Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2024 Jul 20;44(7):1425–1430. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2024.07.23

丁酸钠与索拉非尼可能通过YAP诱导铁死亡协同抑制肝癌细胞增殖

Sodium butyrate and sorafenib synergistically inhibit hepatocellular carcinoma cells possibly by inducing ferroptosis through inhibiting YAP

HE Huaxing 1,2, LIU Lulin 1, LIU Yingyin 1, CHEN Nachuan 1, SUN Suxia 1,
Editor: 余 诗诗
PMCID: PMC11270652  PMID: 39051089

Abstract

Objective

To investigate whether sodium butyrate (NaB) and sorafenib synergistically induces ferroptosis to suppress proliferation of hepatocellular carcinoma cells and the possible underlying mechanisms.

Methods

CCK8 assay and colony formation assay were used to assess the effects of NaB and sorafenib, alone or in combination, on proliferation of HepG2 cells, and ferroptosis of the treated cells was detected with GSH assay and C11-BODIPY 581/591 fluorescent probe. TCGA database was used to analyze differential YAP gene expression between liver cancer and normal tissues. The effects of NaB and sorafenib on YAP and p-YAP expressions in HepG2 cells were invesitigated using Western blotting.

Results

NaB (2 mmol/L) significantly reduced the IC50 of sorafenib in HepG2 cells, and combination index analysis confirmed the synergy between sorafenib and NaB. The ferroptosis inhibitor Fer-1 and the YAP activator (XMU) obviously reversed the growth-inhibitory effects of the combined treatment with NaB and sorafenib in HepG2 cells. The combined treatment with NaB and sorafenib, as compared with the two agents used alone, significantly inhibited colony formation of HepG2 cells, further enhanced cellular shrinkage and dispersion, and decreased intracellular GSH and lipid ROS levels, and these effects were reversed by Fer-1 and XMU. TCGA analysis revealed a higher YAP mRNA expression in liver cancer tissues than in normal liver tissues. NaB combined with sorafenib produced significantly stronger effects than the individual agents for downregulating YAP protein expression and upregulating YAP phosphorylation level in HepG2 cells.

Conclusion

NaB combined with sorafenib synergistically inhibit hepatocellular carcinoma cell proliferation possibly by inducing ferroptosis via inhibiting YAP expression.

Keywords: sodium butyrate, sorafenib, hepatocellular carcinoma, ferroptosis, YAP, proliferation


全球有超过900万人被诊断为原发性肝癌,是6大最常诊断的癌症之一,也是癌症相关死亡的第4大原因1,严重危害我国乃至世界人民的生命健康2。索拉非尼(Sora)是第1个用于晚期肝癌一线治疗的靶向药物,但由于其耐药性、副作用大和总体疗效有限3,临床上迫切需要寻找有效的联合疗法以改善其治疗效果。丁酸钠(NaB)是膳食纤维在肠道菌群作用下分解产生的一种短链脂肪酸,具有广泛的生物活性,现已被用于研究治疗多种疾病如炎症性肠病、非酒精性脂肪肝4。NaB作为一种组蛋白去乙酰化酶抑制剂,可以促进抗癌基因表达,从而抑制肿瘤细胞增殖56,还能通过调控铁死亡相关基因来发挥抗癌效果7

铁死亡是一种铁依赖性的新型细胞死亡方式,不同于细胞凋亡、自噬和坏死,其特征为还原型谷胱甘肽(GSH)的减少和脂质ROS的大量积累8。Sora的抗癌活性依赖于通过抑制谷氨酸/胱氨酸逆转运蛋白(SLC7A11)的活性来诱导铁死亡9。课题组前期研究表明,NaB也可通过诱导铁死亡的方式抑制结直肠癌和肝癌细胞的增殖710。由于Sora和NaB都能靶向肝癌细胞铁死亡,我们推测两者可能通过协同诱导铁死亡来抑制肝癌细胞增殖。然而,目前关于Sora与NaB联合用药的报道极少,Yu等11发现NaB可减轻LM3肝癌细胞有氧糖酵解,进而增强Sora的敏感性。但有关Sora联合NaB是否协同抑制HepG2肝癌细胞增殖以及是否协同诱导铁死亡尚未有研究。此外,有研究报道,促进Yes相关蛋白(YAP)介导的铁死亡可提高肝癌对Sora敏感性,这进一步揭示了本研究的意义12

YAP是Hippo信号通路的最终效应分子,参与肿瘤发生和组织再生等多种生理病理过程13。近年来的研究表明,YAP蛋白的高表达是各种癌症化疗产生耐药性的重要因素1415。同时,YAP及其磷酸化水平通过调节参与维持细胞内ROS和脂质过氧化平衡的基因表达来调节铁死亡16。目前,有关YAP在Sora联合NaB抑制肝癌细胞中的作用尚未见报道。本研究旨在研究Sora联合NaB是否通过协同诱导铁死亡抑制HepG2肝癌细胞增殖,并初步探讨YAP对两者联合诱导铁死亡的影响及机制,为肝癌的治疗提供新的思路。

1. 材料和方法

1.1. 细胞与试剂

人肝癌细胞系HepG2细胞(中科院上海生物细胞库);NaB、二甲基亚砜(DMSO)、结晶紫(Sigma);Sora、GSH检测试剂盒(北京索莱宝);DMEM培养基、胰酶(Gibco)、胎牛血清(大连美仑);CCK8(Targetmol);铁死亡抑制剂(Fer-1)(Glpbio);YAP激活剂(XMU,上海陶术);GAPDH、羊抗兔、羊抗鼠(北京锐抗);C11-BODIPY 581/591(CAYMAN CHEMICAL)。

1.2. 细胞培养

使用含10%胎牛血清的DMEM培养基,于37 ℃、5%CO2饱和湿度培养箱中培养,取对数生长期细胞进行后续细胞实验。

1.3. CCK8法

将对数生长期的细胞以5000/孔的密度接种至96孔板,37 ℃、5%CO2饱和湿度培养箱中过夜培养,待细胞贴壁后,加入不同浓度的(0.5、1、2、4、8、16 μmol/L)Sora或(和)2 mmol/L NaB处理24 h。随后弃去培养基,加入10 μL CCK8溶液和100 μL完全培养基,孵育1h后在450 nm波长处测定吸光度,计算细胞活力。细胞活力(%)=[A 450(样品)-A 450(空白)]/[A 450(对照)-A 450(空白)]×100%。

1.4. 平板克隆实验

对数生长期的HepG2细胞在NaB或(和)Sora或(和)Fer-1处理24 h后,胰酶消化并重悬。以2000/孔的密度接种于新的6孔板,隔2~4 d换液,待绝大多数单个克隆的细胞数超过50个时终止培养,弃培养基,并用PBS溶液清洗2次。每孔加入1 mL 4%多聚甲醛固定30 min,再用PBS清洗2次。最后,用0.1%结晶紫染色15 min,流水清洗,自然晾干后拍照,并通过ImageJ软件进行克隆球计数。

1.5. GSH检测

对数生长期的HepG2细胞在NaB或(和)Sora或(和)Fer-1处理24 h后,胰酶消化后用PBS清洗2次,收集细胞并按GSH试剂盒说明,用3倍体积的试剂一重悬混匀,冻融3次后以8000 g/min离心10 min,收集上清液用于后续测定。在412 nm波长处用酶标仪测定空白样及不同浓度标准样品的吸光度,绘制标准曲线并测定各组样品的GSH浓度。

1.6. 脂质ROS检测

对数生长期的HepG2细胞在NaB或(和)Sora或(和)Fer-1处理24 h后,弃培养基,用HBSS清洗2次,加入无血清DMEM培养基和C11-BODIPY 581/591工作液(按说明书配制),置避光孵育30 min后弃上清,再次用HBSS清洗2次后加入HBSS,用荧光显微镜观察红色(还原型)和绿色(氧化型)荧光强度。还原型:Ex=561 nm,Em=600~630 nm;氧化型:Ex=488 nm,Em=510~550 nm。使用Image J软件进行荧光定量,相对平均荧光强度=该区域绿色荧光强度总和/该区域红色荧光强度总和。

1.7. Western blotting实验

处理后的各组HepG2细胞用预冷PBS清洗2次,加入适量RIPA裂解液,冰上静置15 min后离心收集蛋白并定量,加入5×buffer煮沸10 min。配制10%的SDS-PAGE凝胶。样品上样、电泳、转膜,5%牛奶封闭2 h后孵育一抗,4 ℃过夜。TBST洗涤3次后加入二抗,室温孵育2 h,再次用TBST洗涤3次后用ECL化学发光法显影。通过ImageJ软件分析条带灰度值。

1.8. 统计学方法

数据分析使用SPSS 26.0和Graph Pad Prism 8.0。符合正态分布的计量资料以均数±标准差表示,两组均数比较采用t检验,多组均数比较采用单因素方差分析,P<0.05为差异有统计学意义。在中位剂量效应分析中使用Compusyn软件计算联合指数(CI)。

2. 结 果

2.1. NaB增强Sora对HepG2肝癌细胞增殖的抑制作用

CCK8结果显示,1 μmol/L Sora与2 mmol/L NaB联合处理24 h可显著抑制HepG2细胞增殖(P<0.001,图1A)。相比单独使用Sora,联合处理将Sora的IC50从12.88±0.90 μmol/L显著降低至2.83±0.10 μmol/L(P<0.001,图1A)。中位剂量效应分析表明,联合处理的CI值均小于1(图1A),NaB与Sora联合具有协同作用。在后续实验中,选用2 mmol/L NaB和4 μmol/L Sora,联合处理的抑制率达(52.84±3.59)%(图1A),CI值低至0.58(图1A)。平板克隆实验结果显示,与对照组相比,NaB或Sora单独处理均可抑制HepG2细胞的克隆形成能力(P<0.01,P<0.05,图1B),联合处理进一步显著抑制HepG2细胞的克隆形成能力(P<0.01,P<0.01,图1B)。倒置光学显微镜观察显示,与对照组相比,单独处理的细胞呈分散,皱缩形态且数量减少,而联合处理加剧了这些现象(图1 C)。

图1.

图1

NaB联合Sora对HepG2肝癌细胞增殖活性的影响

Fig.1 Effects of NaB and sorafenib (Sora) on growth of HepG2 cells. A: CCK8 assay for assessing viability and Sora IC50 of HepG2 cells with combined treatment with NaB and Sora. B: Plate cloning experiment of the treated cells. C: Cell morphology of the treated cells (Original magnification: ×400). *P<0.05, **P<0.01 vs control group, ***P<0.001 vs control Sora; ## P<0.01.

2.2. NaB联合Sora对HepG2肝癌细胞铁死亡的影响

CCK8结果显示,铁死亡抑制剂Fer-1可逆转NaB联合Sora对HepG2细胞的增殖抑制作用(P<0.001,图2A)。GSH水平检测结果显示,与对照组相比,NaB或Sora单独处理可降低HepG2细胞的GSH水平(P<0.05,P<0.001,图2B),联合处理则进一步降低GSH水平(P<0.001,P<0.05,图2B),且此降低效应可被Fer-1恢复(P<0.001,图2B)。脂质ROS荧光结果显示,与对照组相比,NaB或Sora单独处理可增加HepG2细胞的脂质ROS水平(P<0.01,P<0.05,图2C),而较单独NaB或Sora组,联合处理组进一步显著增加细胞内脂质ROS水平(P<0.05,P<0.01,图2C),且此效应也可被Fer-1恢复(P<0.01,图2C)。

graphic file with name nfykdxxb-44-7-1425-g002.jpg

2.3. YAP在肝癌组织中高表达

TCGA公共数据库分析结果显示,与正常肝脏组织相比,肝癌组织中YAP mRNA水平表达更高 (P<0.001,图3)。

图3.

图3

YAP基因在肝癌组织和正常组织中的表达

Fig.3 Expression of YAP gene in liver cancer tissues and normal liver tissues. ***P<0.001.

2.4. NaB联合Sora对HepG2肝癌细胞内的YAP和

p-YAP表达的影响

Western blotting结果显示,与对照组相比,NaB可下调HepG2细胞中的YAP蛋白表达水平(P<0.01,图4A、B),并上调p-YAP蛋白表达水平(P<0.05,图4A、B)。同样,Sora下调YAP蛋白表达水平(P<0.05,图4A、B),并上调p-YAP蛋白表达水平(P<0.05,图4A、B)。相比单独NaB或Sora处理,联合处理显著降低YAP蛋白表达水平(P<0.05,P<0.05,图4A、B),同时显著增加p-YAP蛋白水平(P<0.05,P<0.01,图4A、B)。

图4.

图4

NaB联合Sora对HepG2肝癌细胞中YAP、p-YAP蛋白表达水平的影响

Fig.4 Effect of NaB and Sora on expression levels of YAP and p-YAP in HepG2 cells. A, B: Expression levels of YAP and p-YAP detected using Western blotting (n=3). *P<0.05, **P<0.01 vs control group; # P<0.05, ## P<0.01.

2.5. 激活YAP逆转NaB联合Sora对HepG2肝癌细胞增殖和铁死亡的影响

CCK8结果显示,预处理3 μmol/L XMU后,NaB联合Sora对HepG2细胞的增殖抑制作用被部分逆转(P<0.001,图5A)。GSH检测结果显示,XMU可恢复联合处理引起的GSH水平下降(P<0.01,图5B)。脂质ROS荧光结果显示,与联合处理组相比,XMU预处理后联合处理组HepG2细胞的平均荧光强度显著降低(P<0.05,图5C)。

graphic file with name nfykdxxb-44-7-1425-g005.jpg

3. 讨 论

近年来,生物活性物质联合化疗药物在肝癌治疗中的应用受到广泛关注。例如,槲皮素、白藜芦醇和姜黄素与Sora的联用均表现出显著增强的抗肝癌作用,能够有效抑制肿瘤细胞增殖并诱导凋亡17-19。在本研究中,NaB与Sora的联合应用展示了类似的协同效应,能更有效地抑制HepG2肝癌细胞的增殖。不同的是,我们还研究了两者联合对铁死亡的影响。铁死亡作为治疗耐药性肿瘤的潜在靶点,在NaB与Sora协同效应中的作用尚未被研究。

铁死亡的经典通路中,SLC7A11介导胱氨酸的摄取和谷氨酸的释放减少,从而导致GSH合成减少20。GSH作为重要的细胞内抗氧化剂,维持细胞的氧化还原稳态,其减少会破坏这种稳态并导致脂质ROS积累21,最终诱导细胞的铁死亡。我们的研究结果显示,相较于单药处理,Sora联合NaB可显著降低了HepG2细胞的GSH水平,并增加脂质ROS含量。在加入Fer-1后,这些效应得以逆转,同时联合处理导致的增殖抑制作用也被逆转。这些结果表明,Sora联合NaB可通过协同诱导铁死亡的方式抑制HepG2细胞增殖。

在抵抗铁死亡过程中,YAP蛋白发挥了重要作用22。与对Sora敏感的细胞相比,Sora耐药细胞中YAP表达水平更高,且对Sora诱导的铁死亡耐受性更强12。阻断YAP表达不仅可以有效诱导细胞的氧化损伤23,还可以使肝癌细胞重新获得对铁死亡的敏感性24。在本研究中,Sora联合NaB可显著降低YAP蛋白的表达水平,并促进YAP磷酸化。正常情况下,磷酸化的YAP会在细胞质中被降解,而未被磷酸化的YAP会进入细胞核中发挥其转录调控活性,促进其下游的铁死亡负性调控分子如SLC7A11的基因表达,进而降低肝癌细胞铁死亡敏感性1224。我们推测Sora联合NaB可能通过共同降低YAP表达、促进其磷酸化来诱导肝癌细胞的铁死亡。然而,也有研究认为YAP具有相反的作用2526

为进一步探索YAP在Sora联合NaB诱导肝癌细胞铁死亡中的机制,我们引入了YAP激活剂XMU。XMU选择性抑制YAP上游信号分子蛋白激酶Mst1/2,提高YAP的表达,抑制YAP磷酸化,从而增强其在细胞核内的转录调控作用2728。后续实验结果显示,XMU的加入有效逆转了Sora联合NaB对HepG2细胞铁死亡的影响。这些研究及实验结果提示,NaB和Sora可能通过抑制YAP表达、促进其磷酸化来协同诱导肝癌细胞的铁死亡,进而抑制肝癌细胞增殖。

综上所述,NaB联合Sora可能通过调节YAP介导的铁死亡途径,从而协同抑制肝癌细胞的增殖,为开发更为有效的肝癌靶向治疗提供新的思路和依据。

基金资助

国家自然科学基金(81773429);广东省自然科学基金(2022A1515011631,2024A1515012175)

Supported by National Natural Science Foundation of China (81773429).

参考文献

  • 1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-49. [DOI] [PubMed] [Google Scholar]
  • 2. Donne R, Lujambio A. The liver cancer immune microenvironment: therapeutic implications for hepatocellular carcinoma[J]. Hepatology, 2023, 77(5): 1773-96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Villanueva A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15): 1450-62. [DOI] [PubMed] [Google Scholar]
  • 4. Kaźmierczak-Siedlecka K, Marano L, Merola E, et al. Sodium butyrate in both prevention and supportive treatment of colorectal cancer[J]. Front Cell Infect Microbiol, 2022, 12: 1023806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Bultman SJ. Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention[J]. Clin Cancer Res, 2014, 20(4): 799-803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. D'Argenio G, Cosenza V, Delle Cave M, et al. Butyrate enemas in experimental colitis and protection against large bowel cancer in a rat model[J]. Gastroenterology, 1996, 110(6): 1727-34. [DOI] [PubMed] [Google Scholar]
  • 7. Bian ZB, Sun XD, Liu LL, et al. Sodium butyrate induces CRC cell ferroptosis via the CD44/SLC7A11 pathway and exhibits a syn-ergistic therapeutic effect with erastin[J]. Cancers, 2023, 15(2): 423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Lei G, Zhuang L, Gan BY. Targeting ferroptosis as a vulnerability in cancer[J]. Nat Rev Cancer, 2022, 22: 381-96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Dixon SJ, Patel DN, Welsch M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis[J]. Elife, 2014, 3: e02523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. 孙小蝶, 秦 勇, 刘璐琳, 等. 丁酸钠通过诱导铁死亡抑制肝癌细胞增殖[J]. 营养学报, 2023, 45(2): 157-62. [Google Scholar]
  • 11. Yu Q, Dai WQ, Ji J, et al. Sodium butyrate inhibits aerobic glycolysis of hepatocellular carcinoma cells via the c-myc/hexokinase 2 pathway[J]. J Cell Mol Med, 2022, 26(10): 3031-45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Gao RZ, Kalathur RKR, Coto-Llerena M, et al. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis[J]. EMBO Mol Med, 2021, 13(12): e14351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Franklin JM, Wu ZM, Guan KL. Insights into recent findings and clinical application of YAP and TAZ in cancer[J]. Nat Rev Cancer, 2023, 23: 512-25. [DOI] [PubMed] [Google Scholar]
  • 14. Marti P, Stein C, Blumer T, et al. YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors[J]. Hepatology, 2015, 62(5): 1497-510. [DOI] [PubMed] [Google Scholar]
  • 15. Mao B, Hu F, Cheng J, et al. SIRT1 regulates YAP2-mediated cell proliferation and chemoresistance in hepatocellular carcinoma[J]. Oncogene, 2014, 33(11): 1468-74. [DOI] [PubMed] [Google Scholar]
  • 16. Zhou W, Lim A, Edderkaoui M, et al. Role of YAP signaling in regulation of programmed cell death and drug resistance in cancer[J]. Int J Biol Sci, 2024, 20(1): 15-28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Zhang ZG, Wu HT, Zhang YJ, et al. Dietary antioxidant quercetin overcomes the acquired resistance of Sorafenib in Sorafenib-resistant hepatocellular carcinoma cells through epidermal growth factor receptor signaling inactivation[J]. Naunyn Schmiedebergs Arch Pharmacol, 2024, 397(1): 559-74. [DOI] [PubMed] [Google Scholar]
  • 18. Gao ML, Deng C, Dang F. Synergistic antitumor effect of resveratrol and sorafenib on hepatocellular carcinoma through PKA/AMPK/eEF2K pathway[J]. Food Nutr Res, 2021, 65: 1-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Cao HQ, Wang YX, He XY, et al. Codelivery of sorafenib and curcumin by directed self-assembled nanoparticles enhances therapeutic effect on hepatocellular carcinoma[J]. Mol Pharm, 2015, 12(3): 922-31. [DOI] [PubMed] [Google Scholar]
  • 20. Chen X, Li JB, Kang R, et al. Ferroptosis: machinery and regulation[J]. Autophagy, 2021, 17(9): 2054-81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Niu BY, Liao KX, Zhou YX, et al. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy[J]. Biomaterials, 2021, 277: 121110. [DOI] [PubMed] [Google Scholar]
  • 22. Sun T, Chi JT. Regulation of ferroptosis in cancer cells by YAP/TAZ and Hippo pathways: the therapeutic implications[J]. Genes Dis, 2021, 8(3): 241-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Yu HF, Yang ZQ, Xu MY, et al. Yap is essential for uterine decidualization through Rrm2/GSH/ROS pathway in response to Bmp2[J]. Int J Biol Sci, 2022, 18(6): 2261-76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Chen JS, Zhang J, Tian W, et al. AKR1C3 suppresses ferroptosis in hepatocellular carcinoma through regulation of YAP/SLC7A11 signaling pathway[J]. Mol Carcinog, 2023, 62(6): 833-44. [DOI] [PubMed] [Google Scholar]
  • 25. Qin YF, Pei Z, Feng Z, et al. Oncogenic activation of YAP signaling sensitizes ferroptosis of hepatocellular carcinoma via ALOXE3-mediated lipid peroxidation accumulation[J]. Front Cell Dev Biol, 2021, 9: 751593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Wu J, Minikes AM, Gao MH, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling[J]. Nature, 2019, 572(7769): 402-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Chen TQ, Sun DD, Wang QJ, et al. α‑hederin inhibits the proliferation of hepatocellular carcinoma cells via hippo-yes-asso-ciated protein signaling pathway[J]. Front Oncol, 2022, 12: 839603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Fan FQ, He ZX, Kong LL, et al. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration[J]. Sci Transl Med, 2016, 8(352): 352ra108. . [DOI] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES