Abstract
BACKGROUND
Subphrenic carcinoma has been identified as a significant risk factor for the thermal ablation of intrahepatic tumors, resulting in a high rate of residual tumor recurrence. Some studies have proposed that combination treatment with transarterial chemoembolization (TACE) followed by radiofrequency ablation is both feasible and safe for tumors in the subphrenic region. However, research specifically examining the therapeutic outcomes of combination therapy using TACE and microwave ablation (TACE-MWA) in subphrenic tumors is lacking.
AIM
To evaluate the efficacy and safety of TACE-MWA in patients with subphrenic hepatocellular carcinoma (HCC).
METHODS
Between December 2017 and December 2021, 49 patients diagnosed with HCC ≤ 6 cm, who received TACE-MWA, were included in this retrospective cohort study. These patients were classified into subphrenic and non-subphrenic groups based on the distance between the diaphragm and the tumor margin. The rates of local tumor progression (LTP), progression-free survival (PFS), and overall survival (OS) were compared between the two groups. Complications were evaluated by using a grading system developed by the Society of Interventional Radiology.
RESULTS
After a median follow-up time of 38 mo, there were no significant differences in LTP between the subphrenic and non-subphrenic groups (27.3% and 22.2% at 5 years, respectively; P = 0.66), PFS (55.5% at 5 years in both groups; P = 0.91), and OS (85.0% and 90.9% in the subphrenic and non-subphrenic groups at 5 years; P = 0.57). However, a significantly higher rate of LTP was observed in subphrenic HCC > 3 cm compared to those ≤ 3 cm (P = 0.085). The dosage of iodized oil [hazard ratio (HR): 1.52; 95% confidence interval (CI): 1.11-2.08; P = 0.009] and multiple tumors (HR: 13.22; 95%CI: 1.62-107.51; P = 0.016) were independent prognostic factors for LTP. There were no significant differences in complication rates between the two groups (P = 0.549).
CONCLUSION
Combined TACE and MWA was practical and safe for managing subphrenic HCC. The efficacy and safety levels did not vary significantly when tumors outside the subphrenic region were treated.
Keywords: Hepatocellular carcinoma, Transarterial chemoembolization, Microwave ablation, Prognosis, Subphrenic
Core Tip: Tumors located under the diaphragm present a challenge when it comes to percutaneous thermal ablation of liver tumors, as they have a higher likelihood of recurrence compared to resection and laparoscopic ablation. There is a solution that can enhance the accuracy of localization and increase the coverage of ablation: the combination of transarterial chemoembolization and percutaneous thermal ablation. In addition, the concurrent application of multiple antennas to create a confluent ablation zone has been successfully employed in recent years. Thus, we aim to investigate the effectiveness and safety of the combination therapy for tumors located under the diaphragm.
INTRODUCTION
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the leading cause of death in patients with cirrhosis[1,2]. However, in clinical practice, only 20%-30% of patients diagnosed with HCC are considered ideal candidates for surgical treatment[3]. Among the various thermal ablation techniques, radiofrequency ablation (RFA) is the most well-studied, utilizing high-frequency alternating electric current to heat tissue[1,4].
Microwave ablation (MWA) is a recently widely used thermal ablation treatment that induces tissue coagulation using electromagnetic waves around a monopolar antenna. It offers several advantages over RFA, including higher temperature, shorter time, a more predictable ablation zone, and less susceptibility to heat sinks[5-7]. Many preclinical and clinical studies have shown that MWA is more suitable than RFA for treating high-risk tumors (adjacent to a large vessel, gallbladder, subcapsular, gastrointestinal tract, or subphrenic) or tumors > 3 cm[8-10].
Subphrenic tumors are commonly considered independent risk factors for incomplete ablation[11]. Ultrasound images often do not clearly show tumors near the diaphragm because the view is obscured by the lung and ribs[12]. Similarly, computed tomography (CT) images may not be able to visualize tumors after antenna placement because of overlapping metallic artifacts. Additionally, there are concerns about potential thermal injury to the adjacent diaphragm, leading to lower-power protocols for treating these tumors compared with those in non-subphrenic areas[13]. As a solution, artificial ascites has been used to decrease the temperature of the diaphragm near the ablation area and allow for more power to be applied to the target lesion by altering the relative distance between the cancer and the hepatic dome[14]. However, it is important to note that artificial ascites may not be successful in certain patients with abdominal adhesions, and there is an ongoing debate regarding its utilization, given the comparable technical success and complication rates observed in combined therapy in which artificial ascites has not been applied[15-17].
Previous studies have demonstrated that transarterial chemoembolization (TACE) combined with ablation therapy improves the accuracy of antenna placement and enlarges the ablation zone[18,19]. Yamakado et al[17] indicated that there was no difference between subphrenic and non-subphrenic tumors in terms of local tumor control and treatment safety using TACE followed by RFA without artificial ascites. However, there is a lack of literature that separately describes TACE followed by MWA for the treatment of subphrenic tumors. Additionally, with advancements in technology and protocols, the concurrent application of multiple antennae to create a confluent ablation zone has been successfully employed for medium-sized tumors in recent years[20]. Therefore, we aimed to explore the efficacy and safety of the combination of TACE and MWA in subphrenic HCC.
MATERIALS AND METHODS
Patient population
This retrospective study was approved by our institutional review board and conducted in accordance with the Declaration of Helsinki. A waiver of informed consent was granted. We examined the clinical records of 412 consecutive patients who received TACE-MWA treatment (TACE followed by MWA) between December 2017 and December 2021. HCC was diagnosed based on the American Association for Liver Disease guidelines, and a liver biopsy was performed if deemed necessary[21]. All patients who underwent TACE-MWA had been deemed ineligible for, or refused, surgical resection (SR) or liver transplantation (LT) after consultation with a multidisciplinary team (including hepatologists, radiologists, oncologists, and anesthesiologists) and were fully informed about the benefits and drawbacks of each approach. CT-guided MWA was performed 4-6 weeks after TACE, depending on the embolization syndrome and the recovery time of liver function.
All patients who received TACE-MWA and met the inclusion criteria were enrolled in this study (Table 1). Based on the tumor's location on axial or coronal images of preoperative enhanced CT or magnetic resonance imaging (MRI), 27 patients were assigned to the subphrenic group when the cancer was abutting the diaphragm (maximum distance from the tumor to the diaphragm ≤ 5 mm). Twenty-two patients were assigned to the non-subphrenic group when the cancer was distinct from that of the diaphragm (Figure 1).
Table 1.
Inclusion criteria
|
Exclusion criteria
|
Age range 18-75 years | Age < 18 years or > 75 years |
HCC diagnosis according to AASLD guideline | No pathology or image evidence |
Child-Pugh grade A or B | Child-Pugh grade C |
BCLC grades A and B | BCLC grade C |
ECOG score ≤ 2 | ECOG score > 2 |
Tumor number ≤ 2 | Tumor number > 2 |
Tumor diameter ≤ 6 cm | Tumor diameter > 6 cm |
The nonsubphrenic tumor diameter ≤ 2 cm | The nonsubphrenic tumor diameter > 2 cm |
No intrahepatic vascular invasion | Intrahepatic vascular invasion |
PLT > 40 × 109 | PLT ≤ 40 × 109 |
AASLD: American Association for Liver Disease; BCLC: Barcelona Clinic Liver Cancer; ECOG: Eastern Cooperative Oncology Group; PLT: Platelet; HCC: Hepatocellular carcinoma.
TACE
TACE was performed 4-6 weeks before MWA, as reported in our previous study[22]. Briefly, a 5F RH catheter (Terumo, Tokyo, Japan) was introduced over a 0.035-inch hydrophilic guidewire (Terumo) to catheterize the celiac, superior mesenteric artery, and any suspected artery feeding the tumor. Digital subtraction angiography was performed to accurately determine the tumor location and size. After superselective catheterization of the distal target artery, chemoembolization was performed using a combination of epirubicin (20-40 mg; Pharmorubicin; Pfizer, Wuxi, China) and iodized oil (1-10 mL; Lipiodol Ultra Fluid; Hengrui, Jiangsu Province, China), depending on liver function, tumor size, and vascular supply. To achieve arterial flow stasis and prevent tumor staining, further embolization with precision-administered gelatin sponge particles (Hangzhou Alc, Hangzhou, Zhejiang Province, China) was performed until satisfactory results were obtained as evaluated by repeat angiography.
CT-guided MWA
The MWA procedure was conducted 4-6 weeks after the TACE. Two clinical MWA systems were used: KY-2000 (Canyou Medical Inc., Jiangsu Province, China) and ECO-100AI10 (ECO Medical Inc., Jiangsu Province, China). Both systems contained two autonomous microwave generators operating at a frequency of 2450 MHz and a power output range of 1-100 W. These systems can simultaneously propel microwave energy into tumor tissue via two water-cooled 15-gauge (1.9 cm) antennas through two flexible coaxial cables. Each CT-guided procedure was performed percutaneously by two board-certified operators with a minimum of 5 years of experience. Following conscious sedation and local anesthesia, a single antenna was placed at the tumor center if the diameter was 2 cm or less. In comparison, for tumors larger than 2 cm, two antennas were used and inserted simultaneously at a separation distance of 1.0-1.5 cm in the upper part of the tumor, with the energy application set at 45-55 W for 5-10 min per session. Subsequently, the antennae were removed and reinserted into the lower part of the tumor using the same protocol. The antenna inclination angle was considered when selecting either a transpulmonary or transhepatic route. A minimum of four ablation zones were required to attain an ablation zone overlap across the entire tumor surface in the 3D space. To reduce residual lesions near the diaphragm from excessive antenna tilt angles, the ablation antenna was maneuvered as close as possible to the diaphragm, utilizing the transpulmonary route. This effectively extended the ablation range to the upper part of the lesion. The outpower setting, ablation duration, and antenna placement were contingent on the tumor dimensions, shape, and location. After treatment, all patients underwent track ablation to prevent tumor bleeding and seeding.
Outcome assessment and follow-up
Primary technical success was determined by the disappearance of contrast enhancement within or abutting the ablation zone on imaging examination 1 mo after therapy. The primary outcomes were local tumor progression (LTP), progression-free survival (PFS), and overall survival (OS). LTP was defined as the recurrence of any tumor adjacent to the ablation zone that was previously considered completely ablated. PFS was defined as the follow-up time without any events, such as local tumor progression, intrahepatic distant recurrence, extrahepatic recurrence, or death. OS was defined as the interval between the first administration of the study treatment and either death or the end of the study, which in this case was March 2023. Complications were assessed by using the Society of Interventional Radiology grading system[23]. Enhanced liver CT/MRI scans and laboratory tests were performed to determine treatment outcomes at 1 mo and 3 mo after treatment. Follow-up scans were conducted at 3-mo intervals during the 1st year, and then at approximately 6-mo intervals. All follow-up images were thoroughly reviewed by two board-certified radiologists, who reached a consensus. Each radiologist had over 5 years of experience in abdominal imaging and thermal ablation to ensure the accuracy and reliability of the results.
Statistical analysis
The statistical software packages R (http://www.R-project.org, The R Foundation) and Free Statistics version 1.7 were used for all analyses, and a two-sided P < 0.05 was considered statistically significant. Categorical variables are presented as proportions (%), while continuous data are expressed as either the mean ± SD or the median and interquartile range (IQR), as appropriate. Univariate and multivariate Cox regression analyses were used to predict prognostic factors for LTP. Survival curves were plotted using Kaplan-Meier and log-rank analyses.
RESULTS
The baseline patient characteristics are presented in Table 2. The transpulmonary approach was more commonly used in the subphrenic group than in the non-subphrenic group, but the dose of doxorubicin administered per session was significantly higher in the non-subphrenic group. The two groups showed no significant difference in the number of patients with multiple tumors or the mean tumor size. Two patients with cirrhosis and subphrenic HCC were treated with TACE-MWA presented in Figure 2.
Table 2.
Variables
|
Total, n = 49
|
Subphrenic HCC, n = 27
|
Nonsubphrenic HCC, n = 22
|
P value
|
Statistic
|
Sex | 0.646 | Fisher | |||
Male | 44 (89.8) | 25 (92.6) | 19 (86.4) | ||
Female | 5 (10.2) | 2 (7.4) | 3 (13.6) | ||
Age in years | 58.0 ± 9.3 | 58.7 ± 10.1 | 57.2 ± 8.4 | 0.595 | 0.287 |
Etiology | 0.608 | Fisher | |||
HBV | 41 (83.7) | 24 (88.9) | 17 (77.3) | ||
HCV | 5 (10.2) | 2 (7.4) | 3 (13.6) | ||
Non-hepatitis virus | 3 (6.1) | 1 (3.7) | 2 (9.1) | ||
Child-Pugh class | 0.388 | Fisher | |||
A | 43 (87.8) | 25 (92.6) | 18 (81.8) | ||
B | 6 (12.2) | 2 (7.4) | 4 (18.2) | ||
AFP | 0.646 | Fisher | |||
< 200 ng/mL | 44 (89.8) | 25 (92.6) | 19 (86.4) | ||
≥ 200 ng/mL | 5 (10.2) | 2 (7.4) | 3 (13.6) | ||
PLT as 109/L | 105.5 ± 70.9 | 119.1 ± 87.6 | 88.9 ± 38.3 | 0.139 | 2.264 |
Undergone hepatectomy | 0.146 | 2.112 | |||
No | 35 (71.4) | 17 (63.0) | 18 (81.8) | ||
Yes | 14 (28.6) | 10 (37.0) | 4 (18.2) | ||
Amount of iodized oil in mL | 4.4 ± 2.6 | 4.6 ± 3.1 | 4.2 ± 1.8 | 0.597 | 0.283 |
Amount of epirubicin in mg | 26.9 ± 7.1 | 24.8 ± 8.0 | 29.5 ± 4.9 | 0.019 | 5.877 |
Tumor number | 0.617 | Fisher | |||
Single | 45 (91.8) | 24 (88.9) | 21 (95.5) | ||
Multiple | 4 (8.2) | 3 (11.1) | 1 (4.5) | ||
Tumor size in cm | 3.2 ± 1.2 | 3.4 ± 1.1 | 3.0 ± 1.2 | 0.255 | 1.327 |
Transpulmonary | < 0.001 | 19.958 | |||
No | 25 (51.0) | 6 (22.2) | 19 (86.4) | ||
Yes | 24 (49.0) | 21 (77.8) | 3 (13.6) |
Data are n (%) or mean ± SD. AFP: Alpha-fetoprotein; HBV: Hepatic B virus; HCV: Hepatic C virus; PLT: Platelet; HCC: Hepatocellular carcinoma.
LTP
The median follow-up period for the subphrenic group was 37.5 mo (range: 13.0-64.0 mo) and 38.5 mo (range: 27.0-64.0 mo) for the non-subphrenic group. LTP was observed in six of 27 (22.2%) patients in the subphrenic group and 6 of 22 (27.3%) patients in the non-subphrenic group. The cumulative 1-, 2-, 3-, and 5-year LTP rates were 14.8%, 22.2%, 22.2%, and 22.2% in the subphrenic group and 18.2%, 27.3%, 27.3%, and 27.3% in the non-subphrenic group, respectively. No significant intergroup differences were observed (P = 0.66) (Figure 3A). Univariate and multivariate Cox regression analyses showed that the dose of iodized oil [hazard ratio (HR): 1.52; 95% confidence interval (CI): 1.11-2.08; P = 0.009] and multiple tumors (HR: 13.22; 95%CI: 1.62-107.51; P = 0.016) were independently associated with poorer LTP (Table 3).
Table 3.
Variable
|
Local tumor pregression
|
|||
Univariate analysis
|
Multivariate analysis
|
|||
HR (95%CI)
|
P value
|
HR (95%CI)
|
P value
|
|
Female sex | 0 (0-Inf) | 0.086 | ND | ND |
Age | 1.02 (0.96-1.09) | 0.487 | ND | ND |
Etiology | 0.407 | ND | ND | |
HCV | Reference | ND | ND | |
HBV | 1.31 (0.17-10.11) | ND | ND | |
Non-viral | 0 (0-Inf) | ND | ND | |
CP B | 0.66 (0.08-5.08) | 0.668 | ND | ND |
AFP ≥ 200 ng/mL | 2.07 (0.45-9.46) | 0.388 | ND | ND |
PLT | 1.0031 (0.9966-1.0096) | 0.381 | ND | ND |
Non-undergone hepatectomy | 0.46 (0.10-2.08) | 0.271 | ND | ND |
Amount of iodized oil in mL | 1.34 (1.15-1.57) | 0.001 | 1.52 (1.11-2.08) | 0.009 |
Amount of epirubicin in mg | 1.07 (0.96-1.19) | 0.174 | ND | ND |
Tumor number of 2 | 3.23 (0.70-14.80) | 0.186 | 13.22 (1.62-107.51) | 0.016 |
Tumor size in cm | 2.59 (1.48-4.52) | < 0.001 | ND | ND |
Transpulmanory: 1 vs 0 | 1.50 (0.48-4.72) | 0.487 | ND | ND |
Nonsubphrenic vs subphrenic | 1.29 (0.42-4.00) | 0.661 | ND | ND |
AFP: Alpha-fetoprotein; CI: Confidence interval; CP: Child-Pugh classification; HBV: Hepatic B virus; HCV: Hepatic C virus; HR: Hazard ratio; ND: Not done; PLT: Platelet.
Five patients from the subphrenic and non-subphrenic groups were treated with secondary MWA to manage local tumor progression. Subsequently, contrast-enhanced CT/MRI was performed, which revealed complete ablation of the residual tumor. After a multidisciplinary team discussion, one patient in the subphrenic group underwent surgical resection 3 mo after combination treatment, because MWA was having little effect on the residual tumor.
PFS and OS
The 1-, 3-, and 5-year PFS rates were 85.2%, 55.5%, and 55.5%, respectively, in the subphrenic group and 73.0%, 55.5%, and 55.5%, respectively, in the non-subphrenic group (P = 0.91) (Figure 3B). Four of 27 patients (14.8%) in the subphrenic group and two of 22 patients (9.1%) in the non-subphrenic group died. The cumulative OS rates in the subphrenic group were 100%, 88.8%, and 85.0% at 1-, 3-, and 5-years respectively. In the non-subphrenic group, the corresponding cumulative survival rates were 100.0%, 95.4%, and 90.9%, respectively. Despite the observed differences, the statistical analysis did not reveal any significant differences between the two groups (P = 0.57) (Figure 3C).
Subgroup analysis of the subphrenic group
To examine the relationship between tumor diameter and the LTP rate, 27 patients in the subphrenic group were divided into two groups according to the tumor diameter; ≤ 3 cm and > 3 cm (small and medium groups). The mean maximum tumor diameter was 2.1 cm ± 0.5 cm in the small group and 3.9 cm ± 0.9 cm in the medium group. In the medium group, the cumulative 1-, 3-, and 5-year LTP rates were 15.0%, 22.2%, and 22.2%, respectively. However, no LTP was observed in the small group (P = 0.085). The cumulative LTP rate of patients with medium tumors significantly increased with tumor diameter.
Complications
No treatment-related mortality was observed in either group. However, one patient (3.7%) in the subphrenic group, experienced a major Class C complication of pneumonia and received closed thoracic drainage treatment. In contrast, one patient (4.5%) in the non-subphrenic group experienced a major Class D complication, with a bacterial lung infection that necessitated anti-infective therapy. Minor complications, such as vomiting, fever, nausea, and puncture point or right shoulder pain, were observed in 6 of 27 patients (22.2%) in the subphrenic group and 2 of 22 patients (9.1%) in the non-subphrenic group (P = 0.549). All minor complications were transient and resolved before discharge.
The transpulmonary approach was used in 21 patients in the subphrenic group and 3 from the non-subphrenic group. Among these patients, pneumothorax occurred in six individuals (28.5%) in the subphrenic group compared to none in the non-subphrenic group. One patient (4.7%) with a pneumothorax underwent closed chest drainage to alleviate breathing difficulties. Following a chest CT scan that confirmed the disappearance of the pneumothorax, the drain was removed the following day.
DISCUSSION
Our study is the first to explore the therapeutic outcomes of the TACE followed by MWA under CT guidance, comparing subphrenic HCC to non-subphrenic HCC. We observed comparable LTP, PFS, and OS outcomes between the subphrenic and non-subphrenic groups. In addition, no LTP was found in the subphrenic subgroup with small (≤ 3 cm) tumors. However, for medium-sized subphrenic HCC (> 3 cm), the 5-year LTP rate was only 22.5%.
Subphrenic or subdiaphragmatic tumor ablation is associated with a high incidence of local tumor progression and treatment-related complications[11,24,25]. The main challenge for complete ablation may be the accuracy of tumor targeting due to obscuration by the pulmonary tissue. Although some studies have reported the use of auxiliary techniques (artificial pleural effusion, artificial ascites, artificial pneumothorax, or artificial ventilation) to improve tumor visibility, some small nodules in patients with severe cirrhosis may remain undetected. Two recent studies compared ultrasonography-guided RFA with laparoscopic RFA or hepatic resection and reported 5-year LTP rates of 23.4% and 46.0%, respectively, in the ultrasonography group[11,26]. Therefore, some interventional radiologists prefer CT guidance for the treatment of tumors abutting the diaphragm. During TACE followed by thermal ablation, tumor visualization can be improved by injecting iodized oil into the feeding artery, especially for HCC characterized by vascularity. Kim et al[27] performed TACE combined with RFA for subphrenic HCC ≤ 3 cm using a transhepatic route and reported a 5-year LTP rate of 12.1%, similar to our findings. In our center, although the transhepatic route is preferred, the transpulmonary route is sometimes required to place the antennas parallel to the long axis of the lesion, even at the cost of an increased incidence of pneumothorax. This study used the transpulmonary route in 21 patients with subphrenic tumors (77.8%). Six patients (28.5%) had pneumothorax at the end of the session, and one patient (4.7%) required closed chest drainage, which is inferior to the results of Yamakado et al[17] using TACE-RFA combination treatment for subphrenic HCC of < 5 cm.
Compared to the treatment of HCC of ≤ 2 cm using only one antenna, tumors ranging between 2-5 cm require the application of multiple antennas to create a nearly spherical ablation zone with a sufficient safety margin[20,28-31]. In our center, we typically perform TACE before MWA to reduce vascularity in the treated area and increase the size of the ablation zone. Additionally, the intrahepatic marker induced by iodized oil deposited during TACE assists in calculating the distance between the tumor margin and the antenna, allowing us to determine whether the tailored ablation zone adequately covers the tumor with a safe margin. In our subgroup study focusing on tumors > 3 cm in size, the local tumor control rate was comparable to that reported by Andresciani et al[20] and Cazzato et al[29], but the 5-year LTP rate was not as good as that reported by Yamakado et al[17]. However, the mean tumor diameter in our subgroup study was larger than in the latter study.
The occurrence of diaphragmatic hernias during thermal ablation has been documented in literature, with most studies focusing on the use of deployable radiofrequency electrodes[13,26,32,33]. Only one study utilized MWA[34]. In the absence of large-scale prospective randomized controlled studies, it is difficult to definitively conclude that MWA is safer than RFA for subphrenic tumor ablation. However, MWA has inherent advantages over RFA. This technique employs electromagnetic waves to generate heat and does not require close contact with the diaphragm. Furthermore, the diameter of the charred ablation zone around the antenna, which has the potential to cause diaphragmatic hernias, remains relatively constant. Therefore, maintaining a consistent distance between the diaphragm and the microwave antenna could theoretically reduce the occurrence of diaphragmatic hernias[17,33].
Artificial pleural fluid, or ascites, is another auxiliary technique that protects the diaphragm from thermal injury. However, there is ongoing debate regarding the success rate of this technique and its associated complications[32]. While artificial pleural fluid and ascites can enhance tumor visibility under ultrasound guidance and reduce thermal injury to the diaphragm, our study found no significant differences in effectiveness and safety compared to previous studies, even without artificial ascites[9,25-27,29]. This finding aligns with that of Yamakado et al[17]. We hypothesized that although combination therapy might increase the extent of ablation, it primarily extends the non-charred area at the periphery. Consequently, the temperature in these areas could potentially cause discomfort to the patient but is unlikely to result in perforation. When ablating subphrenic tumors at our center, the antennas were parallel to the diaphragm, and placed at least 1 cm away from the diaphragm. We carefully monitored for right shoulder pain syndrome during the session and maintained a low power for a long time. In this study, only a few patients experienced right shoulder pain that resolved within a few days.
Several studies have highlighted the benefits of combination treatments. However, little research has been conducted on the ideal time interval between TACE and thermal ablation. The main advantage of the combination treatment lies in its ability to expand the ablation zone, which is influenced by the level of blockage of the tumor feeder artery through TACE. However, the feeder artery tends to recanalize shortly after embolization. As a result, a shorter interval between TACE and ablation leads to a larger ablation zone in combination treatment. Several studies have demonstrated that shorter intervals can improve the local tumor control rate by enlarging the ablation zone. However, it is essential to note that shorter time intervals may also cause acute liver function deterioration and complications due to excessive tissue heating. In an animal study by Lee et al[35], RFA performed immediately after TACE resulted in severe acute hepatic damage compared to RFA performed five days after TACE. Similarly, in a retrospective study by Kim et al[27], five patients experienced subsegmental hepatic infarction after RFA immediately following TACE treatment. Another retrospective study, by Feng et al[36], investigated the impact of varying time intervals on treatment outcomes and found that a time interval of 3-5 weeks was optimal, providing the longest survival time and minimal effect on liver function when compared with intervals of 1-2 weeks or 6-7 weeks. In this study, MWA was performed 4-6 weeks after TACE. Of all the patients, only six (12.2%) had a Child-Pugh score of B, and none experienced an upgrade in their Child-Pugh score due to chemoembolization. This can possibly be attributed to better liver function reserve, which may explain why the study did not show significant superiority in local tumor control rate but did observe a comparable 5-year survival rate.
Our study has several limitations. Owing to its retrospective design and relatively small sample size, the scope of this study was limited. Additionally, a significant proportion of patients in our study were postoperative and infected with hepatitis B virus, both of which are known to increase recurrence and decrease survival rates[37]. Therefore, the therapeutic outcomes may not be generalizable to other populations. Two different microwave devices were used in this study, and the primary parameters were similar to those in the manufacturer's protocol. However, there is the possibility of potential confounding factors affecting the results. Our multivariate analysis suggested that the dose of iodized oil used in TACE may be positively associated with local tumor progression. However, the amount of iodized oil utilized intraoperatively may not equate to the amount deposited in the tumor. There is no precise method for measuring the amount of iodized oil deposited in tumors. Therefore, animal experiments are necessary to determine the relationship between the amount of iodized oil deposited in the tumor and size of the ablation area.
CONCLUSION
In conclusion, our study demonstrates that the combination of TACE and MWA is an effective and safe method for treating subphrenic HCC. Furthermore, the therapeutic outcomes were comparable to those observed in non-subphrenic HCC.
Footnotes
Institutional review board statement: The study was reviewed and approved by The First Affiliated Hospital of Bengbu Medical University (Approval No. 2024KY047).
Informed consent statement: Informed consent was waived by the First Affiliated Hospital of Bengbu Medical University Institutional Review Board.
Conflict-of-interest statement: All the authors report having no relevant conflicts of interest for this article.
Provenance and peer review: Unsolicited article; Externally peer reviewed.
Peer-review model: Single blind
Specialty type: Oncology
Country of origin: China
Peer-review report’s classification
Scientific Quality: Grade C, Grade C
Novelty: Grade B, Grade B
Creativity or Innovation: Grade B, Grade B
Scientific Significance: Grade B, Grade B
P-Reviewer: Nagaya M, Japan S-Editor: Chen YL L-Editor: Filipodia P-Editor: Zheng XM
Contributor Information
Zi-Yi Zhu, Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui Province, China.
Zhen Qian, Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui Province, China.
Zhong-Qiang Qin, Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui Province, China.
Bo Xie, Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui Province, China.
Jian-Zhu Wei, Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui Province, China.
Pei-Pei Yang, Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui Province, China.
Mu Yuan, Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui Province, China. yuanmu2008@163.com.
Data sharing statement
No additional data are available.
References
- 1.Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–1314. doi: 10.1016/S0140-6736(18)30010-2. [DOI] [PubMed] [Google Scholar]
- 2.El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142:1264–1273.e1. doi: 10.1053/j.gastro.2011.12.061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Murata S, Mine T, Sugihara F, Yasui D, Yamaguchi H, Ueda T, Onozawa S, Kumita S. Interventional treatment for unresectable hepatocellular carcinoma. World J Gastroenterol. 2014;20:13453–13465. doi: 10.3748/wjg.v20.i37.13453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Lencioni R. Loco-regional treatment of hepatocellular carcinoma. Hepatology. 2010;52:762–773. doi: 10.1002/hep.23725. [DOI] [PubMed] [Google Scholar]
- 5.Lubner MG, Brace CL, Hinshaw JL, Lee FT Jr. Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol. 2010;21:S192–S203. doi: 10.1016/j.jvir.2010.04.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Brace CL, Laeseke PF, Sampson LA, Frey TM, van der Weide DW, Lee FT Jr. Microwave ablation with a single small-gauge triaxial antenna: in vivo porcine liver model. Radiology. 2007;242:435–440. doi: 10.1148/radiol.2422051411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Wright AS, Sampson LA, Warner TF, Mahvi DM, Lee FT Jr. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology. 2005;236:132–139. doi: 10.1148/radiol.2361031249. [DOI] [PubMed] [Google Scholar]
- 8.An C, Li WZ, Huang ZM, Yu XL, Han YZ, Liu FY, Wu SS, Yu J, Liang P, Huang J. Small single perivascular hepatocellular carcinoma: comparisons of radiofrequency ablation and microwave ablation by using propensity score analysis. Eur Radiol. 2021;31:4764–4773. doi: 10.1007/s00330-020-07571-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Smolock AR, Lubner MG, Ziemlewicz TJ, Hinshaw JL, Kitchin DR, Brace CL, Lee FT Jr. Microwave ablation of hepatic tumors abutting the diaphragm is safe and effective. AJR Am J Roentgenol. 2015;204:197–203. doi: 10.2214/AJR.14.12879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Wang Z, Liu M, Zhang DZ, Wu SS, Hong ZX, He GB, Yang H, Xiang BD, Li X, Jiang TA, Li K, Tang Z, Huang F, Lu M, Chen JA, Lin YC, Lu X, Wu YQ, Zhang XW, Zhang YF, Cheng C, Ye HL, Wang LT, Zhong HG, Zhong JH, Wang L, Chen M, Liang FF, Chen Y, Xu YS, Yu XL, Cheng ZG, Liu FY, Han ZY, Tang WZ, Yu J, Liang P. Microwave ablation versus laparoscopic resection as first-line therapy for solitary 3-5-cm HCC. Hepatology. 2022;76:66–77. doi: 10.1002/hep.32323. [DOI] [PubMed] [Google Scholar]
- 11.Song KD, Lim HK, Rhim H, Lee MW, Kang TW, Paik YH, Kim JM, Joh JW. Hepatic resection vs percutaneous radiofrequency ablation of hepatocellular carcinoma abutting right diaphragm. World J Gastrointest Oncol. 2019;11:227–237. doi: 10.4251/wjgo.v11.i3.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Koda M, Ueki M, Maeda N, Murawaki Y. Diaphragmatic perforation and hernia after hepatic radiofrequency ablation. AJR Am J Roentgenol. 2003;180:1561–1562. doi: 10.2214/ajr.180.6.1801561. [DOI] [PubMed] [Google Scholar]
- 13.Gao J, Kong J, Ding XM, Ke S, Niu HG, Xin ZH, Ning CM, Guo SG, Li XL, Zhang L, Dong YH, Sun WB. Laparoscopic vs computerized tomography-guided radiofrequency ablation for large hepatic hemangiomas abutting the diaphragm. World J Gastroenterol. 2015;21:5941–5949. doi: 10.3748/wjg.v21.i19.5941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Uehara T, Hirooka M, Ishida K, Hiraoka A, Kumagi T, Kisaka Y, Hiasa Y, Onji M. Percutaneous ultrasound-guided radiofrequency ablation of hepatocellular carcinoma with artificially induced pleural effusion and ascites. J Gastroenterol. 2007;42:306–311. doi: 10.1007/s00535-006-1949-0. [DOI] [PubMed] [Google Scholar]
- 15.Kambadakone A, Baliyan V, Kordbacheh H, Uppot RN, Thabet A, Gervais DA, Arellano RS. Imaging guided percutaneous interventions in hepatic dome lesions: Tips and tricks. World J Hepatol. 2017;9:840–849. doi: 10.4254/wjh.v9.i19.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Li Z, Xu K, Zhou X, Jiao D, Han X. TACE sequential MWA guided by cone-beam computed tomography in the treatment of small hepatocellular carcinoma under the hepatic dome. BMC Cancer. 2023;23:600. doi: 10.1186/s12885-023-11066-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Yamakado K, Nakatsuka A, Takaki H, Sakurai H, Isaji S, Yamamoto N, Shiraki K, Takeda K. Subphrenic versus nonsubphrenic hepatocellular carcinoma: combined therapy with chemoembolization and radiofrequency ablation. AJR Am J Roentgenol. 2010;194:530–535. doi: 10.2214/AJR.09.2917. [DOI] [PubMed] [Google Scholar]
- 18.Knavel EM, Green CM, Gendron-Fitzpatrick A, Brace CL, Laeseke PF. Combination Therapies: Quantifying the Effects of Transarterial Embolization on Microwave Ablation Zones. J Vasc Interv Radiol. 2018;29:1050–1056. doi: 10.1016/j.jvir.2018.01.785. [DOI] [PubMed] [Google Scholar]
- 19.Zhang TQ, Huang ZM, Shen JX, Chen GQ, Shen LJ, Ai F, Gu YK, Yao W, Zhang YY, Guo RP, Chen MS, Huang JH. Safety and effectiveness of multi-antenna microwave ablation-oriented combined therapy for large hepatocellular carcinoma. Therap Adv Gastroenterol. 2019;12:1756284819862966. doi: 10.1177/1756284819862966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Andresciani F, Pacella G, Vertulli D, Altomare C, Bitonti MT, Bruno A, Cea L, Faiella E, Beomonte Zobel B, Grasso RF. Microwave ablation using two simultaneous antennas for the treatment of liver malignant lesions: a 3 year single-Centre experience. Int J Hyperthermia. 2023;40:2163309. doi: 10.1080/02656736.2022.2163309. [DOI] [PubMed] [Google Scholar]
- 21.Masuzaki R, Shiina S, Tateishi R, Yoshida H, Goto E, Sugioka Y, Kondo Y, Goto T, Ikeda H, Omata M, Koike K. Utility of contrast-enhanced ultrasonography with Sonazoid in radiofrequency ablation for hepatocellular carcinoma. J Gastroenterol Hepatol. 2011;26:759–764. doi: 10.1111/j.1440-1746.2010.06559.x. [DOI] [PubMed] [Google Scholar]
- 22.Zhu ZY, Yuan M, Yang PP, Xie B, Wei JZ, Qin ZQ, Qian Z, Wang ZY, Fan LF, Qian JY, Tan YL. Single medium-sized hepatocellular carcinoma treated with sequential conventional transarterial chemoembolization (cTACE) and microwave ablation at 4 weeks versus cTACE alone: a propensity score. World J Surg Oncol. 2022;20:192. doi: 10.1186/s12957-022-02643-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Ahmed M Technology Assessment Committee of the Society of Interventional Radiology. Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update: supplement to the consensus document. J Vasc Interv Radiol. 2014;25:1706–1708. doi: 10.1016/j.jvir.2014.09.005. [DOI] [PubMed] [Google Scholar]
- 24.Lee MW, Kang D, Lim HK, Cho J, Sinn DH, Kang TW, Song KD, Rhim H, Cha DI, Lu DSK. Updated 10-year outcomes of percutaneous radiofrequency ablation as first-line therapy for single hepatocellular carcinoma < 3 cm: emphasis on association of local tumor progression and overall survival. Eur Radiol. 2020;30:2391–2400. doi: 10.1007/s00330-019-06575-0. [DOI] [PubMed] [Google Scholar]
- 25.Kang TW, Rhim H, Kim EY, Kim YS, Choi D, Lee WJ, Lim HK. Percutaneous radiofrequency ablation for the hepatocellular carcinoma abutting the diaphragm: assessment of safety and therapeutic efficacy. Korean J Radiol. 2009;10:34–42. doi: 10.3348/kjr.2009.10.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Kwak MH, Lee MW, Ko SE, Rhim H, Kang TW, Song KD, Kim JM, Choi GS. Laparoscopic radiofrequency ablation versus percutaneous radiofrequency ablation for subphrenic hepatocellular carcinoma. Ultrasonography. 2022;41:543–552. doi: 10.14366/usg.21241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Kim JG, Cho SK, Hyun D, Shin SW, Park KB, Park HS, Choo SW, Do YS, Woo SY, Baek SY. Combined transarterial chemoembolization and radiofrequency ablation for subphrenic versus nonsubphrenic hepatocellular carcinoma: a propensity score matched study. Abdom Radiol (NY) 2021;46:5735–5745. doi: 10.1007/s00261-021-03291-6. [DOI] [PubMed] [Google Scholar]
- 28.Harari CM, Magagna M, Bedoya M, Lee FT Jr, Lubner MG, Hinshaw JL, Ziemlewicz T, Brace CL. Microwave Ablation: Comparison of Simultaneous and Sequential Activation of Multiple Antennas in Liver Model Systems. Radiology. 2016;278:95–103. doi: 10.1148/radiol.2015142151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Cazzato RL, De Marini P, Leclerc L, Dalili D, Koch G, Rao P, Auloge P, Garnon J, Gangi A. Large nearly spherical ablation zones are achieved with simultaneous multi-antenna microwave ablation applied to treat liver tumours. Eur Radiol. 2020;30:971–975. doi: 10.1007/s00330-019-06431-1. [DOI] [PubMed] [Google Scholar]
- 30.Garnon J, Delmas L, De Marini P, Dalili D, Koch G, Auloge P, Cazzato RL, Gangi A. Triple-Antenna Microwave Ablation with Repositioning for the Creation of a Reliable 6-cm Ablation Zone in the Liver. Cardiovasc Intervent Radiol. 2021;44:1291–1295. doi: 10.1007/s00270-021-02854-w. [DOI] [PubMed] [Google Scholar]
- 31.Amabile C, Ahmed M, Solbiati L, Meloni MF, Solbiati M, Cassarino S, Tosoratti N, Nissenbaum Y, Ierace T, Goldberg SN. Microwave ablation of primary and secondary liver tumours: ex vivo, in vivo, and clinical characterisation. Int J Hyperthermia. 2017;33:34–42. doi: 10.1080/02656736.2016.1196830. [DOI] [PubMed] [Google Scholar]
- 32.Ding J, Jing X, Liu J, Wang Y, Wang F, Wang Y, Du Z. Complications of thermal ablation of hepatic tumours: comparison of radiofrequency and microwave ablative techniques. Clin Radiol. 2013;68:608–615. doi: 10.1016/j.crad.2012.12.008. [DOI] [PubMed] [Google Scholar]
- 33.Li M, Yu XL, Liang P, Liu F, Dong B, Zhou P. Percutaneous microwave ablation for liver cancer adjacent to the diaphragm. Int J Hyperthermia. 2012;28:218–226. doi: 10.3109/02656736.2012.665565. [DOI] [PubMed] [Google Scholar]
- 34.Rhim H, Lim HK. Radiofrequency ablation for hepatocellular carcinoma abutting the diaphragm: the value of artificial ascites. Abdom Imaging. 2009;34:371–380. doi: 10.1007/s00261-008-9408-4. [DOI] [PubMed] [Google Scholar]
- 35.Lee IJ, Kim YI, Kim KW, Kim DH, Ryoo I, Lee MW, Chung JW. Radiofrequency ablation combined with transcatheter arterial embolisation in rabbit liver: investigation of the ablation zone according to the time interval between the two therapies. Br J Radiol. 2012;85:e987–e994. doi: 10.1259/bjr/90024696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Feng YM, Wang X, Wang L, Ma XW, Wu H, Bu HR, Xie XY, Qi JN, Zhu Q. Efficacy and safety of combination therapy of chemoembolization and radiofrequency ablation with different time intervals for hepatocellular carcinoma patients. Surg Oncol. 2017;26:236–241. doi: 10.1016/j.suronc.2017.04.006. [DOI] [PubMed] [Google Scholar]
- 37.Li P, Wang Y, Yu J, Yu J, Tao Q, Zhang J, Lau WY, Zhou W, Huang G. Tenofovir vs Entecavir Among Patients With HBV-Related HCC After Resection. JAMA Netw Open. 2023;6:e2340353. doi: 10.1001/jamanetworkopen.2023.40353. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
No additional data are available.