Abstract
The ability of amosite cored asbestos bodies isolated from human lungs to catalyse damage to phi X174 RFI DNA in vitro was measured and compared with that of uncoated amosite fibres with a similar distribution of length. Asbestos bodies (5000 bodies) suspended for 30 minutes in 50 mM NaCl containing 0.5 micrograms phi X174 RFI DNA, pH 7.5, did not catalyse detectable amounts of DNA single strand breaks. Addition of the reducing agent ascorbate (1 mM), however, resulted in single strand breaks in 10% of the DNA. Asbestos bodies in the presence of a low molecular weight chelator (1 mM) and ascorbate catalysed the formation of single strand breaks in 21% of the DNA with citrate or 77% with ethylenediamine tetra-acetic acid (EDTA), suggesting that mobilisation of iron may increase damage to DNA. Preincubation for 24 hours with desferrioxamine B, which binds iron (Fe (III)) and renders it redox inactive, completely inhibited the reactivity of asbestos bodies with DNA, strongly suggesting that iron was responsible. Amosite fibres (5000 fibres/reaction), with a similar length distribution to that of the asbestos bodies, did not catalyse detectable amounts of single strand breaks in DNA under identical reaction conditions. The results of the present study strongly suggest that iron deposits on the amosite core asbestos bodies were responsible for the formation of DNA single strand breaks in vitro. Mobilisation of iron by chelators seemed to enhance the reactivity of asbestos bodies with DNA. It has been postulated that the in vivo deposition of the coat material on to fibres may be an attempt by the lung defenses to isolate the fibre from the lung surface and thus offer a protective mechanism from physical irritation. These results suggest, however, that the iron that is deposited on asbestos fibres in vivo may be reactive, potentially increasing the damage to biomolecules, such as DNA, above that of the uncoated fibres.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chao C. C., Aust A. E. Photochemical reduction of ferric iron by chelators results in DNA strand breaks. Arch Biochem Biophys. 1993 Feb 1;300(2):544–550. doi: 10.1006/abbi.1993.1075. [DOI] [PubMed] [Google Scholar]
- Churg A. M., Warnock M. L. Asbestos and other ferruginous bodies: their formation and clinical significance. Am J Pathol. 1981 Mar;102(3):447–456. [PMC free article] [PubMed] [Google Scholar]
- Davis J. M. Asbestos dust as a nucleation center in the calcification of old fibrous tissue lesions, and the possible association of this process to the formation of asbestos bodies. Exp Mol Pathol. 1970 Apr;12(2):133–147. doi: 10.1016/0014-4800(70)90045-6. [DOI] [PubMed] [Google Scholar]
- Davis J. M. Further observations on the ultrastructure and chemistry of the formation of asbestos bodies. Exp Mol Pathol. 1970 Dec;13(3):346–358. doi: 10.1016/0014-4800(70)90096-1. [DOI] [PubMed] [Google Scholar]
- Dodson R. F., Greenberg S. D., Williams M. G., Jr, Corn C. J., O'Sullivan M. F., Hurst G. A. Asbestos content in lungs of occupationally and nonoccupationally exposed individuals. JAMA. 1984 Jul 6;252(1):68–71. [PubMed] [Google Scholar]
- Dodson R. F., O'Sullivan M. F., Williams M. G., Jr, Hurst G. A. Analysis of cores of ferruginous bodies from former asbestos workers. Environ Res. 1982 Jun;28(1):171–178. doi: 10.1016/0013-9351(82)90166-9. [DOI] [PubMed] [Google Scholar]
- Dodson R. F., Williams M. G., Jr, Hurst G. A. Method for removing the ferruginous coating from asbestos bodies. J Toxicol Environ Health. 1983 Apr-Jun;11(4-6):959–966. doi: 10.1080/15287398309530398. [DOI] [PubMed] [Google Scholar]
- Dodson R. F., Williams M. G., Jr, O'Sullivan M. F., Corn C. J., Greenberg S. D., Hurst G. A. A comparison of the ferruginous body and uncoated fiber content in the lungs of former asbestos workers. Am Rev Respir Dis. 1985 Jul;132(1):143–147. doi: 10.1164/arrd.1985.132.1.143. [DOI] [PubMed] [Google Scholar]
- Goodglick L. A., Pietras L. A., Kane A. B. Evaluation of the causal relationship between crocidolite asbestos-induced lipid peroxidation and toxicity to macrophages. Am Rev Respir Dis. 1989 May;139(5):1265–1273. doi: 10.1164/ajrccm/139.5.1265. [DOI] [PubMed] [Google Scholar]
- Governa M., Rosanda C. A histochemical study of the asbestos body coating. Br J Ind Med. 1972 Apr;29(2):154–159. doi: 10.1136/oem.29.2.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross P., Cralley L. J., DeTreville R. T. "Asbestos" bodies: their nonspecificity. Am Ind Hyg Assoc J. 1967 Nov-Dec;28(6):541–542. doi: 10.1080/00028896709342681. [DOI] [PubMed] [Google Scholar]
- Holden J., Churg A. Asbestos bodies and the diagnosis of asbestosis in chrysotile workers. Environ Res. 1986 Feb;39(1):232–236. doi: 10.1016/s0013-9351(86)80024-x. [DOI] [PubMed] [Google Scholar]
- Kennedy T. P., Dodson R., Rao N. V., Ky H., Hopkins C., Baser M., Tolley E., Hoidal J. R. Dusts causing pneumoconiosis generate .OH and produce hemolysis by acting as Fenton catalysts. Arch Biochem Biophys. 1989 Feb 15;269(1):359–364. doi: 10.1016/0003-9861(89)90118-5. [DOI] [PubMed] [Google Scholar]
- Langer A. M., Rubin I. B., Selikoff I. J. Chemical characterization of asbestos body cores by electron microprobe analysis. J Histochem Cytochem. 1972 Sep;20(9):723–734. doi: 10.1177/20.9.723. [DOI] [PubMed] [Google Scholar]
- Lund L. G., Aust A. E. Iron mobilization from crocidolite asbestos greatly enhances crocidolite-dependent formation of DNA single-strand breaks in phi X174 RFI DNA. Carcinogenesis. 1992 Apr;13(4):637–642. doi: 10.1093/carcin/13.4.637. [DOI] [PubMed] [Google Scholar]
- Lund L. G., Aust A. E. Iron-catalyzed reactions may be responsible for the biochemical and biological effects of asbestos. Biofactors. 1991 Jun;3(2):83–89. [PubMed] [Google Scholar]
- Lund L. G., Aust A. E. Mobilization of iron from crocidolite asbestos by certain chelators results in enhanced crocidolite-dependent oxygen consumption. Arch Biochem Biophys. 1991 May 15;287(1):91–96. doi: 10.1016/0003-9861(91)90392-v. [DOI] [PubMed] [Google Scholar]
- Miller D. M., Buettner G. R., Aust S. D. Transition metals as catalysts of "autoxidation" reactions. Free Radic Biol Med. 1990;8(1):95–108. doi: 10.1016/0891-5849(90)90148-c. [DOI] [PubMed] [Google Scholar]
- Morgan A., Holmes A. The enigmatic asbestos body: its formation and significance in asbestos-related disease. Environ Res. 1985 Dec;38(2):283–292. doi: 10.1016/0013-9351(85)90092-1. [DOI] [PubMed] [Google Scholar]
- Pooley F. D. Asbestos bodies, their formation, composition and character. Environ Res. 1972 Dec;5(4):363–379. doi: 10.1016/0013-9351(72)90039-4. [DOI] [PubMed] [Google Scholar]
- Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
- Suzuki Y., Churg J. Structure and development of the asbestos body. Am J Pathol. 1969 Apr;55(1):79–107. [PMC free article] [PubMed] [Google Scholar]
- Turver C. J., Brown R. C. The role of catalytic iron in asbestos induced lipid peroxidation and DNA-strand breakage in C3H10T1/2 cells. Br J Cancer. 1987 Aug;56(2):133–136. doi: 10.1038/bjc.1987.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weitzman S. A., Graceffa P. Asbestos catalyzes hydroxyl and superoxide radical generation from hydrogen peroxide. Arch Biochem Biophys. 1984 Jan;228(1):373–376. doi: 10.1016/0003-9861(84)90078-x. [DOI] [PubMed] [Google Scholar]
- Williams M. G., Jr, Dodson R. F., Corn C., Hurst G. A. A procedure for the isolation of amosite asbestos and ferruginous bodies from lung tissue and sputum. J Toxicol Environ Health. 1982 Oct-Nov;10(4-5):627–638. doi: 10.1080/15287398209530282. [DOI] [PubMed] [Google Scholar]

