Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2024 Jul 20;44(7):1327–1335. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2024.07.12

金盏花苷E通过自噬途径下调GPX4和SLC7A11抑制肝癌细胞的增殖和迁移

Calenduloside E inhibits hepatocellular carcinoma cell proliferation and migration by down-regulating GPX4 and SLC7A11 expression through the autophagy pathway

CHEN Qianyi 1,2,1, SHANG Shuhan 1,2,3, LU Huan 1,2, LI Sisi 1,2,4, SUN Zhimian 1,2,3, FAN Xirui 1,2,, QI Zhilin 1,2,
Editor: 经 媛
PMCID: PMC11270671  PMID: 39051078

Abstract

Objective

To investigate the molecular mechanism through which calenduloside E inhibits hepatocellular carcinoma (HCC) cell proliferation and migration.

Methods

HCC cell lines HepG2 and Huh7 treated with calenduloside E were examined for changes in cell viability using CCK-8 assay and expressions of GPX4, SLC7A11, LC3, P62 and phosphorylation of Akt/mTOR using Western blotting. The effects LY294002 and Rapamycin (the inhibitor and activator of autophagy, respectively) on proliferation and migration of calenduloside E-treated HCC cells were evaluated using EdU and Transwell assays. The TCGA database was used to explore the expression levels of GPX4 and SLC7A11 in HCC and normal liver tissues and their correlation with the patients' survival outcomes. GPX4 and SLC7A11 expressions were also detected in HCC cells and normal hepatocytes using RT-qPCR and Western blotting.

Results

Calenduloside E obviously inhibited the viability of HCC cells. GPX4 and SLC7A11 were highly expressed in HCC tissues and cell lines, and their expression levels were negatively correlated with the patients' survival. In HCC cell lines, calenduloside E significantly inhibited the expressions of GPX4 and SLC7A11 proteins, activated the Akt-mTOR pathway, and enhanced the expression of LC3 II. The inhibitory effect of calenduloside E on GPX4 and SLC7A11 expressions was significantly enhanced by rapamycin but attenuated by LY294002. Inhibiting the autophagy pathway obviously diminished the inhibitory effect of calenduloside E on proliferation and migration of HCC cells, while activating this pathway produced the opposite effect.

Conclusion

Calenduside E inhibits the proliferation and migration of HCC cells by down-regulating GPX4 and SLC7A11 expression via the autophagy pathway.

Keywords: calenduside E, glutathione peroxidase 4, solute carrier family 7 member 11, autophagy, hepatocellular carcinoma


肝癌是我国常见的一种消化系统恶性肿瘤,也是癌症患者死亡的常见原因之一,其中肝细胞癌(HCC)占原发性肝癌的70%~80%1-3。大多数肝癌患者由于确诊时就已经处于中晚期,故治疗效果和预后相对较差。因此,寻找影响HCC发生、发展的潜在生物学标记物,并以其为靶点进行治疗是改善肝癌患者治疗和预后的重要策略。

自噬是机体重要的生物学过程,不仅在细胞调节中发挥蛋白质降解、维持细胞器稳态、代谢稳态等作用4,也和肿瘤的发生发展息息相关,调控自噬可作为癌症治疗的重要方法之一5。PI3K/Akt/mTOR通路不仅影响细胞增殖、分化、凋亡、转移和血管生成,也是调节肿瘤细胞自噬的重要途径之一,常被作为肿瘤治疗的关键信号途径6-9。溶质载体第7家族成员11(SLC7A11)也被称为xCT,是一种细胞跨膜蛋白,组成xc-系统的轻链,负责将细胞外胱氨酸转运至胞内,用于产生半胱氨酸,参与谷胱甘肽的生物合成10。SLC7A11在各种人类癌症高表达,并调节肿瘤的发展、增殖、转移、微环境和治疗耐药性1112,被认为是癌症治疗的一个潜在靶点13。它下游的调节因子谷胱甘肽过氧化物酶4(GPX4)作为胞内的一种非常重要的抗氧化酶,在细胞存活和功能中发挥关键作用14,抑制GPX4也已被证明是一种很有前途的癌症治疗方法15。如天然产物姜黄素通过激活自噬途径,下调GPX4和SLC7A11的表达,抑制非小细胞肺癌的增殖16

金盏花苷E(CE)作为一种天然五环三萜皂苷,具有抗炎、缓解缺血再灌注损伤和非酒精性脂肪肝等作用17-19。我们已有的研究表明,金盏花苷E能够抑制肝癌HepG2细胞的增殖和迁移20,但金盏花苷E调控肝癌进展的分子机制尚需进一步探明。在本研究中,我们发现金盏花苷E能够通过下调Akt/mTOR信号途径,促进肝癌细胞自噬,增强GPX4和SLC7A11蛋白降解,抑制肝癌细胞增殖和迁移。

1. 材料和方法

1.1. 主要药品和抗体

金盏花苷E(CE,HPLC≥95%,上海源叶生物科技有限公司),兔单克隆抗体β-actin(1∶3000)、辣根过氧化物酶标记的山羊抗兔(鼠)IgG(H+L)抗体(1∶10000)(ABclonal),p-Akt(Ser473)(1∶1000)、p-mTOR(Ser2448)(1∶500)、SQSTM1/P62(1∶500)以及GAPDH(1∶1000)单克隆抗体(Cell Signaling Technology),SLC7A11(1∶1000)以及GPX4(1∶1000)抗体(BOSTER),LC3(1∶500)抗体(Sigma),环己酰亚胺(CHX,MCE),自噬激活剂(Rapamycin,Selleck Chemicals),自噬抑制剂LY294002和细胞裂解液(RIPA)(碧云天),自噬双标慢病毒mRFP-GFP-LC3和助转剂polybrene(通用生物),CCK-8试剂盒(迈珂生物),EdU检测试剂盒(锐博生物),Transwell小室(Falcon),总RNA提取试剂盒(天根生化),cDNA合成及qPCR检测试剂盒(百时美生物)。

1.2. 细胞培养

Huh7肝癌细胞购自中国科学院细胞库,用含10%胎牛血清(Lonsera),1%青霉素-链霉素(碧云天)的DMEM完全培养基,HepG2肝癌细胞(赛库生物)用含10%胎牛血清(Lonsera),1%NEAA(碧云天),1%青霉素-链霉素(碧云天)的MEM完全培养基,置于37 ℃,5% CO2条件下培养。

1.3. CCK-8检测细胞活力

将Huh7细胞按1×104/孔接种于96孔板,细胞贴壁后使用不同浓度金盏花苷E处理细胞并设置空白对照(无细胞的完全培养基),金盏花苷E作用24 h后加入CCK-8工作液10 µL/孔,置于37℃,5% CO2培养箱中反应2 h,使用全波段酶标仪在450 nm波长处测量每孔A值,并根据如下公式计算细胞存活率。存活率(%)=(A 实验组-A 空白组)/(A 对照组-A 空白组)×100%。

1.4. RT-qPCR检测SLC7A11和GPX4 mRNA的表达水平

提取肝癌细胞Huh7、HepG2和正常肝细胞HL-7702中的总RNA,先通过逆转录合成cDNA,之后进行qPCR,具体操作根据cDNA合成及qPCR检测试剂盒说明书进行。热扩增条件如下:首先95 ℃预变性30 s,然后进行循环扩增,95℃变性10 s,60℃退火和延伸30 s,共40个循环,2-ΔΔCT法进行结果分析。qPCR中所需的SLC7A11、GPX4以及GAPDH上下游引物如表1所示。

表1.

SLC7A11、GPX4以及GAPDH引物序列

Tab.1 Primer sequences for RT-qPCR of SLC7A11, GPX4 and GAPDH

Primers Sequence of primer
Forward (form 5′ to 3′) Reverse (from 5′ to 3′)
SLC7A11 TCTCCAAAGGAGGTTACCTGC AGACTCCCCTCAGTAAAGTGAC
GPX4 GAGGCAAGACCGAAGTAAACTAC CCGAACTGGTTACACGGGAA
GAPDH AAAGCCTGCCGGTGACTAA AGAGTTAAAAGCAGCCCTGG

1.5. Western blotting检测蛋白表达量

分组处理Huh7和HepG2细胞后,弃去培养基,预冷PBS清洗1遍,加入含有PMSF预冷的RIPA细胞裂解液,4 ℃摇床裂解10 min,12 000 r/min,4 ℃离心10 min,收集细胞裂解上清,加入2×Loading buffer 100 ℃金属浴煮沸5 min。取等量蛋白进行SDS-PAGE,将电泳后的蛋白转移至聚偏二氟乙烯膜(PVDF)膜上,用5%脱脂奶粉室温封闭2 h,1×TBST清洗3次,相应一抗4 ℃摇床孵育过夜。次日1×TBST清洗3次后,加入对应二抗后室温孵育2 h,1×TBST清洗后加入化学发光液和底物孵育后,使用化学发光成像系统(上海勤翔)进行结果检测, Image J进行吸光度分析。

1.6. mRFP-GFP-LC3慢病毒感染

将状态良好的Huh7和HepG2细胞接种到6孔板,接种密度保证在第2天进行病毒感染的时候细胞汇合率介于30%~50%,放37 ℃,5% CO2 培养箱中培养过夜。感染前从冰箱取出并在冰上慢慢融化病毒,吸去细胞原有培养基,加入5 TU/mL的病毒以及5 µg/mL polybrene进行感染,感染后第2天(24 h),弃去含有病毒的培养液,换上新鲜的完全培养液并使用20 µg/mL 以及15 µg/mL 金盏花苷E分别刺激Huh7 和HepG2细胞24 h,通过荧光显微镜观察并拍照。

1.7. EdU检测细胞的增殖能力

将Huh7以及HepG2细胞接种于24孔板,待细胞贴壁后使用20 µmol/L Rapamycin和30 µmol/L LY294002分别预处理细胞1 h,再用20 µg/mL以及15 µg/mL 金盏花苷E分别刺激Huh7 和HepG2细胞24 h,之后进行EdU实验检测细胞增殖能力。实验操作按试剂盒说明书进行,荧光倒置显微镜(Olympus)观察并拍照。使用Image J软件分析EdU阳性染色细胞(红色荧光)与Hoechst染色细胞(蓝色荧光)数量,并计算EdU阳性染色细胞在总细胞中所占的比例。

1.8. Transwell实验检测细胞的迁移能力

细胞分组及处理同1.6部分。处理后的细胞分别使用无血清的DMEM以及MEM培养基重悬,取细胞悬液200 µL接种于Transwell小室上层,500 µL含有20%胎牛血清的完全培养基置于Transwell小室下层,置于37 ℃,5% CO2培养箱中培养24 h。取出小室,用脱脂棉签轻轻擦去小室上层细胞,之后将小室放入4%多聚甲醛中固定30 min,PBS清洗1遍后放入0.1%结晶紫中室温染色15 min,PBS清洗3次,使用荧光倒置显微镜观察并拍照。

1.9. 统计学分析

所有数据以均数±标准差表示。通过SPSS 17.0 软件进行数据分析,Student's t检验进行两组之间的比较,使用单因素方差分析进行多组间比较,P<0.05表示差异具有统计学意义 。

2. 结果

2.1. 金盏花苷E对肝癌细胞活力的影响

本研究选取Huh7肝癌细胞为研究对象,金盏花苷E≥10 μg/mL作用Huh7细胞24 h,细胞活力被明显抑制;选取浓度为10、15和20 μg/mL的金盏花苷E处理Huh7细胞(图1P<0.05)。

图1.

图1

金盏花苷E抑制肝癌Huh7细胞的存活

Fig.1 CE inhibits the viability of hepatocellular carcinoma (HCC) Huh7 cells (Mean±SD). *P<0.05, **P<0.01 vs 0 µg/mL group.

2.2. GPX4和SLC7A11在肝癌组织和细胞中的表达及其与肝癌患者存活之间的关系

TCGA数据库分析发现,GPX4和SLC7A11在肝癌组织中的表达均显著高于正常肝组织(图2A);它们的表达水平与肝癌患者存活之间的相关性分析显示,GPX4和SLC7A11高表达的患者,其存活时间和存活率均显著降低(P<0.001,图2B)。检测肝癌细胞和正常肝细胞HL-7702中GPX4和SLC7A11的表达显示,无论是mRNA水平还是蛋白水平,两者在肝癌细胞系中的表达均显著高于正常肝细胞(P<0.01,图2C、D)。

图2.

图2

GPX4和SLC7A11在肝癌组织和细胞中的表达及其与患者存活的相关性

Fig.2 Expression levels of GPX4 and SLC7A11 in HCC tissues and cells and their correlation with the patients' survival (Mean±SD). A: Expression of GPX4 and SLC7A11 in HCC tissues and normal liver tissues. B: Correlation of GPX4 and SLC7A11 expressions with the patients' survival. The expressions of GPX4 and SLC7A11 mRNA (C) and protein (D) in HCC cells and normal liver cells. **P<0.01 vs HL-7702.

2.3. 金盏花苷E对GPX4和SLC7A11表达的影响

金盏花苷E刺激肝癌细胞24 h后,Western blotting检测GPX4和SLC7A11蛋白水平显示金盏花苷E可浓度依赖性的抑制上述蛋白的表达(P<0.01,图3)。

图3.

图3

金盏花苷E对GPX4和SLC7A11表达的影响

Fig.3 Effects of CE on GPX4 and SLC7A11 expressions in HepG2 (A, B) and Huh7 cells (C, D). Data are presented as Mean±SD. **P<0.01 vs 0 µg/mL. CE: Calenduloside E.

2.4. 金盏花苷E对GPX4和SLC7A11降解的影响

检测金盏花苷E对GPX4和SLC7A11蛋白降解的影响,与CHX单独处理组相比,金盏花苷E能够明显促进GPX4和SLC7A11蛋白的降解(P<0.05,图4)。

图4.

图4

金盏花苷E对GPX4和SLC7A11降解的影响

Fig.4 Effects of CE on GPX4 and SLC7A11 protein degradation in HepG2 (A, B) and Huh7 cells (C, D). Data are presented as Mean±SD. *P<0.05, **P<0.01 vs CHX group.

2.5. 金盏花苷E对自噬途径的影响

检测金盏花苷E对自噬途径的影响,使用不同浓度的金盏花苷E处理肝癌细胞24 h,自噬标志蛋白LC3Ⅱ的表达明显增强;Akt和mTOR的磷酸化被显著抑制,但P62的表达并未受明显影响(图5)。mRFP-GFP-LC3慢病毒转染结果显示,金盏花苷E作用24 h后自噬体(黄色斑点)明显增加,自噬溶酶体(红色斑点)无明显变化(图6)。

图5.

图5

金盏花苷E对肝癌细胞自噬途径的影响

Fig.5 Effects of CE on the autophagy pathway in HepG2 (A) and Huh7 cells (B). Data are presented as Mean±SD. *P<0.05, **P<0.01 vs 0 µg/mL.

图6.

图6

金盏花苷E对肝癌细胞自噬的影响

Fig.6 Effects of CE on autophagy of HepG2 (A) and Huh7 cells (B)(Original magnification: ×200).

2.6. 自噬途径抑制或激活对金盏花苷E下调GPX4和SLC7A11表达的影响

使用自噬抑制剂LY294002和自噬激活剂Rapamycin分别与金盏花苷E联合处理肝癌细胞,发现与金盏花苷E单独处理组相比,Rapamycin预处理能够进一步下调SLC7A11的表达;而LY294002预处理组则能够逆转金盏花苷E对GPX4和SLC7A11的抑制作用。而且LC3Ⅱ的表达水平也进一步证明了Rapamycin对自噬途径的激活作用,以及 LY294002对自噬途径的抑制作用(图7)。

图7.

图7

自噬抑制剂或激活剂对金盏花苷E下调GPX4和SLC7A11的影响

Fig.7 Effects of autophagy inhibitor or activator on CE-induced GPX4 and SLC7A11 down-regulation in HepG2 (A) and Huh7 (B) cells (Mean±SD). *P<0.05, **P<0.01 vs Control; & P<0.05, && P<0.01 vs CE.

2.7. 自噬途径抑制或激活对金盏花苷E抑制肝癌细胞增殖和迁移的影响

检测Rapamycin和LY294002与金盏花苷E联合作用对肝癌细胞增殖和迁移的影响,结果显示,金盏花苷E单独处理的肝癌细胞,EdU阳性染色细胞占比明显低于对照组;Rapamycin与金盏花苷E联合作用,EdU阳性染色细胞数量显著低于金盏花苷E单独处理组,而LY294002与金盏花苷E联合处理组EdU阳性染色细胞数量较金盏花苷E组明显增加(图8A、C)。Transwell实验发现金盏花苷E单独处理的肝癌细胞迁移能力与对照组相比显著降低。与金盏花苷E处理组相比,Rapamycin与金盏花苷E联合处理能够进一步抑制肝癌细胞的迁移能力;而LY294002则逆转了金盏花苷E对肝癌细胞迁移的抑制作用(图8B、D)。

图8.

图8

自噬抑制剂或激活剂对金盏花苷E抑制肝癌细胞增殖和迁移的影响

Fig.8 Effects of autophagy inhibitor or activator on proliferation and migration of CE-treated HepG2 (A, B) and Huh7 (C, D) cells (×100).

3. 讨论

肝癌作为消化系统常见的恶性肿瘤,发病率和死亡率均较高。虽然已有研究表明,在肝癌HepG2细胞中,天然活性产物金盏花苷E能够通过下调HMGB1的表达抑制肝癌细胞增殖和迁移20。鉴于肿瘤发生、发展在分子机制方面的复杂性,本文以两种肝癌系HepG2和Huh7为研究对象,深入探讨了金盏花苷E抑制肝癌细胞增殖和迁移的新机制。本研究结果表明,金盏花苷E通过激活自噬途径促进GPX4和SLC7A11蛋白降解,抑制肝癌细胞的增殖和迁移。

本研究在肝癌细胞系Huh7中,通过CCK-8实验验证了金盏花苷E对肝癌细胞活力的抑制作用。该结果不仅进一步证明了我们前期结果的可靠性,也证明了金盏花苷E对肝癌的抑制作用并非HepG2细胞特异性的,但是金盏花苷E抑制肝癌细胞增殖和迁移的分子机制尚不完全清楚。

越来越多的研究表明,抑制GPX4和SLC7A11可达到治疗肿瘤的目的21-23。本研究通过TCGA数据库分析和细胞水平检测均发现,GPX4和SLC7A11在肝癌组织和肝癌细胞中均显著高表达,且它们的表达水平与肝癌患者存活呈现明显负相关。金盏花苷E能否通过影响GPX4和SLC7A11的表达,抑制肝癌细胞的增殖和迁移呢? 金盏花苷E处理的肝癌细胞中GPX4和SLC7A11蛋白表达被明显抑制。然而,我们在转录水平并未获得和蛋白水平一致的实验结果。我们猜想,金盏花苷E可能通过调控蛋白降解途径抑制GPX4和SLC7A11的表达。本研究结果显示,金盏花苷E和CHX联合处理的肝癌细胞,无论是GPX4还是SLC7A11蛋白降解速度均明显高于CHX组。该结果意味着金盏花苷E能够通过促进蛋白降解下调GPX4和SLC7A11的表达。

自噬降解途径是体内蛋白降解的主要方式之一2425, Akt/mTOR是调节自噬的重要信号途径,参与肿瘤发生、发展的一系列病理学过程,且很多研究证明天然产物能够通过靶向Akt/mTOR介导的自噬抑制肿瘤的增殖26。因此,靶向Akt/mTOR介导的自噬是许多肿瘤治疗的重要策略2728。本研究结果显示,金盏花苷E处理肝癌细胞24 h能够明显抑制Akt和mTOR的磷酸化,并显著诱导自噬标志蛋白LC3Ⅱ的表达,但不影响P62的表达水平。自噬发生时,定位在胞浆的LC3Ⅰ与磷脂酰乙醇胺(PE)结合形成LC3Ⅱ,P62与泛素化的蛋白质结合,再与LC3Ⅱ蛋白形成复合物,在自噬溶酶体内降解。当自噬流畅通的时候, LC3Ⅱ增加,P62降低。但我们的结果显示,金盏花苷E作用肝癌细胞后LC3Ⅱ表达增加,但P62并无明显改变。造成该现象的原因可能是金盏花苷E仅影响自噬体的形成,对自噬溶酶体的形成并无明显作用。

CQ和3-MA 是经典的自噬抑制剂,CQ主要通过影响自噬溶酶体的形成,3-MA作为PI3KⅢ家族的特异性抑制剂,通过阻断自噬体的形成,发挥自噬抑制作用。LY294002是一种非特异性的PI3K抑制剂,可广泛阻断细胞内PI3K信号通路的磷酸化过程,从而抑制自噬体的形成。已有研究表明, LY294002能够阻断 HER2 阳性的胃癌细胞中 T-DM1 诱导的自噬29;LY294002能够逆转紫胶桐酸对HepG2 细胞自噬的诱导作用30;LY294002通过抑制自噬参与 gracillin的抗黑色素瘤作用31。本实验证明金盏花苷E处理后显著诱导LC3Ⅱ的表达,但不影响P62的表达水平,意味着金盏花苷E主要影响自噬体的形成。因此,本文选取LY294002作为自噬抑制剂进行后续研究。

为进一步证明自噬途径在金盏花苷E抑制GPX4和SLC7A11表达中的作用,本研究采用了自噬激活剂Rapamycin32和自噬抑制剂LY29400233联合金盏花苷E处理肝癌细胞,检测GPX4和SLC7A11蛋白的表达。结果显示,Rapamycin确实能够进一步增强金盏花苷E对GPX4和SLC7A11蛋白的抑制作用,而LY294002则明显逆转了金盏花苷E的上述效应。为证明自噬途径在金盏花苷E抑制肝癌细胞增殖和迁移中的作用,我们通过EdU和transwell实验检测自噬抑制剂和激活剂对金盏花苷E调控细胞增殖和迁移的影响,结果同样支持金盏花苷E通过激活自噬途径抑制肝癌细胞增殖和迁移的结论。

总之,本研究在肝癌HepG2和Huh7细胞中证明,金盏花苷E通过增强自噬途径介导的GPX4和SLC7A11降解,抑制肝癌细胞的增殖和迁移。本研究不仅在另一肝癌细胞系中验证了金盏花苷E对肝癌细胞增殖和迁移的抑制作用,还提示了金盏花苷E发挥抗癌作用的新机制。

由于GPX4和SLC7A11是铁死亡的重要负性调节因子223435,而铁死亡作为2012年发现的一种新型细胞死亡形式,已经成为很多肿瘤治疗的重要策略3637。在本研究中,金盏花苷E能够抑制GPX4和SLC7A11的表达提示我们,铁死亡可能在金盏花苷E抗肿瘤作用中发挥一定的作用。我们接下来的工作将重点关注金盏花苷E对肝癌细胞铁死亡的影响及可能的分子机制。

基金资助

安徽高校自然科学研究项目(KJ2020ZD54,2022AH051212);安徽省学科(专业)拔尖人才学术资助项目(gxbjZD2021060);活性生物大分子研究安徽省重点实验室项目(1306C083008);国家级大学生创新创业训练计划项目(202310368002)

参考文献

  • 1. Xia CF, Dong XS, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Wang SN, Wu XW, Wu XM, et al. Systematic analysis of the role of LDHs subtype in pan-cancer demonstrates the importance of LDHD in the prognosis of hepatocellular carcinoma patients[J]. BMC Cancer, 2024, 24(1): 156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. 谢思雨, 李淼生, 江峰乐, 等. EHHADH是肝细胞癌脂肪酸代谢通路的关键基因: 基于转录组分分析[J]. 南方医科大学学报, 2023, 43(5): 680-93. DOI: 10.12122/j.issn.1673-4254.2023.05.02 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Metur SP, Lei YC, Zhang ZH, et al. Regulation of autophagy gene expression and its implications in cancer[J]. J Cell Sci, 2023, 136(10): jcs260631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Jain V, Singh MP, Amaravadi RK. Recent advances in targeting autophagy in cancer[J]. Trends Pharmacol Sci, 2023, 44(5): 290-302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Chow AK, Yau SW, Ng L. Novel molecular targets in hepatocellular carcinoma[J]. World J Clin Oncol, 2020, 11(8): 589-605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Wang Y, Deng BC. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers[J]. Cancer Metastasis Rev, 2023, 42(3): 629-52. [DOI] [PubMed] [Google Scholar]
  • 8. Glaviano A, Foo ASC, Lam HY, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer[J]. Mol Cancer, 2023, 22(1): 138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. He PZ, He Y, Ma JJ, et al. Thymoquinone induces apoptosis and protective autophagy in gastric cancer cells by inhibiting the PI3K/Akt/mTOR pathway[J]. Phytother Res, 2023, 37(8): 3467-80. [DOI] [PubMed] [Google Scholar]
  • 10. Lee J, Roh JL. SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in cancer[J]. Antioxidants, 2022, 11(12): 2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Liu JY, Xia XJ, Huang P. xCT: a critical molecule that links cancer metabolism to redox signaling[J]. Mol Ther, 2020, 28(11): 2358-66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Huang Y, Dai ZY, Barbacioru C, et al. Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance[J]. Cancer Res, 2005, 65(16): 7446-54. [DOI] [PubMed] [Google Scholar]
  • 13. Li SJ, Lu ZY, Sun RB, et al. The role of SLC7A11 in cancer: friend or foe[J]? Cancers, 2022, 14(13): 3059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Zhang W, Liu Y, Liao Y, et al. GPX4, ferroptosis, and diseases[J]. Biomed Pharmacother, 2024, 174: 116512. [DOI] [PubMed] [Google Scholar]
  • 15. Jia CX, Zhang X, Qu TT, et al. Depletion of PSMD14 suppresses bladder cancer proliferation by regulating GPX4[J]. PeerJ, 2023, 11: e14654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Tang X, Ding H, Liang ML, et al. Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy[J]. Thorac Cancer, 2021, 12(8): 1219-30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Le YF, Guo JN, Liu ZJ, et al. Calenduloside E ameliorates non-alcoholic fatty liver disease via modulating a pyroptosis-dependent pathway[J]. J Ethnopharmacol, 2024, 319(Pt 2): 117239. [DOI] [PubMed] [Google Scholar]
  • 18. Li JX, Bu YJ, Li B, et al. Calenduloside E alleviates cerebral ischemia/reperfusion injury by preserving mitochondrial function[J]. J Mol Histol, 2022, 53(4): 713-27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. 汤 托, 王胜男, 蔡田雨, 等. 金盏花苷E通过ROS介导的JAK1-stat3信号途径抑制LPS诱发的炎症反应[J]. 南方医科大学学报, 2019, 39(8): 904-10. DOI: 10.12122/j.issn.1673-4254.2019.08.05 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Wang SN, Chen XL, Cheng J, et al. Calunduloside E inhibits HepG2 cell proliferation and migration via p38/JNK-HMGB1 signalling axis[J]. J Pharmacol Sci, 2021, 147(1): 18-26. [DOI] [PubMed] [Google Scholar]
  • 21. Zhang W, Jiang BP, Liu YX, et al. Bufotalin induces ferroptosis in non-small cell lung cancer cells by facilitating the ubiquitination and degradation of GPX4[J]. Free Radic Biol Med, 2022, 180: 75-84. [DOI] [PubMed] [Google Scholar]
  • 22. Li DB, Wang YH, Dong C, et al. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1[J]. Oncogene, 2023, 42(2): 83-98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Wang XB, Chen YQ, Wang XD, et al. Stem cell factor SOX2 confers ferroptosis resistance in lung cancer via upregulation of SLC7A11[J]. Cancer Res, 2021, 81(20): 5217-29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Hanzl A, Winter GE. Targeted protein degradation: current and future challenges[J]. Curr Opin Chem Biol, 2020, 56: 35-41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Wang Y, Le WD. Autophagy and ubiquitin-proteasome system[J]. Adv Exp Med Biol, 2019, 1206: 527-50. [DOI] [PubMed] [Google Scholar]
  • 26. Xu ZR, Han X, Ou DM, et al. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy[J]. Appl Microbiol Biotechnol, 2020, 104(2): 575-87. [DOI] [PubMed] [Google Scholar]
  • 27. Zhang M, Liu SH, Chua MS, et al. SOCS5 inhibition induces autophagy to impair metastasis in hepatocellular carcinoma cells via the PI3K/Akt/mTOR pathway[J]. Cell Death Dis, 2019, 10(8): 612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Li H, Zhao SF, Shen LW, et al. E2F2 inhibition induces autophagy via the PI3K/Akt/mTOR pathway in gastric cancer[J]. Aging, 2021, 13(10): 13626-43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Zhang JH, Fan JJ, Zeng X, et al. Targeting the autophagy promoted antitumor effect of T-DM1 on HER2-positive gastric cancer[J]. Cell Death Dis, 2021, 12(4): 288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Yi H, Wang K, Du BY, et al. Aleuritolic acid impaired autophagic flux and induced apoptosis in hepatocellular carcinoma HepG2 cells[J]. Molecules, 2018, 23(6): 1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Li JK, Zhu PL, Wang Y, et al. Gracillin exerts anti-melanoma effects in vitro and in vivo: role of DNA damage, apoptosis and autophagy[J]. Phytomedicine, 2023, 108: 154526. [DOI] [PubMed] [Google Scholar]
  • 32. Yu WX, Lu C, Wang B, et al. Effects of rapamycin on osteosarcoma cell proliferation and apoptosis by inducing autophagy[J]. Eur Rev Med Pharmacol Sci, 2020, 24(2): 915-21. [DOI] [PubMed] [Google Scholar]
  • 33. Chen WS, Xian GY, Gu MH, et al. Autophagy inhibitors 3-MA and LY294002 repress osteoclastogenesis and titanium particle-stimulated osteolysis[J]. Biomater Sci, 2021, 9(14): 4922-35. [DOI] [PubMed] [Google Scholar]
  • 34. Ouyang SM, Li HX, Lou LL, et al. Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer[J]. Redox Biol, 2022, 52: 102317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Zeng C, Lin J, Zhang KT, et al. SHARPIN promotes cell proliferation of cholangiocarcinoma and inhibits ferroptosis via p53/SLC7A11/GPX4 signaling[J]. Cancer Sci, 2022, 113(11): 3766-75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Mou YH, Wang J, Wu JC, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer[J]. J Hematol Oncol, 2019, 12(1): 34. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES