Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Jul 22:2024.07.20.602911. [Version 1] doi: 10.1101/2024.07.20.602911

DREAMER: Exploring Common Mechanisms of Adverse Drug Reactions and Disease Phenotypes through Network-Based Analysis

Farzaneh Firoozbakht, Maria Louise Elkjaer, Diane E Handy, Rui-Sheng Wang, Zoe Chervontseva, Matthias Rarey, Joseph Loscalzo, Jan Baumbach, Olga Tsoy
PMCID: PMC11291051  PMID: 39091742

Abstract

Adverse drug reactions (ADRs) are a major concern in clinical healthcare, significantly affecting patient safety and drug development. The need for a deeper understanding of ADR mechanisms is crucial for improving drug safety profiles in drug design and drug repurposing. This study introduces DREAMER (Drug adverse REAction Mechanism ExplaineR), a novel network-based method for exploring the mechanisms underlying adverse drug reactions and disease phenotypes at a molecular level by leveraging a comprehensive knowledge graph obtained from various datasets. By considering drugs and diseases that cause similar phenotypes, and investigating their commonalities regarding their impact on specific modules of the protein-protein interaction network, DREAMER can robustly identify protein sets associated with the biological mechanisms underlying ADRs and unravel the causal relationships that contribute to the observed clinical outcomes. Applying DREAMER to 649 ADRs, we identified proteins associated with the mechanism of action for 67 ADRs across multiple organ systems, e.g., ventricular arrhythmia, metabolic acidosis, and interstitial pneumonitis. In particular, DREAMER highlights the importance of GABAergic signaling and proteins of the coagulation pathways for personality disorders and intracranial hemorrhage, respectively. We further demonstrate the application of DREAMER in drug repurposing and propose sotalol (targeting KCNH2), ranolazine (targeting SCN5A, currently under clinical trial), and diltiazem (indicated drug targeting CACNA1C and SCN3A) as candidate drugs to be repurposed for cardiac arrest. In summary, DREAMER effectively detects molecular mechanisms underlying phenotypes emphasizing the importance of network-based analyses with integrative data for enhancing drug safety and accelerating the discovery of novel therapeutic strategies.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES