Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 Aug;72(2):724–731. doi: 10.1172/JCI111022

Mitochondrial dysfunction induced by fatty acid ethyl esters, myocardial metabolites of ethanol.

L G Lange, B E Sobel
PMCID: PMC1129232  PMID: 6308061

Abstract

Mechanisms responsible for alcohol-induced heart muscle disease have been difficult to elucidate partly because of previously obscure, demonstrable cardiac metabolism of ethanol. Recently, fatty acid ethyl esters were identified in our laboratory and found to be myocardial metabolites of ethanol. In the present study, they have been shown to induce mitochondrial dysfunction. Incubation of isolated myocardial mitochondria with fatty acid ethyl esters led to a concentration-dependent reduction of the respiratory control ratio index of coupling of oxidative phosphorylation and decrement of maximal rate of oxygen consumption. Furthermore, fatty acid ethyl esters were demonstrated to bind to mitochondria in vitro, and, importantly, 72% of intracellularly synthesized ethyl esters were found to bind to mitochondria isolated from intact tissue incubated with ethanol. Protein binding of fatty acid ethyl esters was markedly less than that of fatty acids. Because uncoupling of mitochondrial oxidative phosphorylation correlated with the cleavage of fatty acid ethyl ester shown to be initially bound to mitochondria, with resultant generation of fatty acid, a potent uncoupler, in a locus in or near the mitochondrial membrane, fatty acid ethyl esters may contribute to a potentially toxic shuttle for fatty acid with transport from physiological intracellular binding sites to the mitochondrial membrane; direct effects of fatty acid ethyl esters may also be deleterious. Operation of this shuttle as a result of ethanol ingestion and subsequent accumulation of fatty acid ethyl esters may account for the impaired mitochondrial function and inefficient energy production associated with toxic effects of ethanol on the heart.

Full text

PDF
724

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander C. S. Electron microscopic observations in alcoholic heart disease. Br Heart J. 1967 Mar;29(2):200–206. doi: 10.1136/hrt.29.2.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BORST P., LOOS J. A., CHRIST E. J., SLATER E. C. Uncoupling activity of long-chain fatty acids. Biochim Biophys Acta. 1962 Aug 27;62:509–518. doi: 10.1016/0006-3002(62)90232-9. [DOI] [PubMed] [Google Scholar]
  3. BRIGDEN W., ROBINSON J. ALCOHOLIC HEART DISEASE. Br Med J. 1964 Nov 21;2(5420):1283–1289. doi: 10.1136/bmj.2.5420.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bottenus R. E., Spach P. I., Filus S., Cunningham C. C. Effect of chronic ethanol consumption of energy-linked processes associated with oxidative phosphorylation: proton translocation and ATP-Pi exchange. Biochem Biophys Res Commun. 1982 Apr 29;105(4):1368–1373. doi: 10.1016/0006-291x(82)90938-x. [DOI] [PubMed] [Google Scholar]
  5. CLELAND K. W., SLATER E. C. Respiratory granules of heart muscle. Biochem J. 1953 Mar;53(4):547–556. doi: 10.1042/bj0530547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cederbaum A. I., Lieber C. S., Rubin E. Effects of chronic ethanol treatment of mitochondrial functions damage to coupling site I. Arch Biochem Biophys. 1974 Dec;165(2):560–569. doi: 10.1016/0003-9861(74)90283-5. [DOI] [PubMed] [Google Scholar]
  7. De Kruijff B., Cullis P. R., Radda G. K. Outside-inside distributions and sizes of mixed phosphatidylcholine-cholesterol vesicles. Biochim Biophys Acta. 1976 Jul 15;436(4):729–740. doi: 10.1016/0005-2736(76)90402-8. [DOI] [PubMed] [Google Scholar]
  8. Demakis J. G., Proskey A., Rahimtoola S. H., Jamil M., Sutton G. C., Rosen K. M., Gunnar R. M., Tobin J. R. The natural course of alcoholic cardiomyopathy. Ann Intern Med. 1974 Mar;80(3):293–297. doi: 10.7326/0003-4819-80-3-293. [DOI] [PubMed] [Google Scholar]
  9. FERRANS V. J., HIBBS R. G., WEILBAECHER D. G., BLACK W. C., WALSH J. J., BURCH G. E. ALCOHOLIC CARDIOMYOPATHY; A HISTOCHEMICAL STUDY. Am Heart J. 1965 Jun;69:748–765. doi: 10.1016/0002-8703(65)90449-7. [DOI] [PubMed] [Google Scholar]
  10. GOODMAN D. S., DEYKIN D. Fatty acid ethyl ester formation during ethanol metabolism in vivo. Proc Soc Exp Biol Med. 1963 May;113:65–67. doi: 10.3181/00379727-113-28277. [DOI] [PubMed] [Google Scholar]
  11. Gailis L., Verdy M. The effect of ethanol and acetaldehyde on the metabolism and vascular resistance of the perfused heart. Can J Biochem. 1971 Feb;49(2):227–233. doi: 10.1139/o71-033. [DOI] [PubMed] [Google Scholar]
  12. Grigor M. R., Bell I. C., Jr Synthesis of fatty acid esters of short-chain alcohols by an acyltransferase in rat liver microsomes. Biochim Biophys Acta. 1973 Apr 13;306(1):26–30. doi: 10.1016/0005-2760(73)90204-x. [DOI] [PubMed] [Google Scholar]
  13. Kikuchi T., Kako K. J. Metabolic effects of ethanol on the rabbit heart. Circ Res. 1970 May;26(5):625–634. doi: 10.1161/01.res.26.5.625. [DOI] [PubMed] [Google Scholar]
  14. Kramer J. M., Hulan H. W. A comparison of procedures to determine free fatty acids in rat heart. J Lipid Res. 1978 Jan;19(1):103–106. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lange L. G., Bergmann S. R., Sobel B. E. Identification of fatty acid ethyl esters as products of rabbit myocardial ethanol metabolism. J Biol Chem. 1981 Dec 25;256(24):12968–12973. [PubMed] [Google Scholar]
  17. Lange L. G. Nonoxidative ethanol metabolism: formation of fatty acid ethyl esters by cholesterol esterase. Proc Natl Acad Sci U S A. 1982 Jul;79(13):3954–3957. doi: 10.1073/pnas.79.13.3954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lange L. G., Sobel B. E. Myocardial metabolites of ethanol. Circ Res. 1983 Apr;52(4):479–482. doi: 10.1161/01.res.52.4.479. [DOI] [PubMed] [Google Scholar]
  19. Laseter J. L., Weete J. D. Fatty Acid Ethyl Esters of Rhizopus arrhizus. Science. 1971 May 21;172(3985):864–865. doi: 10.1126/science.172.3985.864. [DOI] [PubMed] [Google Scholar]
  20. Lochner A., Cowley R., Brink A. J. Effect of ethanol on metabolism and function of perfused rat heart. Am Heart J. 1969 Dec;78(6):770–780. doi: 10.1016/0002-8703(69)90443-8. [DOI] [PubMed] [Google Scholar]
  21. Ockner R. K., Manning J. A. Fatty acid-binding protein in small intestine. Identification, isolation, and evidence for its role in cellular fatty acid transport. J Clin Invest. 1974 Aug;54(2):326–338. doi: 10.1172/JCI107768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pachinger O. M., Tillmanns H., Mao J. C., Fauvel J. M., Bing R. J. The effect of prolonged administration of ethanol on cardiac metabolism and performance in the dog. J Clin Invest. 1973 Nov;52(11):2690–2696. doi: 10.1172/JCI107463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Polokoff M. A., Bell R. M. Limited palmitoyl-CoA penetration into microsomal vesicles as evidenced by a highly latent ethanol acyltransferase activity. J Biol Chem. 1978 Oct 25;253(20):7173–7178. [PubMed] [Google Scholar]
  24. Regan R. J., Koroxenidis G., Moschos C. B., Oldewurtel H. A., Lehan P. H., Hellems H. K. The acute metabolic and hemodynamic responses of the left ventricle to ethanol. J Clin Invest. 1966 Feb;45(2):270–280. doi: 10.1172/JCI105340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Regan T. J., Ettinger P. O., Haider B., Ahmed S. S., Oldewurtel H. A., Lyons M. M. The role of ethanol in cardiac disease. Annu Rev Med. 1977;28:393–409. doi: 10.1146/annurev.me.28.020177.002141. [DOI] [PubMed] [Google Scholar]
  26. Schwartz L., Sample K. A., Wigle D. E. Severe alcoholic cardiomyopathy reversed with abstention from alcohol. Am J Cardiol. 1975 Dec;36(7):963–966. doi: 10.1016/0002-9149(75)90090-9. [DOI] [PubMed] [Google Scholar]
  27. Segel L. D., Rendig S. V., Choquet Y., Chacko K., Amsterdam E. A., Mason D. T. Effects of chronic graded ethanol consumption on the metabolism, ultrastructure, and mechanical function of the rat heart. Cardiovasc Res. 1975 Sep;9(5):649–663. doi: 10.1093/cvr/9.5.649. [DOI] [PubMed] [Google Scholar]
  28. Segel L. D., Rendig S. V., Mason D. T. Left ventricular dysfunction of isolated working rat hearts after chronic alcohol consumption. Cardiovasc Res. 1979 Mar;13(3):136–146. doi: 10.1093/cvr/13.3.136. [DOI] [PubMed] [Google Scholar]
  29. Sobel B., Jequier E., Sjoerdsma A., Lovenberg W. Effect of catecholamines and adrenergic blocking agents on oxidative phosphorylation in rat heart mitochondria. Circ Res. 1966 Dec;19(6):1050–1061. doi: 10.1161/01.res.19.6.1050. [DOI] [PubMed] [Google Scholar]
  30. Wakabayashi T., Korman E. F., Green D. E. On the structure of biological membranes: the double-tiered pattern. J Bioenerg. 1971 Dec;2(5):233–247. doi: 10.1007/BF01963822. [DOI] [PubMed] [Google Scholar]
  31. Weishaar R., Sarma J. S., Maruyama Y., Fischer R., Bertuglia S., Bing R. J. Reversibility of mitochondrial and contractile changes in the myocardium after cessation of prolonged ethanol intake. Am J Cardiol. 1977 Oct;40(4):556–562. doi: 10.1016/0002-9149(77)90071-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES