Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2024 Jul 20;44(7):1236–1242. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2024.07.03

3-甲基腺嘌呤通过抑制AKT信号减轻糖尿病小鼠的早期肾损伤

3-Methyladenine alleviates early renal injury in diabetic mice by inhibiting AKT signaling

LIU Benju 1,2,4, WANG Yelei 1,3,3,4, REN Haiwen 2,4, OU Liwen 1, DENG Xuan 1, HUANG Mengxin 1, WU Xin 1, GONG Quan 2,
Editor: 吴 锦雅
PMCID: PMC11270656  PMID: 39051069

Abstract

Objective

To explore the mechanism of 3-methyladenine (3-MA) for alleviating early diabetic renal injury.

Methods

Mouse models of streptozotocin (STZ)-induced diabetes mellitus were randomized into model group and 3-MA treatment group for daily treatments with normal saline and 10 mg/kg 3-MA by gavage for 6 weeks, respectively. Body weight and fasting blood glucose of the mice were recorded every week. After the treatments, the kidneys of the mice were collected for measurement kidney/body weight ratio, examination of glomerular size with PAS staining, and detection of α-SMA and PCNA expressions using Western blotting and immunohistochemistry. SV40 MES 13 cells cultured in normal glucose (5.6 mmol/L) and high glucose (30 mmol/L) were treated with 24.4 mmol/L mannitol and 5 mmol/L 3-MA for 24 h, respectively, and the changes in cell viability and PCNA expression were examined using CCK8 assay and Western blotting. Bioinformatics analysis of the intersecting gene targets of diabetic kidney disease (DKD) and 3-MA was performed, and the results were verified by Western blotting both in vivo and in vitro.

Results

In the diabetic mice, treatment with 3-MA produced a short-term hypoglycemic effect, reduced the kidney/body weight ratio and glomerular hypertrophy, and decreased the expressions of α‑SMA and PCNA in the renal cortex. In the in vitro study, 3-MA significantly lowered the viability and reduced PCNA expression in SV40 MES 13 cells exposed to high glucose. The results of bioinformatic analysis identified AKT1 as the key gene in the therapeutic mechanism of 3-MA for DKD. Western blotting confirmed that 3-MA inhibited the phosphorylation of AKT and S6 in both the renal cortex of diabetic mice and high glucose-treated SV40 MES 13 cells.

Conclusion

3-MA suppresses mesangial cell proliferation and alleviates early diabetic renal injury in mice possibly by inhibiting AKT signaling.

Keywords: 3-methyladenine, diabetic kidney disease, mesangial cells, renal injury


糖尿病肾脏疾病(DKD)为糖尿病(DM)慢性微血管并发症之一,是导致终末期肾病的主要原因1,当前的治疗以降血糖、降血压、降血脂的综合干预为主2。尽管目前的治疗方法对DKD相关的肾功能恶化有一定效果,但并不能完全阻止其进展。因此,尚需在进一步探索其发病机制的基础上继续寻找有效的治疗药物。

DKD的典型早期病理特征包括肾肥大、肾小球肥大和系膜扩张。系膜细胞增殖及其产生的细胞外基质(ECM)的过度积累是早期肾肥大、肾小球肥大和系膜扩张的主要原因,进一步将导致晚期肾小球硬化34。3-甲基腺嘌呤(3-MA)为磷脂酰肌醇-3-激酶(PI3K)选择性抑制剂,通常作为自噬抑制剂用于研究5。我们前期实验发现其可抑制糖尿病小鼠肾脏6和视网膜7ECM相关蛋白表达,减轻糖尿病小鼠早期肾损伤,并发现其对糖尿病肾损伤的保护作用可能与其抑制自噬无关6。后经查阅文献发现,其对多种疾病动物模型具有显著疗效8-13,且可减轻高尿酸诱导的大鼠肾损伤14。蛋白激酶B(AKT)为丝氨酸/苏氨酸蛋白激酶亚家族,研究表明,抑制AKT活化可减轻糖尿病肾损伤,并可减少系膜细胞增殖15-18,但3-MA是否通过调控AKT信号减轻糖尿病早期肾损伤尚不清楚。因此,本研究采用3-MA干预链脲佐菌素(STZ)诱导的糖尿病小鼠及高糖处理的小鼠肾小球系膜细胞SV40 MES 13细胞,观察其对糖尿病早期肾肥大及细胞活力的影响,检测系膜细胞活化标志物α-平滑肌肌动蛋白(α-SMA)1920及在细胞增殖启动过程中具有重要作用的增殖细胞核抗原(PCNA)21的表达,探讨其对糖尿病小鼠肾脏早期肾小球系膜细胞增殖的影响,同时进一步观察肾组织和SV40 MES 13细胞中AKT信号相关蛋白表达变化,探讨3-MA作用机制。

1. 材料和方法

1.1. 实验动物

4~5周龄雄性C57BL/6J小鼠[三峡大学实验动物中心,许可证号SCXK(鄂)2017-0012)],饲养于长江大学医学部标准化实验动物房,温度22±2 ℃,湿度40%~60%,12 h明/暗循环,自由饮食。动物实验经长江大学医学部伦理委员会批准(伦理批号:202301016) 。

1.2. 主要试剂

STZ(Sigma),3-MA(Abmole)。兔抗GAPDH、AKT抗体(北京博奥森),兔抗α-SMA抗体(Proteintech),兔抗PCNA、p-AKT(Ser473)、核糖体蛋白S6(S6)、p-S6抗体(Cell Signaling Technology)。免疫组化试剂盒(北京索莱宝)、PAS染液(珠海贝索生物),RIPA裂解液(强)、BCA蛋白定量试剂盒(上海碧云天),小鼠肾小球系膜细胞SV40 MES 13、SV40 MES 13细胞专用培养基、DMEM低糖培养基、胎牛血清(FBS)(武汉普诺赛)血糖仪及配套试纸(罗氏)。

1.3. 动物造模、分组及给药

小鼠适应性喂养1周后,将24只小鼠随机分为对照组(CON)、糖尿病组(DM)和3-MA干预糖尿病组(DM+3-MA),8只/组。DM和DM+3-MA组采用腹腔注射STZ 60 mg/(kg·d),连续注射5 d诱导糖尿病,CON组给予等体积柠檬酸缓冲液腹腔注射,于最后1次注射STZ后测随机血糖,将血糖≥17 mmol/L视为糖尿病造模成功。DM+3-MA组小鼠于首次注射STZ后1周开始灌胃给予3-MA 10 mg/(kg·d),CON和DM组给予等体积生理盐水灌胃,每周测体质量和空腹血糖。连续干预6周后麻醉小鼠,左心室灌流PBS至双肾变白后取双肾,记录肾/体质量比,一侧肾置于10%中性福尔马林中固定,另一侧肾于-80 ℃冻存备用。

1.4. 细胞培养及药物处理

将SV40 MES 13细胞采用该细胞专用培养基(含71.25% DMEM、23.75% Ham's F-12、5% FBS和1%青霉素/链霉素),于37 ℃、5% CO2培养箱中培养。将细胞分别采用5.6 mmol/L正常糖(NG)、5.6 mmol/L正常糖加24.4 mmol/L甘露醇(NG+M)、30 mmol/L高糖(HG)和30 mmol/L糖加5 mmol/L 3-MA(HG+3-MA)处理24 h后,进行CCK8试验,并提取蛋白用于Western blotting检测。

1.5. 空腹血糖检测

每周于同一时间禁食6 h,不禁水,剪尾取血,血糖仪及配套试纸测血糖。

1.6. PAS染色

将肾脏固定好后,常规酒精脱水、石蜡包埋,制成4 μm切片,按试剂盒操作说明行PAS染色后脱水封片,400倍光镜下采集图像。

1.7. CCK8试验

将SV40 MES 13细胞接种于96孔板中,5000/孔,每组设10个复孔,行相应处理24 h后加入CCK8溶液孵育1 h,酶标仪测定处吸光度值A 450 nm

1.8. 免疫组化染色

将肾脏石蜡切片常规脱蜡水化后行抗原修复、血清封闭,然后依次与一抗PCNA(1∶100)于4 ℃冰箱孵育过夜,二抗室温孵育1 h,苏木素染核后脱水封片,200倍光镜下采集图像。

1.9. Western blotting

提取肾皮质和SV40 MES 13细胞蛋白,BCA法测蛋白浓度,将浓度调一致,行SDS-PAGE凝胶电泳后将蛋白转至PVDF膜,5%脱脂牛奶室温封闭2 h,与相应一抗α-SMA(1∶1000)、PCNA(1∶1000)、AKT(1∶1000)、p-AKT(1∶1000)、S6(1∶1000)、p-S6(1∶1000)和GAPDH(1∶1000)于4 ℃冰箱孵育过夜,次日洗膜后与二抗(1∶20 000)室温孵育1 h,ECL显影,采用Image J进行条带分析。

1.10. 生信分析

从GeneCards(https://www.genecards.org)和DisGeNET(https://www.disgenet.org)两个数据库下载DKD基因集,从SwissTargetPrediction(http://www.swisstargetprediction.ch)数据库下载3-MA预测靶点基因集。通过R语言提取3个基因集的交集基因,用ggvenn包画韦恩图进行可视化;采用clusterProfiler包对交集基因进行KEGG富集分析,对P.adjust<0.05的15个KEGG富集条目进行气泡图可视化。将交集基因导入String在线数据库(https://string-db.org/)进行蛋白-蛋白相互作用(PPI)分析,将在String数据库得到的PPI网络图导入 Cytoscape 3.9.0 软件,使用CytoHubba插件遴选3-MA治疗DKD的核心基因,并对PPI网络图进行美化,节点越大颜色越红代表该基因权重越大。

1.11. 统计学分析

使用SPSS 17.0软件进行统计学分析,数据以均数±标准差表示,多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验,以P<0.05为差异具有统计学意义。

2. 结果

2.1. 3-MA对DM小鼠空腹血糖和体质量的影响

注射STZ后1周,DM和DM+3-MA组小鼠空腹血糖均明显升高(P<0.001)。与DM组相比,DM+3-MA组小鼠在3-MA干预3周时,空腹血糖明显降低(P<0.001),但随后又逐渐升高,干预6周时与DM组间差异无统计学意义(图1A)。实验期间,CON组小鼠体质量逐渐增加,DM和DM+3-MA组小鼠体质量增加缓慢(图1B)。

图1.

图1

3-MA对DM小鼠空腹血糖和体质量的影响

Fig.1 Effects of 3-MA on fasting blood glucose and body weight of diabetic mice (Mean±SD, n=8). A: Fasting blood glucose. B: Body weight. *P<0.001 vs CON group; # P<0.001 vs DM+3-MA group.

2.2. 3-MA对DM小鼠肾/体质量比和肾小球大小的影响

与CON组比较,DM和DM+3-MA组小鼠肾/体质量比均明显增加(P<0.001),但DM+3-MA组小鼠肾/体质量比低于DM组(P<0.05,图2A)。PAS染色结果显示,与CON组相比,DM和DM+3-MA组小鼠肾小球面积占视野百分比均增加(P<0.001,P<0.05),但DM+3-MA组小鼠肾小球面积较DM组明显减少(P<0.05,图2B、C)。

图2.

图2

3-MA对DM小鼠肾/体质量比和肾小球大小的影响

Fig.2 Effects of 3-MA on kidney/body weight ratio and glomerular size of diabetic mice (Mean±SD, n=8). A: Kidney/body weight ratio. B: Percentage of glomerular area to field of view. C: Pepresentative images of PAS staining (Original magnification: ×400). *P<0.05, ***P<0.001 vs CON group; # P<0.05 vs DM group.

2.3. 3-MA对DM小鼠肾皮质 α-SMA和PCNA蛋白表达的影响

Western blotting和免疫组化结果显示,与CON组比较,DM组小鼠肾皮质α-SMA和PCNA蛋白表达明显升高(P<0.01);与DM组比较,DM+3-MA组小鼠肾皮质α-SMA和PCNA蛋白表达明显降低(P<0.01,P<0.001),甚至低于CON组(P<0.001,图3)。

图3.

图3

3-MA对DM小鼠肾皮质α-SMA和PCNA蛋白表达的影响

Fig.3 Effects of 3-MA on the protein expressions of α-SMA and PCNA in the renal cortex of the diabetic mice (Mean±SD, n=4). A: Western blotting of α-SMA expression. B: Quantification of α-SMA protein expression. C: Western blotting of PCNA expression. D: Quantification of PCNA protein expression. E: Immunohistochemical staining of PCNA. **P<0.01 vs CON group; ## P<0.01, ### P<0.001 vs DM group.

2.4. 3-MA对高糖处理的SV40 MES 13细胞活力和PCNA表达的影响

CCK8细胞活力试验显示,与NG组比较,HG组肾小球系膜细胞SV40 MES 13细胞活力明显增加(P<0.001),而NG+M组细胞活力与NG组间无差异;与HG组比较,HG+3-MA组细胞活力明显下降(P<0.001),甚至低于NG组(P<0.001,图4A)。Western blotting结果显示,与NG组比较,HG组细胞PCNA蛋白表达明显增加(P<0.01);与HG组比较,HG+3-MA组PCNA明显减少(P<0.001),甚至低于NG组(P<0.01,图4B、C)。

图4.

图4

3-MA对高糖处理的SV40 MES 13细胞活力和PCNA表达的影响

Fig.4 Effects of 3-MA on cell viability and PCNA expression of SV40 MES 13 cells exposed to high glucose (Mean±SD, n=4). A: Cell viability. B: Western blotting of PCNA expression. C: Quantification of PCNA protein expression. **P<0.01, ***P<0.001 vs NG group; ### P<0.001 vs HG group.

2.5. 3-MA作用于DKD的生信分析

DKD靶点与3-MA预测靶点取交集可得22个交集基因(图5A);KEGG富集分析显示,22个交集基因富集在PI3K-Akt、VEGF和FoxO等信号通路上(图5B);PPI蛋白互作网络显示,AKT1为核心基因(图5C)。

图5.

图5

3-MA作用于DKD的生信分析

Fig.5 Bioinformatic analysis of 3-MA on diabetic kidney disease. A: Venn diagram of intersecting genes between diabetic kidney disease targets and 3-MA predicted targets. B: KEGG enrichment analysis. C: Protein-protein interaction analysis network.

2.6. 3-MA对DM小鼠和高糖处理的SV40 MES 13细胞AKT信号分子的影响

体内实验结果显示,与CON组比较,DM组小鼠肾皮质AKT和S6蛋白磷酸化水平明显升高(P<0.01,P<0.001);与DM组比较,DM+3-MA组二者磷酸化被抑制(P<0.01,P<0.05,图6A、B)。体外实验结果显示,与NG组比较,HG组细胞AKT和S6蛋白磷酸化水平上调(P<0.01,P<0.05);与HG组比较,HG+3-MA组二者磷酸化水平被抑制(P<0.001,P<0.01,图6C、D)。

图6.

图6

3-MA对DM小鼠和高糖处理的SV40 MES 13细胞AKT信号分子的影响

Fig.6 Effects of 3-MA on AKT signaling molecules in diabetic mice and high glucose treated SV40 MES 13 cells (Mean±SD, n=4). A: Western blotting of p-AKT (Ser473), AKT, p-S6, and S6 in the renal cortex of mice. B: Quantification of the ratio of p-AKT/AKT and p-S6/S6 in the renal cortex of mice. C: Western blotting of p-AKT (Ser473), AKT, p-S6, and S6 in SV40 MES 13 cells. D: Quantification of the ratio of p-AKT/AKT and p-S6/S6 in SV40 MES 13 cells. *P<0.05, **P<0.01, ***P<0.001 vs CON or NG group; # P<0.05, ## P<0.01, ### P<0.001 vs DM or HG group.

3. 讨论

随着人们饮食结构的变化,全球DM发病率逐年上升,而至少1/2的2型DM患者和1/3的1型DM患者可发展为DKD22。3-MA是一种体内代谢产物,通常作为自噬抑制剂用于研究,但有研究报道其可通过非自噬途径发挥作用23-25,并对多种疾病动物模型具有一定疗效8-14,且目前尚无其副作用的报道。本研究发现,3-MA可减轻糖尿病小鼠肾肥大和肾小球肥大,并可抑制糖尿病小鼠肾小球系膜细胞和高糖处理的SV40 MES 13细胞增殖,通过进一步生信分析和体内外实验验证,发现3-MA可抑制糖尿病小鼠肾皮质和高糖诱导的SV40 MES 13细胞的AKT信号活化。

系膜细胞异常增殖是包括DKD在内的许多肾脏疾病特征之一19,且在DKD患者出现临床表现之前即可发生26,早期可引起肾肥大和肾小球肥大,进一步可导致系膜扩张,肾小球滤过率下降,因此,抑制系膜细胞增殖被认为是早期改善DKD的有效策略。据报道,3-MA可减轻高尿酸诱导肾损伤时肾脏活化系膜细胞标志物α-SMA表达增加14,与该报道一致,本研究亦发现3-MA可逆转糖尿病小鼠肾脏α-SMA的上调,同时体内外均可显著抑制高糖环境下细胞增殖相关蛋白PCNA的表达,体外亦可明显抑制高糖环境下的细胞活力,甚至低于正常糖培养的细胞。与本研究结果相反,有研究发现,3-MA可消除银杏黄酮和黄芪皂苷IV对高糖诱导的肾小球系膜细胞增殖的抑制作用2728,此矛盾产生的原因尚不清楚,可能为两者不宜与3-MA联用所致。以上结果表明,3-MA减轻糖尿病小鼠肾肥大和肾小球肥大与其抑制系膜细胞增殖有关。

研究表明,DKD早期AKT信号被激活,阻断AKT可延缓DKD进展。在db/db小鼠和高糖处理的系膜细胞中,观察到系膜细胞增殖增加和PI3K/AKT活化15。一些药物可通过抑制AKT激活改善DKD所致的肾小球肥大、肾小球基底膜增厚和轻度系膜扩张等肾小球病理变化16-18。众所周知,Ⅰ类PI3K为AKT上游分子29,而3-MA在营养丰富的条件下可抑制Ⅰ类PI3K30。生物信息学分析表明,ATK1可能是3-MA作用于DKD的关键基因,此外,与以往报道28一致的是,本研究体内外结果显示,在糖尿病小鼠肾皮质和高糖处理的SV 40 MES 13细胞中,AKT(Ser473)磷酸化显著上调,而3-MA可逆转上述变化,并可抑制AKT下游分子S6的磷酸化。因此,3-MA减轻糖尿病早期肾损伤和抑制系膜细胞增殖的作用可能与其抑制AKT信号活化有关。

高血糖与DKD进展密切相关,严格控制血糖可显著降低发生微量白蛋白尿的风险31。我们发现3-MA在糖尿病初期具有明显降血糖作用,但后期血糖又逐渐升高,原因尚不清楚。据报道,3-MA可通过抑制磷酸二酯酶升高大鼠胰岛内环磷酸腺苷,增强葡萄糖诱导的胰岛素分泌和合成32,这可能是本研究观察到的3-MA具有短暂降糖作用的原因。这一结果表明,3-MA的肾脏保护作用可能部分依赖于其短期降糖作用。

本研究存在以下局限性:未在2型糖尿病模型中研究3-MA对肾损伤的影响,未明确3-MA对2型糖尿病引起的肾损伤是否具有同样的改善作用;未采用AKT特异性激活剂或抑制剂探索3-MA对DKD和系膜细胞的影响,3-MA调控AKT信号发挥作用的机制尚未充分阐明。因此,需进一步研究以明确3-MA减轻早期糖尿病肾损伤的作用和确切机制。

综上所述,3-MA可能通过抑制肾脏AKT信号减少肾小球系膜细胞增殖,减轻糖尿病早期肾损伤。

基金资助

国家自然科学基金(82270893);长江大学2022年大学生创新训练项目(Yz2022300)

Supported by National Natural Science Foundation of China (82270893).

参考文献

  • 1. Tuttle KR, Bakris GL, Bilous RW, et al. Diabetic kidney disease: a report from an ADA Consensus Conference[J]. Diabetes Care, 2014, 37(10): 2864-83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Attie AD, Schueler KM, Keller MP, et al. Reversal of hypertriglyceridemia in diabetic BTBR ob/ob mice does not prevent nephropathy[J]. Lab Invest, 2021, 101(7): 935-41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy[J]. J Am Soc Nephrol, 2003, 14(5): 1358-73. [DOI] [PubMed] [Google Scholar]
  • 4. A/L B Vasanth Rao VR, Tan SH, Candasamy M, et al. Diabetic nephropathy: an update on pathogenesis and drug development[J]. Diabetes Metab Syndr, 2019, 13(1): 754-62. [DOI] [PubMed] [Google Scholar]
  • 5. Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes[J]. Proc Natl Acad Sci U S A, 1982, 79(6): 1889-92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. 刘本菊, 任海文, 王 朵, 等. 3-甲基腺嘌呤抑制VEGF信号减轻早期糖尿病肾病细胞外基质沉积[J]. 中华内分泌代谢杂志, 2023, 39(10): 876-81. [Google Scholar]
  • 7. Ren HW, Yu W, Wang YN, et al. Effects of autophagy inhibitor 3-methyladenine on a diabetic mice model[J]. Int J Ophthalmol, 2023, 16(9): 1456-64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Dai S, Wang B, Li W, et al. Systemic application of 3-methyladenine markedly inhibited atherosclerotic lesion in ApoE-/- mice by modulating autophagy, foam cell formation and immune-negative molecules[J]. Cell Death Dis, 2016, 7(12): e2498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Slavin SA, Leonard A, Grose V, et al. Autophagy inhibitor 3-methyladenine protects against endothelial cell barrier dysfunction in acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 314(3): L388-L396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Liu H, Lei H, Shi Y, et al. Autophagy inhibitor 3-methyladenine alleviates overload-exercise-induced cardiac injury in rats[J]. Acta Pharmacol Sin, 2017, 38(7): 990-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Wang XR, Wu YY. Protective effects of autophagy inhibitor 3-methyladenine on ischemia-reperfusion-induced retinal injury[J]. Int Ophthalmol, 2020, 40(5): 1095-101. [DOI] [PubMed] [Google Scholar]
  • 12. Kwon Y, Haam CE, Byeon S, et al. Effects of 3-methyladenine, an autophagy inhibitor, on the elevated blood pressure and arterial dysfunction of angiotensin II-induced hypertensive mice[J]. Biomedecine Pharmacother, 2022, 154: 113588. [DOI] [PubMed] [Google Scholar]
  • 13. Wang XH, Zhou GX, Liu C, et al. Acanthopanax versus 3-methyladenine ameliorates sodium taurocholate-induced severe acute pancreatitis by inhibiting the autophagic pathway in rats[J]. Mediators Inflamm, 2016: 8369704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Shi YF, Tao M, Ma XY, et al. Delayed treatment with an autophagy inhibitor 3-MA alleviates the progression of hyperuricemic nephropathy[J]. Cell Death Dis, 2020, 11(6): 467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Qian X, He LL, Hao M, et al. YAP mediates the interaction between the Hippo and PI3K/Akt pathways in mesangial cell proliferation in diabetic nephropathy[J]. Acta Diabetol, 2021, 58(1): 47-62. [DOI] [PubMed] [Google Scholar]
  • 16. Tan HT, Chen JX, Li YC, et al. Glabridin, a bioactive component of licorice, ameliorates diabetic nephropathy by regulating ferroptosis and the VEGF/Akt/ERK pathways[J]. Mol Med, 2022, 28(1): 58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Tang D, He WJ, Zhang ZT, et al. Protective effects of Huang-Lian-Jie-Du Decoction on diabetic nephropathy through regulating AGEs/RAGE/Akt/Nrf2 pathway and metabolic profiling in db/db mice[J]. Phytomedicine, 2022, 95: 153777. [DOI] [PubMed] [Google Scholar]
  • 18. Wu W, Hu W, Han WB, et al. Inhibition of akt/mTOR/p70S6K signaling activity with Huangkui capsule alleviates the early glomerular pathological changes in diabetic nephropathy[J]. Front Pharmacol, 2018, 9: 443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Johnson RJ, Floege J, Yoshimura A, et al. The activated mesangial cell: a glomerular "myofibroblast"[J]? J Am Soc Nephrol, 1992, 2(10 Suppl): S190-7. [DOI] [PubMed] [Google Scholar]
  • 20. Young BA, Johnson RJ, Alpers CE, et al. Cellular events in the evolution of experimental diabetic nephropathy[J]. Kidney Int, 1995, 47(3): 935-44. [DOI] [PubMed] [Google Scholar]
  • 21. Wang MG, Shi QL, Zhang RZ, et al. Herbal compound “jiedu Huayu” reduces liver injury in rats via regulation of IL-2, TLR4, and PCNA expression levels[J]. Evid Based Complement Alternat Med, 2017: 9819350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Thomas MC, Brownlee M, Susztak K, et al. Diabetic kidney disease[J]. Nat Rev Dis Primers, 2015, 1: 15018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Heckmann BL, Yang XY, Zhang XD, et al. The autophagic inhibitor 3-methyladenine potently stimulates PKA-dependent lipolysis in adipocytes[J]. Br J Pharmacol, 2013, 168(1): 163-71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Sheng Y, Sun B, Guo WT, et al. 3-Methyladenine induces cell death and its interaction with chemotherapeutic drugs is independent of autophagy[J]. Biochem Biophys Res Commun, 2013, 432(1): 5-9. [DOI] [PubMed] [Google Scholar]
  • 25. Jung JY, Choi H, Son ED, et al. 3-methyladenine inhibits procollagen-1 and fibronectin expression in dermal fibroblasts independent of autophagy[J]. Curr Mol Med, 2020, 20(9): 741-50. [DOI] [PubMed] [Google Scholar]
  • 26. Ichinose K, Kawasaki E, Eguchi K. Recent advancement of understanding pathogenesis of type 1 diabetes and potential relevance to diabetic nephropathy[J]. Am J Nephrol, 2007, 27(6): 554-64. [DOI] [PubMed] [Google Scholar]
  • 27. Lin W, Pan J, Huang EJ, et al. Ginkgetin alleviates high glucose-evoked mesangial cell oxidative stress injury, inflammation, and extracellular matrix (ECM) deposition in an AMPK/mTOR-mediated autophagy axis[J]. Chem Biol Drug Des, 2021, 98(4): 620-30. [DOI] [PubMed] [Google Scholar]
  • 28. Wang XL, Gao YB, Tian NX, et al. Astragaloside IV represses high glucose-induced mesangial cells activation by enhancing autophagy via SIRT1 deacetylation of NF-κB p65 subunit[J]. Drug Des Devel Ther, 2018, 12: 2971-80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Alessi DR, James SR, Downes CP, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha[J]. Curr Biol, 1997, 7(4): 261-9. [DOI] [PubMed] [Google Scholar]
  • 30. Wu YT, Tan HL, Shui GH, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase[J]. J Biol Chem, 2010, 285(14): 10850-61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Fioretto P, Bruseghin M, Berto I, et al. Renal protection in diabetes: role of glycemic control[J]. J Am Soc Nephrol, 2006, 17(4 Suppl 2): S86-9. [DOI] [PubMed] [Google Scholar]
  • 32. Boland BB, Alarcón C, Ali A, et al. Monomethylated-adenines potentiate glucose-induced insulin production and secretion via inhibition of phosphodiesterase activity in rat pancreatic islets[J]. Islets, 2015, 7(2): e1073435. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES