Abstract
Histone deacetylase (HDAC) inhibitors are a widely recognized and valued treatment option for patients with relapsed or refractory peripheral T cell lymphomas (PTCL). Romidepsin is a relatively selective Class I HDAC inhibitor originally approved for patients with relapsed or refractory (R/R) cutaneous T cell lymphoma (CTCL) and subsequently R/R PTCL. Unfortunately, the FDA approval of romidepsin for R/R PTCL was withdrawn due to a negative Phase 4 post-marketing requirement (PMR), diminishing further the treatment options for patients with PTCL. Herein we describe the development of a first-in-class polymer nanoparticle of romidepsin (Nanoromidepsin) using an innovative amphiphilic di-block copolymer-based nanochemistry platform. Nanoromidepsin exhibited superior pharmacologic disposition, with improved tolerability and safety in murine models of T-cell lymphoma. Nanoromidepsin also exhibited superior anti-tumor efficacy in multiple models including in vitro T cell lymphoma (TCL) cell lines, ex vivo LGL leukemia primary patient samples, and murine TCL xenografts. Nanoromidepsin demonstrated greater accumulation in tumors and a statistically significant improvement in overall survival (OS) compared to romidepsin in murine xenograft models. These findings collectively justify the clinical development of Nanoromidepsin in patients with T-cell malignancies.
Full Text Availability
The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.
