Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 1994 Dec;51(12):812–816. doi: 10.1136/oem.51.12.812

Genetic polymorphism for glutathione-S-transferase mu in asbestos cement workers.

K Jakobsson 1, A Rannug 1, A K Alexandrie 1, L Rylander 1, M Albin 1, L Hagmar 1
PMCID: PMC1128121  PMID: 7849864

Abstract

OBJECTIVE--To investigate whether a lack of glutathione-S-transferase mu (GSTM1) activity was related to an increased risk for adverse outcome after asbestos exposure. METHODS--A study was made of 78 male former asbestos cement workers, with retrospective cohort data on exposure, radiographical findings, and lung function. Venous blood samples were obtained for the analysis of GSTM1 polymorphism by the polymerase chain reaction technique. Chest x ray films were classified according to the International Labour Organisation (ILO) 1980 classification. Vital capacity (VC) and forced expiratory volume during 1 s (FEV1) were determined. Individual estimates of asbestos exposure were calculated, and expressed as duration of exposure, average exposure intensity, and cumulative dose. Data on smoking were obtained from interviews. RESULTS--The lung function in the study group was reduced, compared with reference equations. 23% of the workers had small opacities > or = 1/0, 29% circumscribed pleural thickenings, 14% diffuse thickenings, and 12% obliterated costophrenic angles. 54% of the workers were GSTM1 deficient. They were comparable with the other workers in age, follow up time (median 30 years), and duration of exposure (median 18 years), but had a slightly higher cumulated dose (median 18 v 10 fibre-years) than the others. Neither in radiographical changes nor lung function variables were there any differences between the different GSTM1 groups. The findings were similar when smoking habits and estimated asbestos exposure were taken into account. CONCLUSIONS--We could not show that lack of GSTM1 activity was related to an increased risk for radiographical or lung function changes in a group of asbestos cement workers, followed up for a long period after the end of exposure.

Full text

PDF
812

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albin M., Jakobsson K., Attewell R., Johansson L., Welinder H. Mortality and cancer morbidity in cohorts of asbestos cement workers and referents. Br J Ind Med. 1990 Sep;47(9):602–610. doi: 10.1136/oem.47.9.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BERGLUND E., BIRATH G., BJURE J., GRIMBY G., KJELLMER I., SANDQVIST L., SODERHOLM B. Spirometric studies in normal subjects. I. Forced expirograms in subjects between 7 and 70 years of age. Acta Med Scand. 1963 Feb;173:185–192. [PubMed] [Google Scholar]
  3. Brockmöller J., Gross D., Kerb R., Drakoulis N., Roots I. Correlation between trans-stilbene oxide-glutathione conjugation activity and the deletion mutation in the glutathione S-transferase class mu gene detected by polymerase chain reaction. Biochem Pharmacol. 1992 Feb 4;43(3):647–650. doi: 10.1016/0006-2952(92)90591-6. [DOI] [PubMed] [Google Scholar]
  4. Bégin R., Massé S., Sébastien P. Alveolar dust clearance capacity as determinant of individual susceptibility to asbestosis: new experimental observations. Ann Occup Hyg. 1989;33(2):279–282. doi: 10.1093/annhyg/33.2.279. [DOI] [PubMed] [Google Scholar]
  5. Bégin R., Massé S., Sébastien P., Bossé J., Rola-Pleszczynski M., Boctor M., Côté Y., Fabi D., Dalle D. Asbestos exposure and retention as determinants of airway disease and asbestos alveolitis. Am Rev Respir Dis. 1986 Dec;134(6):1176–1181. doi: 10.1164/arrd.1986.134.5.1176. [DOI] [PubMed] [Google Scholar]
  6. Carstensen U., Alexandrie A. K., Högstedt B., Rannug A., Bratt I., Hagmar L. B- and T-lymphocyte micronuclei in chimney sweeps with respect to genetic polymorphism for CYP1A1 and GST1 (class Mu). Mutat Res. 1993 Oct;289(2):187–195. doi: 10.1016/0027-5107(93)90069-r. [DOI] [PubMed] [Google Scholar]
  7. Gustafson S., Proper J. A., Bowie E. J., Sommer S. S. Parameters affecting the yield of DNA from human blood. Anal Biochem. 1987 Sep;165(2):294–299. doi: 10.1016/0003-2697(87)90272-7. [DOI] [PubMed] [Google Scholar]
  8. Hirvonen A., Husgafvel-Pursiainen K., Anttila S., Vainio H. The GSTM1 null genotype as a potential risk modifier for squamous cell carcinoma of the lung. Carcinogenesis. 1993 Jul;14(7):1479–1481. doi: 10.1093/carcin/14.7.1479. [DOI] [PubMed] [Google Scholar]
  9. Ichiba M., Hagmar L., Rannug A., Högstedt B., Alexandrie A. K., Carstensen U., Hemminki K. Aromatic DNA adducts, micronuclei and genetic polymorphism for CYP1A1 and GST1 in chimney sweeps. Carcinogenesis. 1994 Jul;15(7):1347–1352. doi: 10.1093/carcin/15.7.1347. [DOI] [PubMed] [Google Scholar]
  10. Mossman B. T., Bignon J., Corn M., Seaton A., Gee J. B. Asbestos: scientific developments and implications for public policy. Science. 1990 Jan 19;247(4940):294–301. doi: 10.1126/science.2153315. [DOI] [PubMed] [Google Scholar]
  11. Murata T., Hatayama I., Satoh K., Tsuchida S., Sato K. Activation of rat glutathione transferases in class mu by active oxygen species. Biochem Biophys Res Commun. 1990 Sep 14;171(2):845–851. doi: 10.1016/0006-291x(90)91223-f. [DOI] [PubMed] [Google Scholar]
  12. Nakachi K., Imai K., Hayashi S., Kawajiri K. Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. Cancer Res. 1993 Jul 1;53(13):2994–2999. [PubMed] [Google Scholar]
  13. Nazar-Stewart V., Motulsky A. G., Eaton D. L., White E., Hornung S. K., Leng Z. T., Stapleton P., Weiss N. S. The glutathione S-transferase mu polymorphism as a marker for susceptibility to lung carcinoma. Cancer Res. 1993 May 15;53(10 Suppl):2313–2318. [PubMed] [Google Scholar]
  14. Petruzzelli S., De Flora S., Bagnasco M., Hietanen E., Camus A. M., Saracci R., Izzotti A., Bartsch H., Giuntini C. Carcinogen metabolism studies in human bronchial and lung parenchymal tissues. Am Rev Respir Dis. 1989 Aug;140(2):417–422. doi: 10.1164/ajrccm/140.2.417. [DOI] [PubMed] [Google Scholar]
  15. Rom W. N., Travis W. D., Brody A. R. Cellular and molecular basis of the asbestos-related diseases. Am Rev Respir Dis. 1991 Feb;143(2):408–422. doi: 10.1164/ajrccm/143.2.408. [DOI] [PubMed] [Google Scholar]
  16. Seidegård J., Pero R. W., Markowitz M. M., Roush G., Miller D. G., Beattie E. J. Isoenzyme(s) of glutathione transferase (class Mu) as a marker for the susceptibility to lung cancer: a follow up study. Carcinogenesis. 1990 Jan;11(1):33–36. doi: 10.1093/carcin/11.1.33. [DOI] [PubMed] [Google Scholar]
  17. Seidegård J., Pero R. W., Miller D. G., Beattie E. J. A glutathione transferase in human leukocytes as a marker for the susceptibility to lung cancer. Carcinogenesis. 1986 May;7(5):751–753. doi: 10.1093/carcin/7.5.751. [DOI] [PubMed] [Google Scholar]
  18. Seidegård J., Pero R. W. The hereditary transmission of high glutathione transferase activity towards trans-stilbene oxide in human mononuclear leukocytes. Hum Genet. 1985;69(1):66–68. doi: 10.1007/BF00295531. [DOI] [PubMed] [Google Scholar]
  19. Shields P. G., Bowman E. D., Harrington A. M., Doan V. T., Weston A. Polycyclic aromatic hydrocarbon-DNA adducts in human lung and cancer susceptibility genes. Cancer Res. 1993 Aug 1;53(15):3486–3492. [PubMed] [Google Scholar]
  20. Singhal S. S., Saxena M., Ahmad H., Awasthi S., Haque A. K., Awasthi Y. C. Glutathione S-transferases of human lung: characterization and evaluation of the protective role of the alpha-class isozymes against lipid peroxidation. Arch Biochem Biophys. 1992 Dec;299(2):232–241. doi: 10.1016/0003-9861(92)90269-3. [DOI] [PubMed] [Google Scholar]
  21. Smith A. H., Bates M. N. Confidence limit analyses should replace power calculations in the interpretation of epidemiologic studies. Epidemiology. 1992 Sep;3(5):449–452. doi: 10.1097/00001648-199209000-00011. [DOI] [PubMed] [Google Scholar]
  22. Strömberg U. Post-study probability of effect at least equal to a given value. Epidemiology. 1994 Jul;5(4):477–477. doi: 10.1097/00001648-199407000-00021. [DOI] [PubMed] [Google Scholar]
  23. Tan K. H., Meyer D. J., Coles B., Ketterer B. Thymine hydroperoxide, a substrate for rat Se-dependent glutathione peroxidase and glutathione transferase isoenzymes. FEBS Lett. 1986 Oct 27;207(2):231–233. doi: 10.1016/0014-5793(86)81494-6. [DOI] [PubMed] [Google Scholar]
  24. Zhong S., Howie A. F., Ketterer B., Taylor J., Hayes J. D., Beckett G. J., Wathen C. G., Wolf C. R., Spurr N. K. Glutathione S-transferase mu locus: use of genotyping and phenotyping assays to assess association with lung cancer susceptibility. Carcinogenesis. 1991 Sep;12(9):1533–1537. doi: 10.1093/carcin/12.9.1533. [DOI] [PubMed] [Google Scholar]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES