Abstract
OBJECTIVES: To test the validity of a Michaelis-Menten-like kinetic model of pulmonary clearance of insoluble dusts. METHODS: Data were investigated from studies of pulmonary clearance in F344 rats exposed to antimony trioxide (Sb2O3), photocopy test toner, polyvinyl chloride powder (PVC), and diesel exhaust particles. The Michaelis-Menten-like model was used to develop a relation in which the pulmonary clearance half time was a linear function of lung burden. After combining all data, linear regression techniques were applied to investigate the underlying relations. With the estimated intercepts and slopes, the Michaelis-Menten-like kinetic parameters kmax (maximal clearance rate) and m1/2 (a characteristic lung burden at which kmax is reduced by 50%) were derived for the four dusts. RESULTS: The experimental data fit the linear regression very well (R2 = 0.989), suggesting that pulmonary clearance for the four dusts followed Michaelis-Menten-like kinetics. Values of the intercept terms were not significantly different among the four dusts (P = 0.294), indicating that the intrinsic clearance rates of F344 rats were the same among the four experiments. The intrinsic clearance half time was estimated to be 77.8 days, leading to an estimated kmax of 0.0089 day-1. However, the slopes of the linear relations were significantly different among the four dusts (P < 0.001). Values of m1/2 were ranked in the order of: Sb2O3 (0.69 mg) < photocopy test toner (0.97 mg) < diesel exhaust (2.49 mg) congruent to PVC (2.90 mg). CONCLUSION: This study suggests that the Michaelis-Menten-like kinetic model reasonably describes the kinetic behavior of pulmonary clearance in F344 rats. The parameters m1/2 can be used to differentiate the potency of a particular dust for impairing pulmonary clearance.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Absher M. P., Hemenway D. R., Leslie K. O., Trombley L., Vacek P. Intrathoracic distribution and transport of aerosolized silica in the rat. Exp Lung Res. 1992 Sep-Oct;18(5):743–757. doi: 10.3109/01902149209031705. [DOI] [PubMed] [Google Scholar]
- BIOZZI G., BENACERRAF B., HALPERN B. N. Quantitative study of the granulopectic activity of the reticulo-endothelial system. II. A study of the kinetics of the R. E. S. in relation to the dose of carbon injected; relationship between the weight of the organs and their activity. Br J Exp Pathol. 1953 Aug;34(4):441–457. [PMC free article] [PubMed] [Google Scholar]
- Bellmann B., Muhle H., Creutzenberg O., Dasenbrock C., Kilpper R., MacKenzie J. C., Morrow P., Mermelstein R. Lung clearance and retention of toner, utilizing a tracer technique, during chronic inhalation exposure in rats. Fundam Appl Toxicol. 1991 Aug;17(2):300–313. doi: 10.1016/0272-0590(91)90220-x. [DOI] [PubMed] [Google Scholar]
- Bolton R. E., Vincent J. H., Jones A. D., Addison J., Beckett S. T. An overload hypothesis for pulmonary clearance of UICC amosite fibres inhaled by rats. Br J Ind Med. 1983 Aug;40(3):264–272. doi: 10.1136/oem.40.3.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brody A. R., Roe M. W., Evans J. N., Davis G. S. Deposition and translocation of inhaled silica in rats. Quantification of particle distribution, macrophage participation, and function. Lab Invest. 1982 Dec;47(6):533–542. [PubMed] [Google Scholar]
- Chan T. L., Lee P. S., Hering W. E. Pulmonary retention of inhaled diesel particles after prolonged exposures to diesel exhaust. Fundam Appl Toxicol. 1984 Aug;4(4):624–631. doi: 10.1016/0272-0590(84)90053-8. [DOI] [PubMed] [Google Scholar]
- Ferin J. Observations concerning alveolar dust clearance. Ann N Y Acad Sci. 1972 Dec 29;200:66–72. doi: 10.1111/j.1749-6632.1972.tb40178.x. [DOI] [PubMed] [Google Scholar]
- Griffis L. C., Wolff R. K., Henderson R. F., Griffith W. C., Mokler B. V., McClellan R. O. Clearance of diesel soot particles from rat lung after a subchronic diesel exhaust exposure. Fundam Appl Toxicol. 1983 Mar-Apr;3(2):99–103. doi: 10.1016/s0272-0590(83)80063-3. [DOI] [PubMed] [Google Scholar]
- HEPPLESTON A. G. The disposal of coal and haematite dusts inhaled successively. J Pathol Bacteriol. 1958 Jan;75(1):113–126. doi: 10.1002/path.1700750114. [DOI] [PubMed] [Google Scholar]
- Hemenway D. R., Absher M. P., Trombley L., Vacek P. M. Comparative clearance of quartz and cristobalite from the lung. Am Ind Hyg Assoc J. 1990 Jul;51(7):363–369. doi: 10.1080/15298669091369790. [DOI] [PubMed] [Google Scholar]
- Hext P. M. Current perspectives on particulate induced pulmonary tumours. Hum Exp Toxicol. 1994 Oct;13(10):700–715. doi: 10.1177/096032719401301009. [DOI] [PubMed] [Google Scholar]
- Katsnelson B. A., Konyscheva L. K., Sharapova NYe, Privalova L. I. Prediction of the comparative intensity of pneumoconiotic changes caused by chronic inhalation exposure to dusts of different cytotoxicity by means of a mathematical model. Occup Environ Med. 1994 Mar;51(3):173–180. doi: 10.1136/oem.51.3.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee P. S., Gorski R. A., Hering W. E., Chan T. L. Lung clearance of inhaled particles after exposure to carbon black generated from a resuspension system. Environ Res. 1987 Aug;43(2):364–373. doi: 10.1016/s0013-9351(87)80037-3. [DOI] [PubMed] [Google Scholar]
- Lehnert B. E. Pulmonary and thoracic macrophage subpopulations and clearance of particles from the lung. Environ Health Perspect. 1992 Jul;97:17–46. doi: 10.1289/ehp.929717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehnert B. E., Valdez Y. E., Tietjen G. L. Alveolar macrophage-particle relationships during lung clearance. Am J Respir Cell Mol Biol. 1989 Aug;1(2):145–154. doi: 10.1165/ajrcmb/1.2.145. [DOI] [PubMed] [Google Scholar]
- Morrow P. E. Dust overloading of the lungs: update and appraisal. Toxicol Appl Pharmacol. 1992 Mar;113(1):1–12. doi: 10.1016/0041-008x(92)90002-a. [DOI] [PubMed] [Google Scholar]
- Morrow P. E. Possible mechanisms to explain dust overloading of the lungs. Fundam Appl Toxicol. 1988 Apr;10(3):369–384. doi: 10.1016/0272-0590(88)90284-9. [DOI] [PubMed] [Google Scholar]
- Newton P. E., Bolte H. F., Daly I. W., Pillsbury B. D., Terrill J. B., Drew R. T., Ben-Dyke R., Sheldon A. W., Rubin L. F. Subchronic and chronic inhalation toxicity of antimony trioxide in the rat. Fundam Appl Toxicol. 1994 May;22(4):561–576. doi: 10.1006/faat.1994.1063. [DOI] [PubMed] [Google Scholar]
- Normann S. J. Kinetics of phagocytosis. II. Analysis of in vivo clearance with demonstration of competitive inhibition between similar and dissimilar foreign particles. Lab Invest. 1974 Aug;31(2):161–169. [PubMed] [Google Scholar]
- Schlesinger R. B. Clearance from the respiratory tract. Fundam Appl Toxicol. 1985 Jun;5(3):435–450. doi: 10.1016/0272-0590(85)90091-0. [DOI] [PubMed] [Google Scholar]
- Smith T. J. Development and application of a model for estimating alveolar and interstitial dust levels. Ann Occup Hyg. 1985;29(4):495–516. doi: 10.1093/annhyg/29.4.495. [DOI] [PubMed] [Google Scholar]
- Smith T. J. Occupational exposure and dose over time: limitations of cumulative exposure. Am J Ind Med. 1992;21(1):35–51. doi: 10.1002/ajim.4700210107. [DOI] [PubMed] [Google Scholar]
- Snipes M. B. Long-term retention and clearance of particles inhaled by mammalian species. Crit Rev Toxicol. 1989;20(3):175–211. doi: 10.3109/10408448909017909. [DOI] [PubMed] [Google Scholar]
- Strom K. A., Garg B. D., Johnson J. T., D'Arcy J. B., Smiler K. L. Inhaled particle retention in rats receiving low exposures of diesel exhaust. J Toxicol Environ Health. 1990;29(4):377–398. doi: 10.1080/15287399009531399. [DOI] [PubMed] [Google Scholar]
- Strom K. A., Johnson J. T., Chan T. L. Retention and clearance of inhaled submicron carbon black particles. J Toxicol Environ Health. 1989;26(2):183–202. doi: 10.1080/15287398909531244. [DOI] [PubMed] [Google Scholar]
- Stöber W., Morrow P. E., Morawietz G. Alveolar retention and clearance of insoluble particles in rats simulated by a new physiology-oriented compartmental kinetics model. Fundam Appl Toxicol. 1990 Aug;15(2):329–349. [PubMed] [Google Scholar]
- Vacek P. M., Hemenway D. R., Absher M. P., Goodwin G. D. The translocation of inhaled silicon dioxide: an empirically derived compartmental model. Fundam Appl Toxicol. 1991 Oct;17(3):614–626. doi: 10.1016/0272-0590(91)90211-l. [DOI] [PubMed] [Google Scholar]
- Vincent J. H., Donaldson K. A dosimetric approach for relating the biological response of the lung to the accumulation of inhaled mineral dust. Br J Ind Med. 1990 May;47(5):302–307. doi: 10.1136/oem.47.5.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vincent J. H., Johnston A. M., Jones A. D., Bolton R. E., Addison J. Kinetics of deposition and clearance of inhaled mineral dusts during chronic exposure. Br J Ind Med. 1985 Oct;42(10):707–715. doi: 10.1136/oem.42.10.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vincent J. H., Jones A. D., Johnston A. M., McMillan C., Bolton R. E., Cowie H. Accumulation of inhaled mineral dust in the lung and associated lymph nodes: implications for exposure and dose in occupational lung disease. Ann Occup Hyg. 1987;31(3):375–393. doi: 10.1093/annhyg/31.3.375. [DOI] [PubMed] [Google Scholar]
- Vostal J. J., Schreck R. M., Lee P. S., Chan T. L., Soderholm S. C. Deposition and clearance of diesel particles from the lung. Dev Toxicol Environ Sci. 1982;10:143–159. [PubMed] [Google Scholar]
- Warheit D. B., Hartsky M. A. Role of alveolar macrophage chemotaxis and phagocytosis in pulmonary clearance responses to inhaled particles: comparisons among rodent species. Microsc Res Tech. 1993 Dec 1;26(5):412–422. doi: 10.1002/jemt.1070260509. [DOI] [PubMed] [Google Scholar]
- Warheit D. B., Overby L. H., George G., Brody A. R. Pulmonary macrophages are attracted to inhaled particles through complement activation. Exp Lung Res. 1988;14(1):51–66. doi: 10.3109/01902148809062850. [DOI] [PubMed] [Google Scholar]
- Wolff R. K., Henderson R. F., Snipes M. B., Griffith W. C., Mauderly J. L., Cuddihy R. G., McClellan R. O. Alterations in particle accumulation and clearance in lungs of rats chronically exposed to diesel exhaust. Fundam Appl Toxicol. 1987 Jul;9(1):154–166. doi: 10.1016/0272-0590(87)90162-x. [DOI] [PubMed] [Google Scholar]
