Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 Sep;72(3):882–892. doi: 10.1172/JCI111059

Insulin resistance in uremia. Characterization of lipid metabolism in freshly isolated and primary cultures of hepatocytes from chronic uremic rats.

J F Caro, S Lanza-Jacoby
PMCID: PMC1129253  PMID: 6350367

Abstract

We have studied the mechanism(s) of hyperlipidemia and liver insulin sensitivity in a rat model of severe chronic uremia (U). Basal lipid synthesis was decreased in freshly isolated hepatocytes from U when compared with sham-operated ad lib.-fed controls (alfC). Basal lipid synthesis in pair-fed controls (pfC) was in between U and alfC. Similarly, the activity of liver acetyl CoA carboxylase, fatty acid synthetase, citrate cleavage enzyme, malate dehydrogenase, and glucose-6-phosphate dehydrogenase was diminished in U. Muscle and adipose tissue lipoprotein lipase was also decreased. Insulin stimulated lipid synthesis in freshly isolated hepatocytes from alfC. Hepatocytes from U and pfC were resistant to this effect of insulin. To ascertain if the insulin resistance in U was due to starvation (chow intake 50% of alfC) or to uremia itself, the U and pfC were intragastrically fed an isocaloric diet via a Holter pump the last week of the experimental period. Hepatocytes from orally fed U and pfC were also cultured for 24 h in serum-free medium. While freshly isolated and cultured U hepatocytes remained insulin resistant, those from pfC normalized, in vivo and in vitro, when they were provided with enough nutrients. Conclusions: (a) Hyperlipidemia in uremia is not due to increased synthesis, but to defect(s) in clearance. (b) Insulin does not stimulate lipid synthesis in uremia. This finding, along with our recent demonstration that insulin binding and internalization are not decreased in the uremic liver, suggests that a post-binding defect(s) in the liver plays an important role in the mechanism(s) of insulin resistance in uremia. (c) Cultured hepatocytes from uremic rats remain insulin resistant. This quality renders these cells useful in studying the postinsulin binding events responsible for the insulin-resistant state in the absence of complicating hormonal and substrate changes that occur in vivo.

Full text

PDF
882

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLMANN D. W., HUBBARD D. D., GIBSON D. M. FATTY ACID SYNTHESIS DURING FAT-FREE REFEEDING OF STARVED RATS. J Lipid Res. 1965 Jan;6:63–74. [PubMed] [Google Scholar]
  2. Amatruda J. M., Newmeyer H. W., Chang C. L. Insulin-induced alterations in insulin binding and insulin action in primary cultures of rat hepatocytes. Diabetes. 1982 Feb;31(2):145–148. doi: 10.2337/diab.31.2.145. [DOI] [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Bagdade Disorders of carbohydrate and lipid metabolism in uremia. Nephron. 1975;14(2):153–162. doi: 10.1159/000180445. [DOI] [PubMed] [Google Scholar]
  5. Bagdade J. D., Porte D., Jr, Bierman E. L. Hypertriglyceridemia. A metabolic consequence of chronic renal failure. N Engl J Med. 1968 Jul 25;279(4):181–185. doi: 10.1056/NEJM196807252790403. [DOI] [PubMed] [Google Scholar]
  6. Bagdade J. D., Yee E., Wilson D. E., Shafrir Hyperlipidemia in renal failure: studies of plasma lipoproteins, hepatic triglyceride production, and tissue lipoprotein lipase in a chronically uremic rat moedl. J Lab Clin Med. 1978 Jan;91(1):176–186. [PubMed] [Google Scholar]
  7. Beynen A. C., Vaartjes W. J., Geelen M. J. Opposite effects of insulin and glucagon in acute hormonal control of hepatic lipogenesis. Diabetes. 1979 Sep;28(9):828–835. doi: 10.2337/diab.28.9.828. [DOI] [PubMed] [Google Scholar]
  8. Caro J. F., Amatruda J. M. Functional relationships between insulin binding, action, and degradation. A reassessment. J Biol Chem. 1980 Nov 10;255(21):10052–10055. [PubMed] [Google Scholar]
  9. Caro J. F., Amatruda J. M. Glucocorticoid-induced insulin resistance: the importance of postbinding events in the regulation of insulin binding, action, and degradation in freshly isolated and primary cultures of rat hepatocytes. J Clin Invest. 1982 Apr;69(4):866–875. doi: 10.1172/JCI110526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Caro J. F., Amatruda J. M. Insulin receptors in hepatocytes: postreceptor events mediate down regulation. Science. 1980 Nov 28;210(4473):1029–1031. doi: 10.1126/science.7001632. [DOI] [PubMed] [Google Scholar]
  11. Caro J. F., Amatruda J. M. The regulation of lipid synthesis in freshly isolated and primary cultures of hepatocytes from fasted rats: the primary role of insulin. Metabolism. 1982 Jan;31(1):14–18. [PubMed] [Google Scholar]
  12. Caro J. F., Muller G., Glennon J. A. Insulin processing by the liver. J Biol Chem. 1982 Jul 25;257(14):8459–8466. [PubMed] [Google Scholar]
  13. Cattran D. C., Fenton S. S., Wilson D. R., Steiner G. Defective triglyceride removal in lipemia associated with peritoneal dialysis and haemodialysis. Ann Intern Med. 1976 Jul;85(1):29–33. doi: 10.7326/0003-4819-85-1-29. [DOI] [PubMed] [Google Scholar]
  14. Cech J. M., Freeman R. B., Jr, Caro J. F., Amatruda J. M. Insulin action and binding in isolated hepatocytes from fasted, streptozotocin-diabetic, and older, spontaneously obese rats. Biochem J. 1980 Jun 15;188(3):839–845. doi: 10.1042/bj1880839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cramp D. G., Tickner T. R., Beale D. J., Moorhead J. F., Wills M. R. Plasma triglyceride secretion and metabolism in chronic renal failure. Clin Chim Acta. 1977 Apr 15;76(2):237–241. doi: 10.1016/0009-8981(77)90102-4. [DOI] [PubMed] [Google Scholar]
  16. De Hoff J. L., Davidson L. M., Kritchevsky D. An enzymatic assay for determining free and total cholesterol in tissue. Clin Chem. 1978 Mar;24(3):433–435. [PubMed] [Google Scholar]
  17. DeFronzo R. A., Alvestrand A., Smith D., Hendler R., Hendler E., Wahren J. Insulin resistance in uremia. J Clin Invest. 1981 Feb;67(2):563–568. doi: 10.1172/JCI110067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. DeFronzo R. A., Andres R., Edgar P., Walker W. G. Carbohydrate metabolism in uremia: a review. Medicine (Baltimore) 1973 Sep;52(5):469–481. doi: 10.1097/00005792-197309000-00009. [DOI] [PubMed] [Google Scholar]
  19. Dietschy J. M., McGarry J. D. Limitations of acetate as a substrate for measuring cholesterol synthesis in liver. J Biol Chem. 1974 Jan 10;249(1):52–58. [PubMed] [Google Scholar]
  20. FARQUHAR J. W., GROSS R. C., WAGNER R. M., REAVEN G. M. VALIDATION OF AN INCOMPLETELY COUPLED TWO-COMPARTMENT NONRECYCLING CATENARY MODEL FOR TURNOVER OF LIVER AND PLASMA TRIGLYCERIDE IN MAN. J Lipid Res. 1965 Jan;6:119–134. [PubMed] [Google Scholar]
  21. Geelen M. J., Beynen A. C., Christiansen R. Z., Lepreau-Jose M. J., Gibson D. M. Short-term effects of insulin and glucagon on lipid synthesis in isolated rat hepatocytes. Covariance of acetyl-CoA carboxylase activity and the rate of 3H2O incorporation into fatty acids. FEBS Lett. 1978 Nov 15;95(2):326–330. doi: 10.1016/0014-5793(78)81022-9. [DOI] [PubMed] [Google Scholar]
  22. Gregg R. C., Diamond A., Mondon C. E., Reaven G. M. The effects of chronic uremia and dexamethasone on triglyceride kinetics in the rat. Metabolism. 1977 Aug;26(8):875–882. doi: 10.1016/0026-0495(77)90006-3. [DOI] [PubMed] [Google Scholar]
  23. Heuck C. C., Ritz E. Hyperlipoproteinemia in renal insufficiency. Nephron. 1980;25(1):1–7. doi: 10.1159/000181745. [DOI] [PubMed] [Google Scholar]
  24. Hietanen E., Greenwood M. R. A comparison of lipoprotein lipase activity and adipocyte differentiation in growing male rats. J Lipid Res. 1977 Jul;18(4):480–490. [PubMed] [Google Scholar]
  25. Inoue H., Lowenstein J. M. Acetyl coenzyme A carboxylase from rat liver. EC 6.4.1.2 acetyl-CoA: carbon dioxide ligase (ADP). Methods Enzymol. 1975;35:3–11. doi: 10.1016/0076-6879(75)35131-8. [DOI] [PubMed] [Google Scholar]
  26. Kaplan M. L., Fried G. H. Adaptive enzyme responses in adipose tissue of obese hyperglycemic mice. Arch Biochem Biophys. 1973 Oct;158(2):711–719. doi: 10.1016/0003-9861(73)90565-1. [DOI] [PubMed] [Google Scholar]
  27. Kauffman J. M., Caro J. F. Insulin resistance in uremia. Characterization of insulin action, binding, and processing in isolated hepatocytes from chronic uremic rats. J Clin Invest. 1983 Mar;71(3):698–708. doi: 10.1172/JCI110816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kekki M., Nikkilä E. A. Plasma triglyceride metabolism in the adult nephrotic syndrome. Eur J Clin Invest. 1971 May;1(5):345–351. doi: 10.1111/j.1365-2362.1971.tb00641.x. [DOI] [PubMed] [Google Scholar]
  29. Lanza-Jacoby S., Sitren H. S., Stevenson N. R., Rosato F. E. Changes in circadian rhythmicity of liver and serum parameters in rats fed a total parenteral nutrition solution by continuous and discontinuous intravenous or intragastric infusion. JPEN J Parenter Enteral Nutr. 1982 Nov-Dec;6(6):496–502. doi: 10.1177/0148607182006006496. [DOI] [PubMed] [Google Scholar]
  30. Livingston J. N., Cuatrecasa P., Lockwood D. H. Insulin insensitivity of large fat cells. Science. 1972 Aug 18;177(4049):626–628. doi: 10.1126/science.177.4049.626. [DOI] [PubMed] [Google Scholar]
  31. Livingston J. N., Lockwood D. H. Direct measurements of sugar uptake in small and large adipocytes from young and adult rats. Biochem Biophys Res Commun. 1974 Dec 11;61(3):989–996. doi: 10.1016/0006-291x(74)90253-8. [DOI] [PubMed] [Google Scholar]
  32. Morin R. J., Srikantaiah M. V., Davidson W. D. Effect of uremia on incorporation of acetate into rat plasma and tissue lipids. Metabolism. 1980 Apr;29(4):311–316. doi: 10.1016/0026-0495(80)90003-7. [DOI] [PubMed] [Google Scholar]
  33. Murase T., Cattran D. C., Rubenstein B., Steiner G. Inhibition of lipoprotein lipase by uremic plasma, a possible cause of hypertriglyceridemia. Metabolism. 1975 Nov;24(11):1279–1286. doi: 10.1016/0026-0495(75)90066-9. [DOI] [PubMed] [Google Scholar]
  34. Nitzan M. Hepatic lipogenesis in acute uremic syndrome. In vitro studies with rat liver slices. Nutr Metab. 1971;13(5):292–297. doi: 10.1159/000175346. [DOI] [PubMed] [Google Scholar]
  35. Reaven G. M., Swenson R. S., Sanfelippo M. L. An inquiry into the mechanism of hypertriglyceridemia in patients with chronic renal failure. Am J Clin Nutr. 1980 Jul;33(7):1476–1484. doi: 10.1093/ajcn/33.7.1476. [DOI] [PubMed] [Google Scholar]
  36. Schotz M. C., Garfinkel A. S., Huebotter R. J., Stewart J. E. A rapid assay for lipoprotein lipase. J Lipid Res. 1970 Jan;11(1):68–69. [PubMed] [Google Scholar]
  37. TEPPERMAN J., TEPPERMAN H. M. Metabolism of glucose-1-C-14 and glucose-6-C-14 by liver slices of refed rats. Am J Physiol. 1961 May;200:1069–1073. doi: 10.1152/ajplegacy.1961.200.5.1069. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES