Abstract
The effects of hexachlorobiphenyls (HCBs) on superoxide (O2-) generation by guinea pig polymorphonuclear leucocytes were examined. 2,3,6,2',3',6'-HCB by itself had only a weak inductive effect on O2- generation. This compound, however, enhanced O2- generation stimulated by N-formyl-methionyl-leucyl-phenylalanine (FMLP) about twofold, but not the generation induced by phorbol myristate acetate (PMA). On the other hand, 3,4,5,3',4',5'-HCB suppressed O2- generation stimulated by both FMLP and PMA. The inhibitory potency of this compound was far greater with PMA (ID50, 5 microM) than with FMLP (ID50, 40 microM).
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babior B. M., Kipnes R. S., Curnutte J. T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973 Mar;52(3):741–744. doi: 10.1172/JCI107236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
- Badwey J. A., Karnovsky M. L. Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem. 1980;49:695–726. doi: 10.1146/annurev.bi.49.070180.003403. [DOI] [PubMed] [Google Scholar]
- Bandiera S., Safe S., Okey A. B. Binding of polychlorinated biphenyls classified as either phenobarbitone-, 3-methylcholanthrene- or mixed-type inducers to cytosolic Ah receptor. Chem Biol Interact. 1982 Apr;39(3):259–277. doi: 10.1016/0009-2797(82)90045-x. [DOI] [PubMed] [Google Scholar]
- Cross A. R., Jones O. T. Enzymic mechanisms of superoxide production. Biochim Biophys Acta. 1991 May 6;1057(3):281–298. doi: 10.1016/s0005-2728(05)80140-9. [DOI] [PubMed] [Google Scholar]
- Hume D. A., Gordon S., Thornalley P. J., Bannister J. V. The production of oxygen-centered radicals by bacillus-Calmette-Guerin-activated macrophages. An electron paramagnetic resonance study of the response to phorbol myristate acetate. Biochim Biophys Acta. 1983 Oct 25;763(3):245–250. doi: 10.1016/0167-4889(83)90131-3. [DOI] [PubMed] [Google Scholar]
- Hutzinger O., Safe S., Zitko V. Polychlorinated biphenyls: synthesis of some individual chlorobiphenyls. Bull Environ Contam Toxicol. 1971 May-Jun;6(3):209–219. doi: 10.1007/BF01539929. [DOI] [PubMed] [Google Scholar]
- Kawanishi S., Mizutani T., Sano S. Induction of porphyrin synthesis in chick embryo liver cell culture by synthetic polychlorobiphenyl isomers. Biochim Biophys Acta. 1978 Apr 19;540(1):83–92. doi: 10.1016/0304-4165(78)90437-3. [DOI] [PubMed] [Google Scholar]
- Kuroki M., Kamo N., Kobatake Y., Okimasu E., Utsumi K. Measurement of membrane potential in polymorphonuclear leukocytes and its changes during surface stimulation. Biochim Biophys Acta. 1982 Dec 22;693(2):326–334. doi: 10.1016/0005-2736(82)90439-4. [DOI] [PubMed] [Google Scholar]
- Lin F. S., Hsia M. T., Allen J. R. Acute hepatotoxicity of a tetrachlorobiphenyl--changes in the hepatocyte ultrastructure and plasma membrane-bound enzymes. Arch Environ Contam Toxicol. 1979;8(3):321–333. doi: 10.1007/BF01056248. [DOI] [PubMed] [Google Scholar]
- Parkinson A., Robertson L., Safe L., Safe S. Polychlorinated biphenyls as inducers of hepatic microsomal enzymes: structure-activity rules. Chem Biol Interact. 1980 Jun;30(3):271–285. doi: 10.1016/0009-2797(80)90050-2. [DOI] [PubMed] [Google Scholar]
- Poland A., Glover E. 2,3,7,8,-Tetrachlorodibenzo-p-dioxin: segregation of toxocity with the Ah locus. Mol Pharmacol. 1980 Jan;17(1):86–94. [PubMed] [Google Scholar]
- Püttmann M., Mannschreck A., Oesch F., Robertson L. Chiral effects in the induction of drug-metabolizing enzymes using synthetic atropisomers of polychlorinated biphenyls (PCBs). Biochem Pharmacol. 1989 Apr 15;38(8):1345–1352. doi: 10.1016/0006-2952(89)90342-0. [DOI] [PubMed] [Google Scholar]
- Rossi F. The O2- -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta. 1986 Nov 4;853(1):65–89. doi: 10.1016/0304-4173(86)90005-4. [DOI] [PubMed] [Google Scholar]
- Safe S. Polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs): biochemistry, toxicology, and mechanism of action. Crit Rev Toxicol. 1984;13(4):319–395. doi: 10.3109/10408448409023762. [DOI] [PubMed] [Google Scholar]
- Sassa S., Sugita O., Ohnuma N., Imajo S., Okumura T., Noguchi T., Kappas A. Studies of the influence of chloro-substituent sites and conformational energy in polychlorinated biphenyls on uroporphyrin formation in chick-embryo liver cell cultures. Biochem J. 1986 Apr 1;235(1):291–296. doi: 10.1042/bj2350291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silkworth J. B., Grabstein E. M. Polychlorinated biphenyl immunotoxicity: dependence on isomer planarity and the Ah gene complex. Toxicol Appl Pharmacol. 1982 Aug;65(1):109–115. doi: 10.1016/0041-008x(82)90368-4. [DOI] [PubMed] [Google Scholar]
- Sipes I. G., Slocumb M. L., Chen H. S., Carter D. E. 2,3,6,2',3',6'-hexachlorobiphenyl: distribution, metabolism, and excretion in the dog and the monkey. Toxicol Appl Pharmacol. 1982 Feb;62(2):317–324. doi: 10.1016/0041-008x(82)90130-2. [DOI] [PubMed] [Google Scholar]
- Thigpen J. E., Faith R. E., McConnell E. E., Moore J. A. Increased susceptibility to bacterial infection as a sequela of exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Infect Immun. 1975 Dec;12(6):1319–1324. doi: 10.1128/iai.12.6.1319-1324.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshimura H., Yoshihara S., Ozawa N., Miki M. Possible correlation between induction modes of hepatic enzymes by PCBs and their toxicity in rats. Ann N Y Acad Sci. 1979 May 31;320:179–192. doi: 10.1111/j.1749-6632.1979.tb56600.x. [DOI] [PubMed] [Google Scholar]
