Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Jul 19:2024.07.18.603379. [Version 1] doi: 10.1101/2024.07.18.603379

Preclinical Development of a Romidepsin Nanoparticle Demonstrates Superior Tolerability and Efficacy in Models of Human T-Cell Lymphoma and Large Granular Lymphocyte Leukemia

Ipsita Pal, Anuradha Illendula, Andrea Joyner, John Sanil Manavalan, Tess M Deddens, Ariana Sabzevari, Deepthi P Damera, Samir Zuberi, Enrica Marchi, Todd E Fox, Marya E Dunlap-Brown, Kallesh D Jayappa, Jeffrey W Craig, Thomas P Loughran, David J Feith, Owen A O’Connor
PMCID: PMC11275871  PMID: 39071370

Abstract

Histone deacetylase (HDAC) inhibitors are a widely recognized and valued treatment option for patients with relapsed or refractory peripheral T cell lymphomas (PTCL). Romidepsin is a relatively selective Class I HDAC inhibitor originally approved for patients with relapsed or refractory (R/R) cutaneous T cell lymphoma (CTCL) and subsequently R/R PTCL. Unfortunately, the FDA approval of romidepsin for R/R PTCL was withdrawn due to a negative Phase 4 post-marketing requirement (PMR), diminishing further the treatment options for patients with PTCL. Herein we describe the development of a first-in-class polymer nanoparticle of romidepsin (Nanoromidepsin) using an innovative amphiphilic di-block copolymer-based nanochemistry platform. Nanoromidepsin exhibited superior pharmacologic disposition, with improved tolerability and safety in murine models of T-cell lymphoma. Nanoromidepsin also exhibited superior anti-tumor efficacy in multiple models including in vitro T cell lymphoma (TCL) cell lines, ex vivo LGL leukemia primary patient samples, and murine TCL xenografts. Nanoromidepsin demonstrated greater accumulation in tumors and a statistically significant improvement in overall survival (OS) compared to romidepsin in murine xenograft models. These findings collectively justify the clinical development of Nanoromidepsin in patients with T-cell malignancies.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES