.2 4.0 3.25907e-06 1.32528e-05 8.15750e-05 0.156057 0.043743
0.2 5.0 8.27236e-07 4.74645e-06 2.06871e-05 0.156093 0.055777
0.2 6.0 2.13757e-07 1.73335e-06 5.34433e-06 0.156103 0.108222
0.2 7.0 6.00764e-08 6.88351e-07 1.50194e-06 0.156105 0.313644



0.4 3.0 5.30066e-05 1.51464e-04 3.32894e-04 0.129058 0.022449
0.4 4.0 1.36024e-05 5.52518e-05 8.51174e-05 0.129149 0.031671
0.4 5.0 3.57778e-06 2.05124e-05 2.23679e-05 0.129172 0.051352
0.4 6.0 1.05058e-06 8.51070e-06 6.56662e-06 0.129178 0.105007
0.4 7.0 4.19176e-07 4.78201e-06 2.61990e-06 0.129179 0.278491



0.6 3.0 1.25220e-04 3.58011e-04 3.49516e-04 0.085481 0.022849
0.6 4.0 3.26652e-05 1.32479e-04 9.08460e-05 0.085482 0.031901
0.6 5.0 9.05724e-06 5.18863e-05 2.51666e-05 0.085483 0.052169
0.6 6.0 3.11838e-06 2.52030e-05 8.66281e-06 0.085483 0.128524
0.6 7.0 1.63745e-06 1.86044e-05 4.54855e-06 0.085483 0.346534



0.8 3.0 2.37249e-04 6.78987e-04 3.72495e-04 0.037350 0.021950
0.8 4.0 6.31826e-05 2.55816e-04 9.88419e-05 0.037407 0.031219
0.8 5.0 1.86254e-05 1.06655e-04 2.91110e-05 0.037425 0.050431
0.8 6.0 7.46237e-06 6.01336e-05 1.16608e-05 0.037429 0.111896
0.8 7.0 4.67725e-06 5.29743e-05 7.30834e-06 0.037430 0.291517



1.0 3.0 4.00012e-04 1.14666e-03 4.01947e-04 0.090391 0.024632
1.0 4.0 1.09035e-04 4.40795e-04 1.09167e-04 0.090922 0.035285
1.0 5.0 3.43354e-05 1.95995e-04 3.43457e-05 0.091057 0.053884
1.0 6.0 1.56015e-05 1.25286e-04 1.56027e-05 0.091091 0.110523
1.0 7.0 1.09324e-05 1.23480e-04 1.09326e-05 0.091099 0.289042

Figure 3.

Figure 3

Comparison of two-dimensional exact and approximate solutions at various time points for Problem 6.2.

Figure 4.

Figure 4

Three dimensional exact and approximate solutions with absolute error and absolute error in two dimension at t = 1, N = 100, Δt = 0.001, α = 0.5 and ξ ∈ [0,1] for Problem 6.2.

Problem 6.3

Consider Eq. (1.1) for ξ[0,1]Rs,s=1,t[0,1],ϱ=1 and R(α)=1. Here, we use a different exact solution given by:

C(ξ,t)=t2exp(ξ).

The associated source term is given by:

2R(α)1αt2exp(ξ)Eα,3(α1αtα)t4exp(2ξ)ϱt2exp(ξ).

The various values of the parameters α, M, N and t are used for the numerical computations of this problem. The estimated L, L2 error norms and RE are recorded in Table 11. The spatiotemporal convergence order and L norms are compared with the work presented in [37], in Table 12, Table 13, respectively. In Table 14, the SR and CT for various values of resolution level is given which shows that accuracy increases as j increases. Numerical estimations and exact solutions at different time for Δt=0.01,0.002, N=150,70 and α=0.1,0.6 are shown in Figure 5, Figure 6. Numerical estimations clearly visualize that proposed method works well.

Table 11.

Numerical solutions of Problem 6.3 for different N, t, Δt and α.

[Proposed Method]
L
L2
RE
t Δt α = 0.2,N = 512 α = 0.5,N = 256 α = 0.2,N = 512 α = 0.5,N = 256 α = 0.2,N = 512 α = 0.5,N = 256
0.2 8 3.23244e-05 4.08329e-05 5.30825e-04 4.75576e-04 2.97578e-04 3.76274e-04
0.4 8 4.83283e-04 5.17499e-04 7.91986e-03 6.00584e-03 1.11227e-03 1.19218e-03
0.6 8 2.36247e-03 2.42635e-03 3.86021e-02 2.80602e-02 2.41654e-03 2.48430e-03
0.8 8 7.16950e-03 7.25839e-03 1.16589e-01 8.35210e-02 4.12514e-03 4.18037e-03
1.0 8 1.65951e-02 1.67150e-02 2.67882e-01 1.90905e-01 6.11097e-03 6.16111e-03



0.2 16 8.63579e-06 1.07925e-05 1.41814e-04 1.25688e-04 7.95008e-05 9.94522e-05
0.4 16 1.28943e-04 1.37619e-04 2.11292e-03 1.59698e-03 2.96762e-04 3.17038e-04
0.6 16 6.29386e-04 6.45608e-04 1.02822e-02 7.46504e-03 6.43790e-04 6.61029e-04
0.8 16 1.90579e-03 1.92870e-03 3.09823e-02 2.21868e-02 1.09654e-03 1.11081e-03
1.0 16 4.39802e-03 4.43007e-03 7.09657e-02 5.05778e-02 1.61952e-03 1.63292e-03



0.2 32 2.23394e-06 2.77492e-06 3.66858e-05 3.23153e-05 2.05656e-05 2.55708e-05
0.4 32 3.32993e-05 3.54810e-05 5.45653e-04 4.11722e-04 7.66381e-05 8.17390e-05
0.6 32 1.62424e-04 1.66513e-04 2.65340e-03 1.92526e-03 1.66141e-04 1.70490e-04
0.8 32 4.91476e-04 4.97295e-04 7.98936e-03 5.72022e-03 2.82782e-04 2.86410e-04
1.0 32 1.13324e-03 1.14151e-03 1.82843e-02 1.30315e-02 4.17301e-04 4.20757e-04



0.2 64 5.68185e-07 7.01147e-07 9.33093e-06 8.16488e-06 5.23070e-06 6.46105e-06
0.4 64 8.46053e-06 8.99669e-06 1.38637e-04 1.04396e-04 1.94719e-05 2.07261e-05
0.6 64 4.12538e-05 4.22511e-05 6.73927e-04 4.88509e-04 4.21979e-05 4.32602e-05
0.8 64 1.24798e-04 1.26200e-04 2.02867e-03 1.45161e-03 7.18055e-05 7.26830e-05
1.0 64 2.87685e-04 2.89660e-04 4.64163e-03 3.30671e-03 1.05937e-04 1.06768e-04



0.2 128 1.42657e-07 1.73156e-07 2.34267e-06 2.01609e-06 1.31330e-06 1.59563e-06
0.4 128 2.12928e-06 2.25059e-06 3.48907e-05 2.61135e-05 4.90051e-06 5.18478e-06
0.6 128 1.03865e-05 1.06004e-05 1.69674e-04 1.22556e-04 1.06242e-05 1.08536e-05
0.8 128 3.14237e-05 3.16952e-05 5.10809e-04 3.64560e-04 1.80804e-05 1.82544e-05
1.0 128 7.24388e-05 7.27811e-05 1.16875e-03 8.30835e-04 2.66748e-05 2.68270e-05

Table 12.

Error norms comparison in spatial direction with M = 211 of Problem 6.3.

[37]
Proposed method
α N L Order L Order
0.2 23 2.20006e-04 ... 7.51978e-05 ...
24 5.43064e-05 2.018348 1.85909e-05 2.016092
25 1.33344e-05 2.025971 4.43224e-06 2.068489
26 3.12217e-06 2.094532 8.94453e-07 2.308958
27 5.69465e-07 2.454869 1.54090e-08 5.859161



0.3 23 2.19273e-04 ... 7.48632e-05 ...
24 5.41247e-05 2.018367 1.85063e-05 2.016235
25 1.32887e-05 2.026090 4.41077e-06 2.068917
26 3.11030e-06 2.095072 8.88650e-07 2.311344
27 5.66088e-07 2.457956 1.38810e-08 6.000433



0.4 23 2.18223e-04 ... 7.43810e-05 ...
24 5.38646e-05 2.018391 1.83846e-05 2.016435
25 1.32233e-05 2.026251 4.37997e-06 4.384150
26 3.09344e-06 2.095803 8.80428e-07 2.314644
27 5.61387e-07 2.462145 1.18634e-08 6.213608



0.5 23 2.16816e-04 ... 7.37203e-05 ...
24 5.35164e-05 2.018423 1.82178e-05 2.016717
25 1.31358e-05 2.026479 4.33769e-06 2.070344
26 3.07075e-06 2.096839 8.69089e-07 2.319353
27 5.54967e-07 2.468117 9.20033e-09 6.561673

Table 13.

Comparison of error norm in temporal direction of Problem 6.3 with N = 24.

[37]
Proposed method
α M L Order L Order
0.2 23 1.65532e-02 ... 1.65784e-02 ...
24 4.34726e-03 1.928926 4.33871e-03 1.933965
25 1.08086e-03 2.007927 1.06200e-03 2.030483
26 2.34688e-04 2.203366 2.13336e-04 2.315582
27 1.97043e-05 3.574163 4.22874e-06 5.656760



0.3 23 1.65765e-02 ... 1.66019e-02 ...
24 4.35399e-03 1.928729 4.34563e-03 1.933707
25 1.08284e-03 2.007517 1.06415e-03 2.029861
26 2.35347e-04 2.201958 2.14160e-04 2.312947
27 1.99857e-05 3.557752 3.82638e-06 8.119509



0.4 23 1.66119e-02 ... 1.663732e-02 ...
24 4.36370e-03 1.928594 4.35560e-03 1.933479
25 1.08558e-03 2.007075 1.06714e-03 2.029121
26 2.36243e-04 2.200133 2.15290e-04 2.309398
27 2.03716e-05 3.535642 3.29441e-06 6.030117



0.5 23 1.66737e-02 ... 1.66969e-02 ...
24 4.37994e-03 1.928590 4.37174e-03 1.933303
25 1.09000e-03 2.006583 1.07177e-03 2.028208
26 2.37608e-04 2.197676 2.16953e-04 2.304541
27 2.09231e-05 3.505417 2.58682e-06 6.390067

Table 14.

Variation of resolution level j when M = 27 and α = 0.5 of Problem 6.3 with SR and CT.

t j L L2 RE SR CT
0.2 3.0 1.07971e-06 3.15736e-06 1.02453e-05 0.169377 0.103236
0.2 4.0 1.39096e-07 5.74600e-07 1.29941e-06 0.169544 0.042454
0.2 5.0 9.95041e-08 5.75263e-07 9.22316e-07 0.169586 0.055443
0.2 6.0 1.58384e-07 1.30306e-06 1.46235e-06 0.169596 0.108798
0.2 7.0 1.73156e-07 2.01609e-06 1.59563e-06 0.169599 0.318984



0.4 3.0 3.75902e-06 1.09961e-05 8.91726e-06 0.182993 0.022072
0.4 4.0 7.78124e-07 3.10708e-06 1.81727e-06 0.183161 0.031000
0.4 5.0 1.89772e-06 1.09882e-05 4.39755e-06 0.183203 0.050477
0.4 6.0 2.17998e-06 1.78797e-05 5.03194e-06 0.183213 0.103772
0.4 7.0 2.25059e-06 2.61135e-05 5.18478e-06 0.183216 0.313853



0.6 3.0 6.41881e-06 1.87820e-05 6.76752e-06 0.206032 0.024106
0.6 4.0 6.41637e-06 2.60569e-05 6.66007e-06 0.206186 0.035494
0.6 5.0 9.60339e-06 5.54555e-05 9.89056e-06 0.206225 0.055316
0.6 6.0 1.04010e-05 8.50131e-05 1.06702e-05 0.206235 0.121972
0.6 7.0 1.06004e-05 1.22556e-04 1.08536e-05 0.206237 0.344757



0.8 3.0 6.63895e-06 1.93678e-05 3.93728e-06 0.236289 0.024286
0.8 4.0 2.23104e-05 9.03413e-05 1.30262e-05 0.236393 0.033284
0.8 5.0 2.94587e-05 1.69293e-04 1.70660e-05 0.236419 0.050288
0.8 6.0 3.12469e-05 2.54109e-04 1.80314e-05 0.236425 0.101618
0.8 7.0 3.16952e-05 3.64560e-04 1.82544e-05 0.236427 0.290042



1.0 3.0 2.57975e-06 6.48945e-06 9.79162e-07 0.270739 0.023646
1.0 4.0 5.46254e-05 2.19868e-04 2.04120e-05 0.270723 0.033891
1.0 5.0 6.84531e-05 3.90540e-04 2.53800e-05 0.270720 0.052610
1.0 6.0 7.19155e-05 5.80453e-04 2.65598e-05 0.270719 0.104322
1.0 7.0 7.27811e-05 8.30835e-04 2.68270e-05 0.270719 0.269335

Figure 5.

Figure 5

This figure illustrates the comparison between two-dimensional Exact versus approximate solutions at different time points for Problem 6.3.

Figure 6.

Figure 6

Exact and approximate solutions with absolute error at t=1 when N = 100, Δt = 0.002, α = 0.5 and ξ ∈ [0,1] for Problem 6.3.

Problem 6.4

Here, we choose Eq. (1.1) in two space dimensions for (ξ,ζ)[0,1]2Rs,s=2,t[0,1],ϱ=100 and R(α)=1. To artificial closed form solution in two space variables is given by:

C(ξ,ζ,t)=t(ξ2ξ)(ζ2ζ).

The following is the function q(ξ,ζ,t):

q(ξ,ζ,t)=2R(α)1αt(ξ2ξ)(ζ2ζ)Eα,2(α1αtα)2ϱt(ξ2+ζ2ξζ).

The initial and boundary conditions are derived from the exact solutions. The proposed numerical strategy is implemented and the error norms L, L2 and RMS are listed for the distinct values of α, M, N and t in Table 15. From table the computed norms are decreasing as N and M are increasing. The order of convergence along with L, L2 and LRMS norms are outlined Table 16 which predict that the scheme is nearly second order convergent for two space dimensional problem too. The graphical comparison of the numerical and exact solutions together with an absolute error at t=1, M=128, N=16 and α=0.25 are depicted in Fig. 7. From figure the closed coincidence of both solutions are visible.

Table 15.

Numerical results of Problem 6.4 for different N, t, Δt and α.

Proposed method
L
L2
LRMS
t M α = 0.2,N = 8 α = 0.5,N = 16 α = 0.2,N = 8 α = 0.5,N = 16 α = 0.2,N = 8 α = 0.5,N = 16
0.2 8 9.91792e-10 9.90983e-10 3.79314e-09 7.69625e-09 7.11061e-08 7.21514e-08
0.4 8 3.96720e-09 3.96406e-09 1.51726e-08 3.07859e-08 1.42213e-07 1.44307e-07
0.6 8 8.92624e-09 8.91932e-09 3.41385e-08 6.92694e-08 2.13320e-07 2.16464e-07
0.8 8 1.58689e-08 1.58568e-08 6.06907e-08 1.23147e-07 2.84427e-07 2.88622e-07
1.0 8 2.47953e-08 2.47766e-08 9.48294e-08 1.92419e-07 3.55534e-07 3.60781e-07



0.2 16 2.47948e-10 2.47746e-10 9.48284e-10 1.92406e-09 1.77765e-08 1.80379e-08
0.4 16 9.91799e-10 9.91016e-10 3.79315e-09 7.69647e-09 3.55532e-08 3.60767e-08
0.6 16 2.23156e-09 2.22983e-09 8.53462e-09 1.73174e-08 5.33300e-08 5.41161e-08
0.8 16 3.96724e-09 3.96421e-09 1.51727e-08 3.07868e-08 7.11068e-08 7.21556e-08
1.0 16 6.19884e-09 6.19416e-09 2.37074e-08 4.81049e-08 8.88836e-08 9.01954e-08



0.2 32 6.19870e-11 6.19366e-11 2.37071e-10 4.81016e-10 4.44413e-09 4.50947e-09
0.4 32 2.47950e-10 2.47754e-10 9.48289e-10 1.92412e-09 8.88831e-09 9.01919e-09
0.6 32 5.57890e-10 5.57459e-10 2.13365e-09 4.32935e-09 1.33325e-08 1.35290e-08
0.8 32 9.91810e-10 9.91053e-10 3.79317e-09 7.69671e-09 1.77767e-08 1.80389e-08
1.0 32 1.54971e-09 1.54854e-09 5.92684e-09 1.20262e-08 2.22209e-08 2.25489e-08



0.2 64 1.54968e-11 1.54841e-11 5.92678e-11 1.20254e-10 1.11103e-09 1.12737e-09
0.4 64 6.19874e-11 6.19386e-11 2.37072e-10 4.81030e-10 2.22208e-09 2.25480e-09
0.6 64 1.39473e-10 1.39365e-10 5.33414e-10 1.08234e-09 3.33312e-09 3.38226e-09
0.8 64 2.47952e-10 2.47763e-10 9.48293e-10 1.92418e-09 4.44417e-09 4.50973e-09
1.0 64 3.87427e-10 3.87135e-10 1.48171e-09 3.00656e-09 5.55523e-09 5.63722e-09



0.2 128 3.87418e-12 3.87105e-12 1.48169e-11 3.00635e-11 2.77758e-10 2.81842e-10
0.4 128 1.54968e-11 1.54846e-11 5.92680e-11 1.20258e-10 5.55519e-10 5.63700e-10
0.6 128 3.48681e-11 3.48411e-11 1.33353e-10 2.70584e-10 8.33281e-10 8.45564e-10
0.8 128 6.19881e-11 6.19408e-11 2.37073e-10 4.81045e-10 1.11104e-09 1.12743e-09
1.0 128 9.68569e-11 9.67839e-11 3.70428e-10 7.51640e-10 1.38881e-09 1.40931e-09

Table 16.

Comparison of L norm when N = 23 in temporal direction of Problem 6.4.

Proposed method
α M L L2 LRMS Order
0.2 23 2.47759e-08 1.92414e-07 3.60771e-07 ...
24 6.19396e-09 4.81034e-08 9.01927e-08 2.000000
25 1.54849e-09 1.20259e-08 2.25482e-08 2.000000
26 3.87123e-10 3.00646e-09 5.63704e-09 1.999998
27 9.67808e-11 7.51616e-10 1.40926e-09 1.999999



0.3 23 2.47762e-08 1.92416e-07 3.60775e-07 ...
24 6.19404e-09 4.81040e-08 9.01938e-08 2.000000
25 1.54851e-09 1.20260e-08 2.25484e-08 2.000000
26 3.87128e-10 3.00650e-09 5.63711e-09 1.999998
27 9.67820e-11 7.51625e-10 1.40928e-09 2.000000



0.4 23 2.47764e-08 1.92418e-07 3.60778e-07 ...
24 6.19410e-09 4.81044e-08 9.01946e-08 2.000000
25 1.54853e-09 1.20261e-08 2.25487e-08 1.999995
26 3.87132e-10 3.00653e-09 5.63717e-09 2.000000
27 9.67830e-11 7.51633e-10 1.40929e-09 2.000000



0.5 23 2.47766e-08 1.92419e-07 3.60781e-07 ...
24 6.19416e-09 4.81049e-08 9.01954e-08 1.999997
25 1.54854e-09 1.20262e-08 2.25489e-08 2.000000
26 3.87135e-10 3.00656e-09 5.63722e-09 2.000000
27 9.67839e-11 7.51640e-10 1.40931e-09 1.999997

Figure 7.

Figure 7

Comparison of exact and numerical solutions and absolute error at t = 1, N = 16, M = 128, α = 0.25 and (ξ,ζ)∈[0,1]2 for Problem 6.4.

Problem 6.5

Finally, we consider the two dimensional problem Eq. (1.1) for (ξ,ζ)[0,1]2Rs,s=2,t[0,1],ϱ=0.1 and R(α)=1 with analytical solution:

C(ξ,ζ,t)=t3(1ξ2)2(1ζ2)2.

Like Problem 6.4 the associated conditions are extracted from the given solution and its corresponding source term is given as follows:

2R(α)1αt3(1ξ2)2(1ζ2)2Eα,4(α1αtα)4Rt3(3ξ4ζ2+ξ43ξ2ζ4+12ξ2ζ25ξ2+ζ45ζ2+2)4t6(ξ21)3(ζ21)3(ξ2ζξζ2+ξ+ζ).

The numerical simulation in terms of L, L2 and LRMS norms for the parameters α, M, N t are presented in Table 17. The order of convergence, L, L2 and RMS norms are shown in Table 18. Similarly, graphical solutions and error plots for t=1, M=128, N=16 and α=0.25 are displayed in Fig. 8. Data analysis discloses, the mutual agreement of exact and numerical solutions.

Table 17.

Numerical results for Problem 6.5 for different values of N, t, Δt and α.

Proposed method
L
L2
LRMS
t M α = 0.2,N = 8 α = 0.5,N = 16 α = 0.2,N = 8 α = 0.5,N = 16 α = 0.2,N = 8 α = 0.5,N = 16
0.2 8 1.83187e-06 2.56874e-06 6.39399e-06 1.94700e-05 2.45863e-04 3.74332e-04
0.4 8 1.36496e-04 7.84613e-05 4.94747e-04 5.39846e-04 2.37801e-03 1.29739e-03
0.6 8 1.61574e-03 1.31114e-03 6.01400e-03 9.30321e-03 8.56487e-03 6.62460e-03
0.8 8 9.69571e-03 8.45119e-03 3.66335e-02 6.14560e-02 2.20100e-02 1.84618e-02
1.0 8 4.22522e-02 3.68063e-02 1.54516e-01 2.67115e-01 4.75320e-02 4.10845e-02



0.2 16 1.07798e-06 5.13826e-07 3.76533e-06 3.99167e-06 1.44785e-04 7.67441e-05
0.4 16 4.38459e-05 2.44799e-05 1.58468e-04 1.68912e-04 7.61679e-04 4.05939e-04
0.6 16 4.81627e-04 3.83315e-04 1.79964e-03 2.72518e-03 2.56297e-03 1.94054e-03
0.8 16 2.88764e-03 2.46301e-03 1.08279e-02 1.78736e-02 6.50559e-03 5.36935e-03
1.0 16 1.23510e-02 1.05209e-02 4.53250e-02 7.73073e-02 1.39428e-02 1.18905e-02



0.2 32 8.50204e-07 5.97519e-08 2.97290e-06 3.36917e-07 1.14315e-04 6.47759e-06
0.4 32 1.67297e-05 7.79972e-06 5.99678e-05 5.37779e-05 2.88237e-04 1.29242e-04
0.6 32 1.50138e-04 1.07853e-04 5.59594e-04 7.66228e-04 7.96948e-04 5.45613e-04
0.8 32 8.53281e-04 6.78042e-04 3.18003e-03 4.91387e-03 1.91061e-03 1.47616e-03
1.0 32 3.54060e-03 2.86267e-03 1.29960e-02 2.10595e-02 3.99779e-03 3.23914e-03



0.2 64 7.89860e-07 1.32855e-07 2.76379e-06 8.89880e-07 1.06274e-04 1.71089e-05
0.4 64 9.43080e-06 3.21501e-06 3.35230e-05 2.21193e-05 1.61129e-04 5.31584e-05
0.6 64 6.08307e-05 3.31814e-05 2.25046e-04 2.34680e-04 3.20501e-04 1.67110e-04
0.8 64 3.01887e-04 1.94172e-04 1.11157e-03 1.40128e-03 6.67847e-04 4.20954e-04
1.0 64 1.17070e-03 7.96908e-04 4.26650e-03 5.84971e-03 1.31245e-03 8.99736e-04



0.2 128 7.74796e-07 1.64359e-07 2.71175e-06 1.12415e-06 1.04273e-04 2.16130e-05
0.4 128 7.54267e-06 2.01907e-06 2.67142e-05 1.38889e-05 1.28402e-04 3.33787e-05
0.6 128 3.77117e-05 1.37784e-05 1.38497e-04 9.66376e-05 1.97242e-04 6.88134e-05
0.8 128 1.58683e-04 6.84456e-05 5.75154e-04 4.88765e-04 3.45561e-04 1.46829e-04
1.0 128 5.56567e-04 2.60994e-04 2.00247e-03 1.90063e-03 6.15995e-04 2.92333e-04

Table 18.

Comparison of L norm when N = 23 in temporal direction of Problem 6.5.

Proposed method
α N L L2 LRMS Order
0.2 8 4.18476e-02 3.08247e-01 4.74110e-02 0.0
0.2 16 1.20496e-02 8.90183e-02 1.36918e-02 1.796153
0.2 32 3.28109e-03 2.42032e-02 3.72265e-03 1.876742
0.2 64 9.11738e-04 6.70833e-03 1.03180e-03 1.847485
0.2 128 2.97005e-04 2.16976e-03 3.33728e-04 1.618133



0.3 8 4.06580e-02 2.98421e-01 4.58997e-02 0.0
0.3 16 1.16677e-02 8.62115e-02 1.32601e-02 1.801022
0.3 32 3.17909e-03 2.34473e-02 3.60640e-03 1.875833
0.3 64 8.83832e-04 6.50124e-03 9.99946e-04 1.846768
0.3 128 2.88211e-04 2.10470e-03 3.23721e-04 1.616646



0.4 8 3.90051e-02 2.84889e-01 4.38184e-02 0.0
0.4 16 1.11654e-02 8.23572e-02 1.26672e-02 1.804634
0.4 32 3.03861e-03 2.24124e-02 3.44722e-03 1.877544
0.4 64 8.45494e-04 6.21845e-03 9.56452e-04 1.845547
0.4 128 2.76143e-04 2.01598e-03 3.10075e-04 1.614380



0.5 8 3.68063e-02 2.67115e-01 4.10845e-02 0.0
0.5 16 1.05209e-02 7.73073e-02 1.18905e-02 1.806690
0.5 32 2.86267e-03 2.10595e-02 3.23914e-03 1.877834
0.5 64 7.96908e-04 5.84971e-03 8.99736e-04 1.844875
0.5 128 2.60994e-04 1.90063e-03 2.92333e-04 1.610398

Figure 8.

Figure 8

Exact and approximate solutions with absolute error t = 1, N = 16, M = 128, α = 0.25 and (ξ,ζ)∈[0,1]2 for Problem 6.5.

7. Stability verification

Here, the stability condition discussed in Section 4, is verified computationally and graphically. In Table 19 the SR |||| is elucidated for all problems at various times. From table it is clear that ||||<1 for one and two dimensional problems and also from the Figure 9, Figure 10, Figure 11 shows that the scheme is stable. Computational and graphical verification guarantees that the scheme is stable.

Table 19.

L, L2, RMS norms and spectral radius for different time values when α = 0.5, M = 128 and N = 64 of Problem 6.1, Problem 6.2, Problem 6.5.

t L L2 RE SR
Problem 6.1

0.200000 3.70541e-06 2.09630e-05 9.26631e-05 0.089628
0.400000 1.49052e-05 8.42881e-05 9.31856e-05 0.089607
0.600000 3.37041e-05 1.90283e-04 9.36508e-05 0.092844
0.800000 6.02922e-05 3.39010e-04 9.42350e-05 0.101798
1.000000 9.50983e-05 5.30232e-04 9.51269e-05 0.118059

Problem 6.2

0.200000 8.27236e-07 4.74645e-06 2.06871e-05 0.156093
0.400000 3.57778e-06 2.05124e-05 2.23679e-05 0.129172
0.600000 9.05724e-06 5.18863e-05 2.51666e-05 0.085483
0.800000 1.86254e-05 1.06655e-04 2.91110e-05 0.037425
1.000000 3.43354e-05 1.95995e-04 3.43457e-05 0.091057

Problem 6.5

0.200000 7.31140e-07 2.54361e-06 9.28346e-05 0.430729
0.400000 7.20769e-06 2.53956e-05 1.14397e-04 0.409372
0.600000 3.64262e-05 1.33152e-04 1.71301e-04 0.354840
0.800000 1.54212e-04 5.58423e-04 3.05947e-04 0.250659
1.000000 5.47349e-04 1.96370e-03 5.55986e-04 0.158460

Figure 9.

Figure 9

Two dimensional graph of time versus spectral radius for Problem 6.1.

Figure 10.

Figure 10

Two dimensional graph of time versus spectral radius for Problem 6.2.

Figure 11.

Figure 11

Two dimensional graph of time versus spectral radius for Problem 6.5.

8. Conclusions

In this paper, a hybrid numerical method has been implemented for the time fractional Burgers' equations involving ABC derivative in one and two space dimension problems. Stability analysis for the numerical has been analyzed theoretically and verified computationally. The attained outcomes have been equated in tabulated and graphical forms with closed form solutions, showing fabulous agreement. Besides this, a comparative analysis has been made with some prior work [37], [41], where the suggested technique exhibited superiority in terms of error norms. The performance of the method has also been judged using distinct error norms with various resolution levels and time. Numerical computations verified that HW hybrid approximations technique is simple to tackle the generalized time fractional problems.

9. Merits, demerits and future plan

As usual each numerical method has merits and demerits. The proposed method uses Haar basis which are mathematically simple as define in Eqs. (2.1)-(2.2). Mostly, the coefficients of the Haar wavelets are near to zero which eases the computations. Moreover, when resolution level increases the accuracy increases. The computational cost of the proposed method increases (specifically for two dimensional problems) when the resolution level exceeds 5. Also when abrupt changes occur in a system then the method loses accuracy. In the future, one can extend this method to three-dimensional single and coupled equations with ABC derivative. Besides, some numerical experiments can be conducted using irregular domain as well. Moreover, rigorous theorems regarding the convergence and consistency of such scheme can also be explored.

Funding

No funding is available.

CRediT authorship contribution statement

Abdul Ghafoor: Supervision, Formal analysis, Data curation, Conceptualization. Muhammad Fiaz: Writing – original draft, Software, Methodology, Formal analysis. Kamal Shah: Validation, Project administration, Investigation. Thabet Abdeljawad: Writing – review & editing, Visualization, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Prince Sultan University is appreciated for paying the APC and support through TAS research lab.

Contributor Information

Abdul Ghafoor, Email: abdulghafoor@kust.edu.pk.

Muhammad Fiaz, Email: fiazktk03@gmail.com.

Kamal Shah, Email: kshah@psu.edu.sa.

Thabet Abdeljawad, Email: tabdeljawad@psu.edu.sa.

Data availability

The data would be provided on demand.

References

  • 1.Fu Z.-J., Yang L.-W., Xi Q., Liu C.-S. A boundary collocation method for anomalous heat conduction analysis in functionally graded materials. Comput. Math. Appl. 2020 [Google Scholar]
  • 2.Ahmadian A., Salahshour S., Salimi M., et al. A robust numerical approximation of advection diffusion equations with nonsingular kernel derivative. Phys. Scr. 2021;96(12) [Google Scholar]
  • 3.Li X., Haq A.U., Zhang X., et al. Numerical solution of the linear time fractional Klein-Gordon equation using transform based localized rbf method and quadrature. AIMS Math. 2020;5(5):5287–5308. [Google Scholar]
  • 4.Sene N. Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. J. Fract. Calc. Nonlinear Syst. 2021;2(1):60–75. [Google Scholar]
  • 5.Ali A., Gómez-Aguilar J.F., et al. A transform based local rbf method for 2d linear pde with Caputo–Fabrizio derivative. C. R. Math. 2020;358(7):831–842. [Google Scholar]
  • 6.Kamal R., Kamran, Rahmat G., Ahmadian A., Arshad N.I., Salahshour S. Approximation of linear one dimensional partial differential equations including fractional derivative with non-singular kernel. Adv. Differ. Equ. 2021;2021:1–15. [Google Scholar]
  • 7.Safari F., Sun H. Improved singular boundary method and dual reciprocity method for fractional derivative Rayleigh–Stokes problem. Eng. Comput. 2020:1–16. [Google Scholar]
  • 8.Yue J., Huang N.-j. Fractional Wishart processes and ε-fractional Wishart processes with applications. Comput. Math. Appl. 2018;75(8):2955–2977. [Google Scholar]
  • 9.Cruz-Duarte J.M., Rosales-Garcia J., Correa-Cely C.R., Garcia-Perez A., Avina-Cervantes J.G. A closed form expression for the Gaussian–based Caputo–Fabrizio fractional derivative for signal processing applications. Commun. Nonlinear Sci. Numer. Simul. 2018;61:138–148. [Google Scholar]
  • 10.Liu X., Kamran, Yao Y. Numerical approximation of Riccati fractional differential equation in the sense of Caputo-type fractional derivative. J. Math. 2020;2020:1–12. [Google Scholar]
  • 11.Wang F., Zhang X., Shen X., Sun J. A lattice Boltzmann model for 2d fractional advection-dispersion equation: theory and application. J. Hydrol. 2018;564:246–255. [Google Scholar]
  • 12.Liu L., Zheng L., Liu F., Zhang X. Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo–Christov flux. Commun. Nonlinear Sci. Numer. Simul. 2016;38:45–58. [Google Scholar]
  • 13.Ali I., Haq S., Aldosary S.F., Nisar K.S., Ahmad F. Numerical solution of one- and two-dimensional time-fractional Burgers equation via Lucas polynomials coupled with finite difference method. Alex. Eng. J. 2022;61(8):6077–6087. [Google Scholar]
  • 14.Liu C.-S., Chang J.-R. Recovering a source term in the time-fractional Burgers equation by an energy boundary functional equation. Appl. Math. Lett. 2018;79:138–145. [Google Scholar]
  • 15.Yokuş A., Kaya D. Numerical and exact solutions for time fractional Burgers' equation. J. Nonlinear Sci. Appl. 2017;10(7) [Google Scholar]
  • 16.Haq S., Ghafoor A. An efficient numerical algorithm for multi-dimensional time dependent partial differential equations. Comput. Math. Appl. 2018;75(8):2723–2734. [Google Scholar]
  • 17.Sari M., Gürarslan G. A sixth-order compact finite difference scheme to the numerical solutions of Burgers' equation. Appl. Math. Comput. 2009;208(2):475–483. [Google Scholar]
  • 18.Shao L., Feng X., He Y. The local discontinuous Galerkin finite element method for burger's equation. Math. Comput. Model. 2011;54(11–12):2943–2954. [Google Scholar]
  • 19.Guo Y., Shi Y.-f., Li Y.-m. A fifth-order finite volume weighted compact scheme for solving one-dimensional Burgers' equation. Appl. Math. Comput. 2016;281:172–185. [Google Scholar]
  • 20.Saka B., Dağ İ. Quartic b-spline collocation method to the numerical solutions of the Burgers' equation. Chaos Solitons Fractals. 2007;32(3):1125–1137. [Google Scholar]
  • 21.Mittal R., Rohila R. A study of one dimensional nonlinear diffusion equations by Bernstein polynomial based differential quadrature method. J. Math. Chem. 2017;55:673–695. [Google Scholar]
  • 22.Mittal R., Jiwari R., Sharma K.K. A numerical scheme based on differential quadrature method to solve time dependent Burgers' equation. Eng. Comput. 2012;30(1):117–131. [Google Scholar]
  • 23.Hosseini B., Hashemi R. Solution of Burgers' equation using a local-rbf meshless method. Int. J. Comput. Methods Eng. Sci. Mech. 2011;12(1):44–58. [Google Scholar]
  • 24.Jiwari R. A Haar wavelet quasilinearization approach for numerical simulation of Burgers' equation. Comput. Phys. Commun. 2012;183(11):2413–2423. [Google Scholar]
  • 25.Khater A., Temsah R., Hassan M. A Chebyshev spectral collocation method for solving Burgers'-type equations. J. Comput. Appl. Math. 2008;222(2):333–350. [Google Scholar]
  • 26.Ganaie I.A., Kukreja V. Numerical solution of Burgers' equation by cubic Hermite collocation method. Appl. Math. Comput. 2014;237:571–581. [Google Scholar]
  • 27.Chen C.F., Hsiao C.-H. Haar wavelet method for solving lumped and distributed-parameter systems. IEE Proc., Control Theory Appl. 1997;144(1):87–94. [Google Scholar]
  • 28.Lepik Ü. Numerical solution of differential equations using Haar wavelets. Math. Comput. Simul. 2005;68(2):127–143. [Google Scholar]
  • 29.Kaur H., Mittal R., Mishra V. Haar wavelet approximate solutions for the generalized Lane–Emden equations arising in astrophysics. Comput. Phys. Commun. 2013;184(9):2169–2177. [Google Scholar]
  • 30.Shi Z., Cao Y.-y., Chen Q.-j. Solving 2d and 3d Poisson equations and biharmonic equations by the Haar wavelet method. Appl. Math. Model. 2012;36(11):5143–5161. [Google Scholar]
  • 31.Šarler B., Aziz I., et al. Haar wavelet collocation method for the numerical solution of boundary layer fluid flow problems. Int. J. Therm. Sci. 2011;50(5):686–697. [Google Scholar]
  • 32.Berwal N., Panchal D., Parihar C. Haar wavelet method for numerical solution of telegraph equations. Ital. J. Pure Appl. Math. 2013;30:317–328. [Google Scholar]
  • 33.Ghafoor A., Haq S., Hussain M., Kumam P., Jan M.A. Approximate solutions of time fractional diffusion wave models. Mathematics. 2019;7(10):923. [Google Scholar]
  • 34.Ghafoor A., Haq S., Hussain M., Abdeljawad T., Alqudah M.A. Numerical solutions of variable coefficient higher-order partial differential equations arising in beam models. Entropy. 2022;24(4):567. doi: 10.3390/e24040567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Ghafoor A., Khan N., Hussain M., Ullah R. A hybrid collocation method for the computational study of multi-term time fractional partial differential equations. Comput. Math. Appl. 2022;128:130–144. [Google Scholar]
  • 36.Ghafoor A., Haq S., Hussain M., Kumam P. Wavelet based algorithm for numerical study of (1+2)-dimensional time fractional diffusion problems. Adv. Differ. Equ. 2020;2020(1) [Google Scholar]
  • 37.Shafiq M., Abbas M., Abdullah F.A., Majeed A., Abdeljawad T., Alqudah M.A. Numerical solutions of time fractional Burgers' equation involving Atangana–Baleanu derivative via cubic b-spline functions. Results Phys. 2022;34 [Google Scholar]
  • 38.Khan H., Ahmad S., Alzabut J., Azar A.T. A generalized coupled system of fractional differential equations with application to finite time sliding mode control for Leukemia therapy. Chaos Solitons Fractals. 2023;174 [Google Scholar]
  • 39.Khan H., Alzabut J., Shah A., He Z.Y., Etemad S., Rezapour S., Zada A. On fractal-fractional waterborne disease model: A study on theoretical and numerical aspects of solutions via simulations. Fractals. 2023;31 [Google Scholar]
  • 40.Khan H., Alzabut J., Gulzar H. Existence of solutions for hybrid modified abc-fractional differential equations with p-Laplacian operator and an application to a waterborne disease model. Alex. Eng. J. 2023;70:665–672. [Google Scholar]
  • 41.Yadav S., Pandey R.K. Numerical approximation of fractional Burgers equation with Atangana–Baleanu derivative in Caputo sense. Chaos Solitons Fractals. 2020;133 [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The data would be provided on demand.


Articles from Heliyon are provided here courtesy of Elsevier

RESOURCES