Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 1994 Oct;51(10):663–668. doi: 10.1136/oem.51.10.663

Use of molecular epidemiological techniques in a pilot study on workers exposed to chromium.

M Gao 1, L S Levy 1, S P Faux 1, T C Aw 1, R A Braithwaite 1, S S Brown 1
PMCID: PMC1128074  PMID: 8000490

Abstract

OBJECTIVES--Molecular epidemiological techniques, capable of detecting damage to DNA, were used to see if such damage occurred in the lymphocytes of a group of workers exposed to chromium. The two aims of this pilot study were to see if these new techniques might make useful biological monitoring tools for workers exposed to chromium and also, to help assess whether the current occupational exposure limit for chromium (VI) was sufficiently protective in this specific working situation. METHODS--Volunteer groups of 10 workers exposed to chromium and 10 non-exposed workers provided urine and blood samples towards the end of the working week. Chromium concentrations were measured in whole blood, plasma, lymphocytes, and urine. Lymphocytes were used to examine two forms of DNA damage in the two groups; these were the level of DNA strand breakage and, the production of 8-hydroxydeoxyguanosine. RESULTS--Chromium concentration in whole blood, plasma, and urine of workers exposed to chromium was significantly raised (P < 0.01) compared with non-exposed controls, but in isolated lymphocytes, there was only a modest but significant (P < 0.05) increase in chromium in the group exposed to chromium. There was no difference in the levels of DNA strand breaks or 8-hydroxydeoxyguanosine between the groups. Air monitoring for chromium was not undertaken but current levels for the group exposed to chromium were reported to be around 0.01 mg/m3, which is 20% of the current United Kingdom occupational exposure limit. CONCLUSIONS--We were unable to detect any damage in lymphocytic DNA due to exposure to chromium. This may have been due to the low chromium exposure (< 20% of the United Kingdom occupational exposure limit), the ability of plasma to detoxify chromium (VI) to chromium (III) before it reached the lymphocytes, or perhaps the insensitivity of the molecular techniques used. It is now important to test these and other such techniques on groups exposed to levels closer to the United Kingdom occupational exposure limit.

Full text

PDF
663

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Jevcak J. J. Fluorometric method for rapid detection of DNA strand breaks in human white blood cells produced by low doses of radiation. Cancer Res. 1981 May;41(5):1889–1892. [PubMed] [Google Scholar]
  2. Bonde J. P., Christensen J. M. Chromium in biological samples from low-level exposed stainless steel and mild steel welders. Arch Environ Health. 1991 Jul-Aug;46(4):225–229. doi: 10.1080/00039896.1991.9937453. [DOI] [PubMed] [Google Scholar]
  3. Bukowski J. A., Goldstein M. D., Johnson B. B. Biological markers in chromium exposure assessment: confounding variables. Arch Environ Health. 1991 Jul-Aug;46(4):230–236. doi: 10.1080/00039896.1991.9937454. [DOI] [PubMed] [Google Scholar]
  4. Capellmann M., Bolt H. M. Chromium (VI) reducing capacity of ascorbic acid and of human plasma in vitro. Arch Toxicol. 1992;66(1):45–50. doi: 10.1007/BF02307269. [DOI] [PubMed] [Google Scholar]
  5. Coogan T. P., Motz J., Christie N. T. Repair of X-ray induced DNA strand damage by isolated rat splenic lymphocytes. Mutat Res. 1992 Nov;293(1):39–46. doi: 10.1016/0921-8777(92)90006-o. [DOI] [PubMed] [Google Scholar]
  6. Coogan T. P., Squibb K. S., Motz J., Kinney P. L., Costa M. Distribution of chromium within cells of the blood. Toxicol Appl Pharmacol. 1991 Mar 15;108(1):157–166. doi: 10.1016/0041-008x(91)90279-n. [DOI] [PubMed] [Google Scholar]
  7. Cornelis R. Analytical procedures and clinical reference materials in monitoring human exposures to trace metals with special reference to Cr, Pb and T1. Sci Total Environ. 1988 Jun 1;71(3):269–283. doi: 10.1016/0048-9697(88)90198-2. [DOI] [PubMed] [Google Scholar]
  8. Davies J. M., Easton D. F., Bidstrup P. L. Mortality from respiratory cancer and other causes in United Kingdom chromate production workers. Br J Ind Med. 1991 May;48(5):299–313. doi: 10.1136/oem.48.5.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Faux S. P., Francis J. E., Smith A. G., Chipman J. K. Induction of 8-hydroxydeoxyguanosine in Ah-responsive mouse liver by iron and Aroclor 1254. Carcinogenesis. 1992 Feb;13(2):247–250. doi: 10.1093/carcin/13.2.247. [DOI] [PubMed] [Google Scholar]
  10. Faux S. P., Gao M., Chipman J. K., Levy L. S. Production of 8-hydroxydeoxyguanosine in isolated DNA by chromium(VI) and chromium(V). Carcinogenesis. 1992 Sep;13(9):1667–1669. doi: 10.1093/carcin/13.9.1667. [DOI] [PubMed] [Google Scholar]
  11. Gao M., Binks S. P., Chipman J. K., Levy L. S., Braithwaite R. A., Brown S. S. Induction of DNA strand breaks in peripheral lymphocytes by soluble chromium compounds. Hum Exp Toxicol. 1992 Mar;11(2):77–82. doi: 10.1177/096032719201100203. [DOI] [PubMed] [Google Scholar]
  12. Gao M., Levy L. S., Braithwaite R. A., Brown S. S. Monitoring of total chromium in rat fluids and lymphocytes following intratracheal administration of soluble trivalent or hexavalent chromium compounds. Hum Exp Toxicol. 1993 Sep;12(5):377–382. doi: 10.1177/096032719301200506. [DOI] [PubMed] [Google Scholar]
  13. Garner C. Epidemiology. Molecular potential. Nature. 1992 Nov 19;360(6401):207–208. doi: 10.1038/360207a0. [DOI] [PubMed] [Google Scholar]
  14. Kiyosawa H., Suko M., Okudaira H., Murata K., Miyamoto T., Chung M. H., Kasai H., Nishimura S. Cigarette smoking induces formation of 8-hydroxydeoxyguanosine, one of the oxidative DNA damages in human peripheral leukocytes. Free Radic Res Commun. 1990;11(1-3):23–27. doi: 10.3109/10715769009109664. [DOI] [PubMed] [Google Scholar]
  15. Lewalter J., Korallus U., Harzdorf C., Weidemann H. Chromium bond detection in isolated erythrocytes: a new principle of biological monitoring of exposure to hexavalent chromium. Int Arch Occup Environ Health. 1985;55(4):305–318. doi: 10.1007/BF00377689. [DOI] [PubMed] [Google Scholar]
  16. Lindberg E., Vesterberg O. Monitoring exposure to chromic acid in chromeplating by measuring chromium in urine. Scand J Work Environ Health. 1983 Aug;9(4):333–340. doi: 10.5271/sjweh.2406. [DOI] [PubMed] [Google Scholar]
  17. McAughey J. J., Samuel A. M., Baxter P. J., Smith N. J. Biological monitoring of occupational exposure in the chromate pigment production industry. Sci Total Environ. 1988 Jun 1;71(3):317–322. doi: 10.1016/0048-9697(88)90203-3. [DOI] [PubMed] [Google Scholar]
  18. Minoia C., Cavalleri A. Chromium in urine, serum and red blood cells in the biological monitoring of workers exposed to different chromium valency states. Sci Total Environ. 1988 Jun 1;71(3):323–327. doi: 10.1016/0048-9697(88)90204-5. [DOI] [PubMed] [Google Scholar]
  19. Mutti A., Pedroni C., Arfini G., Franchini I., Minoia C., Micoli G., Baldi C. Biological monitoring of occupational exposure to different chromium compounds at various valency states. Int J Environ Anal Chem. 1984;17(1):35–41. doi: 10.1080/03067318408076966. [DOI] [PubMed] [Google Scholar]
  20. Norseth T. The carcinogenicity of chromium and its salts. Br J Ind Med. 1986 Oct;43(10):649–651. doi: 10.1136/oem.43.10.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Parodi S., Abelmoschi M. L., Balbi C., De Angeli M. T., Pala M., Russo P., Taningher M., Santi L. DNA damage in mouse and rat liver by caprolactam and benzoin, evaluated with three different methods. Mutat Res. 1989 Nov;224(3):379–384. doi: 10.1016/0165-1218(89)90185-7. [DOI] [PubMed] [Google Scholar]
  22. Perera F. P., Hemminki K., Gryzbowska E., Motykiewicz G., Michalska J., Santella R. M., Young T. L., Dickey C., Brandt-Rauf P., De Vivo I. Molecular and genetic damage in humans from environmental pollution in Poland. Nature. 1992 Nov 19;360(6401):256–258. doi: 10.1038/360256a0. [DOI] [PubMed] [Google Scholar]
  23. Perera F. The potential usefulness of biological markers in risk assessment. Environ Health Perspect. 1987 Dec;76:141–145. doi: 10.1289/ehp.8776141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schermaier A. J., O'Connor L. H., Pearson K. H. Semi-automated determination of chromium in whole blood and serum by Zeeman electrothermal atomic absorption spectrophotometry. Clin Chim Acta. 1985 Oct 31;152(1-2):123–134. doi: 10.1016/0009-8981(85)90183-4. [DOI] [PubMed] [Google Scholar]
  25. Schwalb G., Anderson R. Increased frequency of oxidant-mediated DNA strand breaks in mononuclear leucocytes exposed to activated neutrophils from cigarette smokers. Mutat Res. 1989 Mar;225(3):95–99. doi: 10.1016/0165-7992(89)90124-3. [DOI] [PubMed] [Google Scholar]
  26. Suzuki Y., Homma K., Minami M., Yoshikawa H. Distribution of chromium in rats exposed to hexavalent chromium and trivalent chromium aerosols. Ind Health. 1984;22(4):261–277. doi: 10.2486/indhealth.22.261. [DOI] [PubMed] [Google Scholar]
  27. Tanigawa T., Araki S., Araki T., Minato N. A decrease in Leu-11a negative lymphocytes in relation to natural killer cell activity in chromate workers. Br J Ind Med. 1991 Mar;48(3):211–213. doi: 10.1136/oem.48.3.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tola S., Kilpiö J., Virtamo M., Haapa K. Urinary chromium as an indicator of the exposure of welders to chromium. Scand J Work Environ Health. 1977 Dec;3(4):192–202. doi: 10.5271/sjweh.2773. [DOI] [PubMed] [Google Scholar]
  29. Verschoor M. A., Bragt P. C., Herber R. F., Zielhuis R. L., Zwennis W. C. Renal function of chrome-plating workers and welders. Int Arch Occup Environ Health. 1988;60(1):67–70. doi: 10.1007/BF00409381. [DOI] [PubMed] [Google Scholar]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES