Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 1994 Aug;51(8):553–556. doi: 10.1136/oem.51.8.553

Transient changes in the pulmonary function of welders: a cross sectional study of Monday peak expiratory flow.

A M Donoghue 1, W I Glass 1, G P Herbison 1
PMCID: PMC1128036  PMID: 7951781

Abstract

OBJECTIVES--The aim was to compare the peak expiratory flow (PEF) of welders and non-welders over a 12 hour period from the start of work on Monday. METHODS--The two study groups consisted of 20 welders and 20 non-welders, all men who had essentially never smoked, with no significant difference in age, height, ethnicity, or baseline spirometry between the groups. The PEF was measured for each welder before the start of work and 15 minutes, 30 minutes, and 1, 2, 4, 7, and 12 hours after the start of welding. The same method was applied to the non-welders, for whom a proxy time for the start of welding was used. RESULTS--The percentage change in baseline PEF was calculated for each subject at each of the recording times. The welder and non-welder group means for these results were significantly different at 15 minutes (p = 0.028). Also, the group mean for maximum fall in PEF (at any of the recording times during the 12 hour period) was significantly greater for the welders (p = 0.011). 50% of the welders (10/20), but only 5% of the non-welders (1/20), experienced a fall in PEF in excess of 5% (p = 0.0046). 25% of the welders (5/20) experienced drops of greater than 5% within the first 15 minutes. CONCLUSION--The results are suggestive of an immediate type reaction in welders, similar to that seen in some cases of occupational asthma, although not so severe. Studies to determine if these reactions reflect non-specific bronchial hyper-responsiveness would be useful. It is recommended that future studies also undertake breathing zone measurements to relate the response to particular constituents of the welding plume, especially the gases ozone and nitrogen dioxide.

Full text

PDF
553

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aris R. M., Christian D., Hearne P. Q., Kerr K., Finkbeiner W. E., Balmes J. R. Ozone-induced airway inflammation in human subjects as determined by airway lavage and biopsy. Am Rev Respir Dis. 1993 Nov;148(5):1363–1372. doi: 10.1164/ajrccm/148.5.1363. [DOI] [PubMed] [Google Scholar]
  2. Block G. T., Yeung M. Asthma induced by nickel. JAMA. 1982 Mar 19;247(11):1600–1602. [PubMed] [Google Scholar]
  3. Chan-Yeung M. A clinician's approach to determine the diagnosis, prognosis, and therapy of occupational asthma. Med Clin North Am. 1990 May;74(3):811–822. doi: 10.1016/s0025-7125(16)30554-5. [DOI] [PubMed] [Google Scholar]
  4. Davies J. E. Occupational asthma caused by nickel salts. J Soc Occup Med. 1986 Spring;36(1):29–31. [PubMed] [Google Scholar]
  5. Dryson E. W., Rogers D. A. Exposure to fumes in typical New Zealand welding operations. N Z Med J. 1991 Aug 28;104(918):365–367. [PubMed] [Google Scholar]
  6. Frampton M. W., Morrow P. E., Cox C., Gibb F. R., Speers D. M., Utell M. J. Effects of nitrogen dioxide exposure on pulmonary function and airway reactivity in normal humans. Am Rev Respir Dis. 1991 Mar;143(3):522–527. doi: 10.1164/ajrccm/143.3.522. [DOI] [PubMed] [Google Scholar]
  7. Horstman D. H., Folinsbee L. J., Ives P. J., Abdul-Salaam S., McDonnell W. F. Ozone concentration and pulmonary response relationships for 6.6-hour exposures with five hours of moderate exercise to 0.08, 0.10, and 0.12 ppm. Am Rev Respir Dis. 1990 Nov;142(5):1158–1163. doi: 10.1164/ajrccm/142.5.1158. [DOI] [PubMed] [Google Scholar]
  8. KAPLAN I., ZELIGMAN I. URTICARIA AND ASTHMA FROM ACETYLENE WELDING. Arch Dermatol. 1963 Aug;88:188–194. doi: 10.1001/archderm.1963.01590200076015. [DOI] [PubMed] [Google Scholar]
  9. Kalliomäki P. L., Kalliomäki K., Korhonen O., Nordman H., Rahkonen E., Vaaranen V. Respiratory status of stainless steel and mild steel welders. Scand J Work Environ Health. 1982;8 (Suppl 1):117–121. [PubMed] [Google Scholar]
  10. Kilburn K. H., Warshaw R. H., Boylen C. T., Thornton J. C. Respiratory symptoms and functional impairment from acute (cross-shift) exposure to welding gases and fumes. Am J Med Sci. 1989 Nov;298(5):314–319. doi: 10.1097/00000441-198911000-00007. [DOI] [PubMed] [Google Scholar]
  11. Kilburn K. H., Warshaw R., Boylen C. T., Thornton J. C., Hopfer S. M., Sunderman F. W., Jr, Finklea J. Cross-shift and chronic effects of stainless-steel welding related to internal dosimetry of chromium and nickel. Am J Ind Med. 1990;17(5):607–615. doi: 10.1002/ajim.4700170506. [DOI] [PubMed] [Google Scholar]
  12. Lee H. S., Chia S. E., Yap J. C., Wang Y. T., Lee C. S. Occupational asthma due to spot-welding. Singapore Med J. 1990 Oct;31(5):506–508. [PubMed] [Google Scholar]
  13. Malo J. L., Cartier A., Doepner M., Nieboer E., Evans S., Dolovich J. Occupational asthma caused by nickel sulfate. J Allergy Clin Immunol. 1982 Jan;69(1 Pt 1):55–59. doi: 10.1016/0091-6749(82)90088-4. [DOI] [PubMed] [Google Scholar]
  14. McConnell L. H., Fink J. N., Schlueter D. P., Schmidt M. G., Jr Asthma caused by nickel sensitivity. Ann Intern Med. 1973 Jun;78(6):888–890. doi: 10.7326/0003-4819-78-6-888. [DOI] [PubMed] [Google Scholar]
  15. McDonnell W. F., Kehrl H. R., Abdul-Salaam S., Ives P. J., Folinsbee L. J., Devlin R. B., O'Neil J. J., Horstman D. H. Respiratory response of humans exposed to low levels of ozone for 6.6 hours. Arch Environ Health. 1991 May-Jun;46(3):145–150. doi: 10.1080/00039896.1991.9937441. [DOI] [PubMed] [Google Scholar]
  16. McMillan G. H., Heath J. The health of welders in naval dockyards: acute changes in respiratory function during standardized welding. Ann Occup Hyg. 1979;22(1):19–32. doi: 10.1093/annhyg/22.1.19. [DOI] [PubMed] [Google Scholar]
  17. Meredith S. K., Taylor V. M., McDonald J. C. Occupational respiratory disease in the United Kingdom 1989: a report to the British Thoracic Society and the Society of Occupational Medicine by the SWORD project group. Br J Ind Med. 1991 May;48(5):292–298. doi: 10.1136/oem.48.5.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mohsenin V. Airway responses to 2.0 ppm nitrogen dioxide in normal subjects. Arch Environ Health. 1988 May-Jun;43(3):242–246. doi: 10.1080/00039896.1988.9934941. [DOI] [PubMed] [Google Scholar]
  19. Moller D. R., Brooks S. M., Bernstein D. I., Cassedy K., Enrione M., Bernstein I. L. Delayed anaphylactoid reaction in a worker exposed to chromium. J Allergy Clin Immunol. 1986 Mar;77(3):451–456. doi: 10.1016/0091-6749(86)90179-x. [DOI] [PubMed] [Google Scholar]
  20. Nemery B. Metal toxicity and the respiratory tract. Eur Respir J. 1990 Feb;3(2):202–219. [PubMed] [Google Scholar]
  21. Novey H. S., Habib M., Wells I. D. Asthma and IgE antibodies induced by chromium and nickel salts. J Allergy Clin Immunol. 1983 Oct;72(4):407–412. doi: 10.1016/0091-6749(83)90507-9. [DOI] [PubMed] [Google Scholar]
  22. Oxhoj H., Bake B., Wedel H., Wilhelmsen L. Effects of electric arc welding on ventilatory lung function. Arch Environ Health. 1979 Jul-Aug;34(4):211–217. doi: 10.1080/00039896.1979.10667400. [DOI] [PubMed] [Google Scholar]
  23. van der Wal J. F. Exposure of welders to fumes and gases in Dutch industries: summary of results. Ann Occup Hyg. 1990 Feb;34(1):45–54. doi: 10.1093/annhyg/34.1.45. [DOI] [PubMed] [Google Scholar]
  24. van der Wal J. F. Exposure of welders to fumes, Cr, Ni, Cu and gases in Dutch industries. Ann Occup Hyg. 1985;29(3):377–389. doi: 10.1093/annhyg/29.3.377. [DOI] [PubMed] [Google Scholar]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES