Abstract
Chronic elevation of circulating parathyroid hormone (PTH) is associated with decreased target cell responsiveness to PTH. To study the subcellular mechanism of this phenomenon we evaluated PTH receptors and adenylate cyclase activity in renal cortical membranes prepared before and after infusion of bovine parathyroid gland extract (PTE) into thyroparathyroidectomized dogs. PTE infusion resulted in a 53% decrease in the number of high-affinity receptors (P less than 0.01) associated with a 66% decrease in PTH-stimulated adenylate cyclase (P less than 0.01) relative to paired base-line values. Both the equilibrium constant of dissociation (KD) for PTH binding and the concentration of PTH that caused half-maximal stimulation of adenylate cyclase were in the range of 1 to 4 nM, and were unaffected by the PTE infusion. Responsiveness of the renal adenylate cyclase to sodium fluoride was 88% of base-line values. Infusion of the PTE vehicle alone did not affect PTH receptor number or blunt the adenylate cyclase response to PTH. Pretreatment of the membranes made after PTE infusion with guanosine triphosphate (GTP), which is known to produce dissociation of receptor-bound PTH, failed to restore either receptor number or PTH-stimulated adenylate cyclase. This finding was not due to a lack of efficacy of the GTP pretreatment, because identical GTP pretreatment restored PTH binding to base-line values in membranes partially occupied by incubation with PTH in vitro. Thus, simple residual occupancy of PTH receptors by the infused hormone did not appear to account for the observed receptor loss. The results of this study suggest that target cell resistance to PTH in patients with hyperparathyroidism might occur, at least in part, due to down-regulation of PTH receptors by circulating hormone.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BECKER K. L., PURNELL D. C., JONES J. D. TUBULAR REABSORPTION OF PHOSPHATE IN PRIMARY HYPERPARATHYROIDISM--BEFORE AND AFTER ADMINISTRATION OF PARATHYROID HORMONE. J Clin Endocrinol Metab. 1964 Apr;24:347–351. doi: 10.1210/jcem-24-4-347. [DOI] [PubMed] [Google Scholar]
- Bellorin-Font E., Martin K. J. Regulation of the PTH-receptor-cyclase system of canine kidney: effects of calcium, magnesium, and guanine nucleotides. Am J Physiol. 1981 Oct;241(4):F364–F373. doi: 10.1152/ajprenal.1981.241.4.F364. [DOI] [PubMed] [Google Scholar]
- Bradbury M. W., Leeman C. R., Bagdoyanh, Berberian A. The calcium and magnesium content of skeletal muscle, brain, and cerebrospinal fluid as determined by atomic bsorption flame photometry. J Lab Clin Med. 1968 May;71(5):884–892. [PubMed] [Google Scholar]
- Carnes D. L., Anast C. S., Forte L. R. Impaired renal adenylate cyclase response to parathyroid hormone in the calcium-deficient rat. Endocrinology. 1978 Jan;102(1):45–51. doi: 10.1210/endo-102-1-45. [DOI] [PubMed] [Google Scholar]
- Catt K. J., Harwood J. P., Aguilera G., Dufau M. L. Hormonal regulation of peptide receptors and target cell responses. Nature. 1979 Jul 12;280(5718):109–116. doi: 10.1038/280109a0. [DOI] [PubMed] [Google Scholar]
- Fitzpatrick D. F., Davenport G. R., Forte L., Landon E. J. Characterization of plasma membrane proteins in mammalian kidney. I. Preparation of a membrane fraction and separation of the protein. J Biol Chem. 1969 Jul 10;244(13):3561–3569. [PubMed] [Google Scholar]
- Flueck J. A., Di Bella F. P., Edis A. J., Kehrwald J. M., Arnaud C. D. Immunoheterogeneity of parathyroid hormone in venous effluent serum from hyperfunctioning parathyroid glands. J Clin Invest. 1977 Dec;60(6):1367–1375. doi: 10.1172/JCI108897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forte L. R., Langeluttig S. G., Poelling R. E., Thomas M. L. Renal parathyroid hormone receptors in the chick: downregulation in secondary hyperparathyroid animal models. Am J Physiol. 1982 Mar;242(3):E154–E163. doi: 10.1152/ajpendo.1982.242.3.E154. [DOI] [PubMed] [Google Scholar]
- Forte L. R., Nickols G. A., Anast C. S. Renal adenylate cyclase and the interrelationship between parathyroid hormone and vitamin D in the regulation of urinary phosphate and adenosine cyclic 3',5'-monophosphate excretion. J Clin Invest. 1976 Mar;57(3):559–568. doi: 10.1172/JCI108311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hauger R. L., Aguilera G., Catt K. J. Angiotensin II regulates its receptor sites in the adrenal glomerulosa zone. Nature. 1978 Jan 12;271(5641):176–178. doi: 10.1038/271176a0. [DOI] [PubMed] [Google Scholar]
- King A. C., Cuatrecasas P. Peptide hormone-induced receptor mobility, aggregation, and internalization. N Engl J Med. 1981 Jul 9;305(2):77–88. doi: 10.1056/NEJM198107093050206. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lefkowitz R. J., Wessels M. R., Stadel J. M. Hormones, receptors, and cyclic AMP: their role in target cell refractoriness. Curr Top Cell Regul. 1980;17:205–230. doi: 10.1016/b978-0-12-152817-1.50011-0. [DOI] [PubMed] [Google Scholar]
- Nissenson R. A., Abbott S. R., Teitelbaum A. P., Clark O. H., Arnaud C. D. Endogenous biologically active human parathyroid hormone: measurement by a guanyl nucleotide-amplified renal adenylate cyclase assay. J Clin Endocrinol Metab. 1981 May;52(5):840–846. doi: 10.1210/jcem-52-5-840. [DOI] [PubMed] [Google Scholar]
- Nissenson R. A., Arnaud C. D. Properties of the parathyroid hormone receptor-adenylate cyclase system in chicken renal plasma membranes. J Biol Chem. 1979 Mar 10;254(5):1469–1475. [PubMed] [Google Scholar]
- Pavlovitch H., Fontaine O., Balsan S. Maintenance of a calcemic response to parathyroid hormone in D-deficient rats by the prevention of severe hyperparathyroidism. Calcif Tissue Res. 1977 Oct 20;23(3):277–281. doi: 10.1007/BF02012797. [DOI] [PubMed] [Google Scholar]
- RASMUSSEN H., SZE Y. L., YOUNG R. FURTHER STUDIES ON THE ISOLATION AND CHARACTERIZATION OF PARATHYROID POLYPEPTIDES. J Biol Chem. 1964 Sep;239:2852–2857. [PubMed] [Google Scholar]
- Ross E. M., Gilman A. G. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem. 1980;49:533–564. doi: 10.1146/annurev.bi.49.070180.002533. [DOI] [PubMed] [Google Scholar]
- STEENDIJK R. THE EFFECT OF PARATHYROID EXTRACT ON THE SERUM CONCENTRATIONS OF CALCIUM AND INORGANIC PHOSPHATE IN ACTIVE AND HEALING RICKETS. Acta Paediatr. 1964 Mar;53:105–108. doi: 10.1111/j.1651-2227.1964.tb07216.x. [DOI] [PubMed] [Google Scholar]
- Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
- Schlondorff D., Weber H. Cyclic nucleotide metabolism in compensatory renal hypertrophy and neonatal kidney growth. Proc Natl Acad Sci U S A. 1976 Feb;73(2):524–528. doi: 10.1073/pnas.73.2.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Segre G. V., Rosenblatt M., Reiner B. L., Mahaffey J. E., Potts J. T., Jr Characterization of parathyroid hormone receptors in canine renal cortical plasma membranes using a radioiodinated sulfur-free hormone analogue. Correlation of binding with adenylate cyclase activity. J Biol Chem. 1979 Aug 10;254(15):6980–6986. [PubMed] [Google Scholar]
- Shlatz L. J., Schwartz I. L., Kinne-Saffran E., Kinne R. Distribution of parathyroid hormone-stimulated adenylate cyclase in plasma membranes of cells of the kidney cortex. J Membr Biol. 1975 Nov 7;24(2):131–144. doi: 10.1007/BF01868619. [DOI] [PubMed] [Google Scholar]
- Su Y. F., Harden T. K., Perkins J. P. Catecholamine-specific desensitization of adenylate cyclase. Evidence for a multistep process. J Biol Chem. 1980 Aug 10;255(15):7410–7419. [PubMed] [Google Scholar]
- Tamayo J., Bellorin-Font E., Sicard G., Anderson C., Martin K. J. Desensitization to parathyroid hormone in the isolated perfused canine kidney: reversal of altered receptor-adenylate cyclase system by guanosine triphosphate in vitro. Endocrinology. 1982 Oct;111(4):1311–1317. doi: 10.1210/endo-111-4-1311. [DOI] [PubMed] [Google Scholar]
- Teitelbaum A. P., Nissenson R. A., Arnaud C. D. Coupling of the canine renal parathyroid hormone receptor to adenylate cyclase: modulation by guanyl nucleotides and N-ethylmaleimide. Endocrinology. 1982 Nov;111(5):1524–1533. doi: 10.1210/endo-111-5-1524. [DOI] [PubMed] [Google Scholar]
- Tomlinson S., Hendy G. N., Pemberton D. M., O'Riordan J. L. Reversible resistance to the renal action of parathyroid hormone in man. Clin Sci Mol Med. 1976 Jul;51(1):59–69. doi: 10.1042/cs0510059. [DOI] [PubMed] [Google Scholar]
- Tucci J. R., Perlstein R. S., Kopp L. E. The urine cyclic AMP response to parathyroid extract (PTE) administration in normal subjects and patients with parathyroid dysfunction. Metabolism. 1979 Aug;28(8):814–819. doi: 10.1016/0026-0495(79)90207-5. [DOI] [PubMed] [Google Scholar]
- von Lilienfeld-Toal H., Hesch R. D., Hüfner M., McIntosh C. Excretion of cyclic 3',5'-adenosine monophosphate in renal insufficiency and primary hyperparathyroidism after stimulation with parathyroid hormone. Horm Metab Res. 1974 Jul;6(4):314–318. doi: 10.1055/s-0028-1093837. [DOI] [PubMed] [Google Scholar]
