Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 Aug;72(2):422–432. doi: 10.1172/JCI110990

Effects of dietary-induced hyperparathyroidism on the parathyroid hormone-receptor-adenylate cyclase system of canine kidney. Evidence for postreceptor mechanism of desensitization.

J Tamayo, E Bellorin-Font, K J Martin
PMCID: PMC1129200  PMID: 6308054

Abstract

The present studies were designed to examine the consequences of chronic mild elevations of endogenous parathyroid hormone (PTH) in vivo on the PTH receptor-adenylate cyclase system of canine kidney cortex. Hyperparathyroidism was induced in normal dogs by feeding a diet low in calcium, high in phosphorus to the animals for a period of 6-9 wk. This maneuver resulted in a two to threefold increase in the plasma levels of carboxy-terminal immunoreactive PTH. This degree of hyperparathyroidism is similar to that seen in patients with hyperparathyroidism and normal renal function. After 6-9 wk on the diet the animals were killed and basolateral renal cortical membranes prepared for the study of the PTH receptor-adenylate cyclase system in vitro. The dietary hyperparathyroidism resulted in desensitization of the PTH-responsive adenylate cyclase (Vmax 3,648 +/- 654 pmol cyclic (c)AMP/mg protein per 30 min in hyperparathyroid animals vs. 5,303 +/- 348 in normal controls). The Kact (concentration of PTH required for half-maximal enzyme activation) was unchanged. However, PTH receptor binding (125I-norleucyl8-norleucyl18-tyrosinyl34, 125I[Nle8, Nle18, Tyr34] bPTH (1-34) NH2 as radioligand) was not different in the two groups of animals. Thus, dietary hyperparathyroidism resulted in an uncoupling of the PTH receptor-adenylate cyclase system. This defect was not corrected by guanyl nucleotides in vitro, and the effects of guanyl nucleotides on PTH binding and enzyme activation appeared normal. NaF-stimulated enzyme activity was reduced in the hyperparathyroid animals (8,285 +/- 607 pmol cAMP/mg protein per 30 min vs. 10,851 +/- 247 in controls). These data indicate that desensitization of the PTH-responsive adenylate cyclase system of canine kidney as a result of mild chronic elevations of endogenous PTH is due to a postreceptor defect, demonstrable by NaF activation, not corrected by guanyl nucleotides, leading to abnormal PTH-receptor adenylate cyclase coupling.

Full text

PDF
422

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellorin-Font E., Martin K. J. Regulation of the PTH-receptor-cyclase system of canine kidney: effects of calcium, magnesium, and guanine nucleotides. Am J Physiol. 1981 Oct;241(4):F364–F373. doi: 10.1152/ajprenal.1981.241.4.F364. [DOI] [PubMed] [Google Scholar]
  2. Bellorin-Font E., Tamayo J., Martin K. J. Regulation of PTH receptor-adenylate cyclase system of canine kidney: influence of Mn2+ on effects of Ca2+, PTH, and GTP. Am J Physiol. 1982 May;242(5):F457–F462. doi: 10.1152/ajprenal.1982.242.5.F457. [DOI] [PubMed] [Google Scholar]
  3. Bennett H. P., Solomon S., Goltzman D. Isolation and analysis of human parathyrin in parathyroid tissue and plasma. Use of reversed-phase liquid chromatography. Biochem J. 1981 Aug 1;197(2):391–400. doi: 10.1042/bj1970391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen T. C., Puschett J. B. Evidence for an endogenous parathyroid hormone-sensitive adenylate cyclase activator. Biochem Biophys Res Commun. 1981 Jun;100(4):1471–1476. doi: 10.1016/0006-291x(81)90684-7. [DOI] [PubMed] [Google Scholar]
  5. Clark I., Rivera-Cordero F. Effects of endogenous parathyroid hormone on calcium, magnesium and phosphate metabolism in rats. II. Alterations in dietary phosphate. Endocrinology. 1974 Aug;95(2):360–369. doi: 10.1210/endo-95-2-360. [DOI] [PubMed] [Google Scholar]
  6. Downs R. W., Jr, Spiegel A. M., Singer M., Reen S., Aurbach G. D. Fluoride stimulation of adenylate cyclase is dependent on the guanine nucleotide regulatory protein. J Biol Chem. 1980 Feb 10;255(3):949–954. [PubMed] [Google Scholar]
  7. Forte L. R., Langeluttig S. G., Poelling R. E., Thomas M. L. Renal parathyroid hormone receptors in the chick: downregulation in secondary hyperparathyroid animal models. Am J Physiol. 1982 Mar;242(3):E154–E163. doi: 10.1152/ajpendo.1982.242.3.E154. [DOI] [PubMed] [Google Scholar]
  8. Fox J., Offord K. P., Heath H., 3rd Episodic secretion of parathyroid hormone in the dog. Am J Physiol. 1981 Sep;241(3):E171–E177. doi: 10.1152/ajpendo.1981.241.3.E171. [DOI] [PubMed] [Google Scholar]
  9. Hruska K. A., Kopelman R., Rutherford W. E., Klahr S., Slatopolsky E., Greenwalt A., Bascom T., Markham J. Metabolism in immunoreactive parathyroid hormone in the dog. The role of the kidney and the effects of chronic renal disease. J Clin Invest. 1975 Jul;56(1):39–48. doi: 10.1172/JCI108077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hsueh A. J., Dufau M. L., Catt K. J. Gonadotropin-induced regulation of luteinizing hormone receptors and desensitization of testicular 3':5'-cyclic AMP and testosterone responses. Proc Natl Acad Sci U S A. 1977 Feb;74(2):592–595. doi: 10.1073/pnas.74.2.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hunzicker-Dunn M., Derda D., Jungmann R. A., Birnbaumer L. Resensitization of the desensitized follicular adenylyl cyclase system to luteinizing hormone. Endocrinology. 1979 Jun;104(6):1785–1793. doi: 10.1210/endo-104-6-1785. [DOI] [PubMed] [Google Scholar]
  12. Iyengar R., Birnbaumer L. Agonist-specific desensitization: molecular locus and possible mechanism. Adv Cyclic Nucleotide Res. 1981;14:93–100. [PubMed] [Google Scholar]
  13. Katz M. S., Kelly T. M., Piñeyro M. A., Gregerman R. I. Activation of epinephrine and glucagon-sensitive adenylate cyclases of rat liver by cytosol protein factors. Role in loss of enzyme activities during preparation of particulate fractions, quantitation and partial characterization. J Cyclic Nucleotide Res. 1978 Oct;4(5):389–407. [PubMed] [Google Scholar]
  14. Lad P. M., Nielsen T. B., Preston M. S., Rodbell M. The role of the guanine nucleotide exchange reaction in the regulation of the beta-adrenergic receptor and in the actions of catecholamines and cholera toxin on adenylate cyclase in turkey erythrocyte membranes. J Biol Chem. 1980 Feb 10;255(3):988–995. [PubMed] [Google Scholar]
  15. Laflamme G. H., Jowsey J. Bone and soft tissue changes with oral phosphate supplements. J Clin Invest. 1972 Nov;51(11):2834–2840. doi: 10.1172/JCI107106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lefkowitz R. J., Mullikin D., Wood C. L., Gore T. B., Mukherjee C. Regulation of prostaglandin receptors by prostaglandins and guanine nucleotides in frog erythrocytes. J Biol Chem. 1977 Aug 10;252(15):5295–5303. [PubMed] [Google Scholar]
  17. Lefkowitz R. J., Williams L. T. Molecular mechanisms of activation and desensitization of adenylate cyclase coupled beta-adrenergic receptors. Adv Cyclic Nucleotide Res. 1978;9:1–17. [PubMed] [Google Scholar]
  18. Limbird L. E., Hickey A. R., Lefkowitz R. J. Unique uncoupling of the frog erythrocyte adenylate cyclase system by manganese. Loss of hormone and guanine nucleotide-sensitive enzyme activities without loss of nucleotide-sensitive, high affinity agonist binding. J Biol Chem. 1979 Apr 25;254(8):2677–2683. [PubMed] [Google Scholar]
  19. Nickols G. A., Carnes D. L., Anast C. S., Forte L. R. Parathyroid hormone-mediated refractoriness of rat kidney cyclic AMP system. Am J Physiol. 1979 Apr;236(4):E401–E409. doi: 10.1152/ajpendo.1979.236.4.E401. [DOI] [PubMed] [Google Scholar]
  20. Nissenson R. A., Arnaud C. D. Properties of the parathyroid hormone receptor-adenylate cyclase system in chicken renal plasma membranes. J Biol Chem. 1979 Mar 10;254(5):1469–1475. [PubMed] [Google Scholar]
  21. Parthemore J. G., Roos B. A., Parker D. C., Kripke D. F., Avioli L. V., Deftos L. J. Assessment of acute and chronic changes in parathyroid hormone secretion by a radioimmunoassay with predominant specificity for the carboxy-terminal region of the molecule. J Clin Endocrinol Metab. 1978 Aug;47(2):284–289. doi: 10.1210/jcem-47-2-284. [DOI] [PubMed] [Google Scholar]
  22. Pecker F., Hanoune J. Activation of epinephrine-sensitive adenylate cyclase in rat liver by cytosolic protein-nucleotide complex. J Biol Chem. 1977 Apr 25;252(8):2784–2786. [PubMed] [Google Scholar]
  23. Perkins J. P., Johnson G. L., Harden T. K. Drug-induced modification of the responsiveness of adenylate cyclase to hormones. Adv Cyclic Nucleotide Res. 1978;9:19–32. [PubMed] [Google Scholar]
  24. Rajerison R. M., Butlen D., Jard S. Effects of in vivo treatment with vasopressin and analogues on renal adenylate cyclase responsiveness to vasopressin stimulation in vitro. Endocrinology. 1977 Jul;101(1):1–12. doi: 10.1210/endo-101-1-1. [DOI] [PubMed] [Google Scholar]
  25. Rasenick M. M., Stein P. J., Bitensky M. W. The regulatory subunit of adenylate cyclase interacts with cytoskeletal components. Nature. 1981 Dec 10;294(5841):560–562. doi: 10.1038/294560a0. [DOI] [PubMed] [Google Scholar]
  26. Ross E. M., Howlett A. C., Ferguson K. M., Gilman A. G. Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J Biol Chem. 1978 Sep 25;253(18):6401–6412. [PubMed] [Google Scholar]
  27. Segre G. V., Rosenblatt M., Reiner B. L., Mahaffey J. E., Potts J. T., Jr Characterization of parathyroid hormone receptors in canine renal cortical plasma membranes using a radioiodinated sulfur-free hormone analogue. Correlation of binding with adenylate cyclase activity. J Biol Chem. 1979 Aug 10;254(15):6980–6986. [PubMed] [Google Scholar]
  28. Shuman S. J., Zor U., Chayoth R., Field J. B. Exposure of thyroid slices to thyroid-stimulating hormone induces refractoriness of the cyclic AMP system to subsequent hormone stimulation. J Clin Invest. 1976 May;57(5):1132–1141. doi: 10.1172/JCI108380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Srikant C. B., Freeman D., McCorkle K., Unger R. H. Binding and biologic activity of glucagon in liver cell membranes of chronically hyperglucagonemic rats. J Biol Chem. 1977 Nov 10;252(21):7434–7438. [PubMed] [Google Scholar]
  30. Steiner A. L., Kipnis D. M., Utiger R., Parker C. Radioimmunoassay for the measurement of adenosine 3',5'-cyclic phosphate. Proc Natl Acad Sci U S A. 1969 Sep;64(1):367–373. doi: 10.1073/pnas.64.1.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Steiner A. L., Pagliara A. S., Chase L. R., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. II. Adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate in mammalian tissues and body fluids. J Biol Chem. 1972 Feb 25;247(4):1114–1120. [PubMed] [Google Scholar]
  32. Tamayo J., Bellorin-Font E., Sicard G., Anderson C., Martin K. J. Desensitization to parathyroid hormone in the isolated perfused canine kidney: reversal of altered receptor-adenylate cyclase system by guanosine triphosphate in vitro. Endocrinology. 1982 Oct;111(4):1311–1317. doi: 10.1210/endo-111-4-1311. [DOI] [PubMed] [Google Scholar]
  33. Zick Y., Cesla R., Shaltiel S. Exposure of thymocytes to a low temperature (4 degrees C) inhibits the onset of their hormone-induced cellular refractoriness. J Biol Chem. 1982 Apr 25;257(8):4253–4259. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES