Abstract
The sodium-transporting activity of toad skin is stimulated in vitro with aldosterone in the absence of energy-providing substrate; it can be stimulated further upon addition of glucose after prolonged (overnight) incubation. The magnifying effect exerted by glucose in these conditions could be blocked by inhibitors of ribonucleic acid and protein biosynthesis. In addition, exposure to cycloheximide prevented the increase in thermodynamic affinity resulting from aldosterone treatment. A synthetic 19-nor steroid, (RU 24411), dimethyl-2,2-hydroxy-21-nor-19-pregnene-4-dione-3,20, also stimulated sodium transport by toad skin incubated in the absence of glucose, but there was no magnifying effect of this substrate. Furthermore, there was no change in thermodynamic affinity with RU 24411. Therefore, the magnifying effect seen with glucose and the increase in thermodynamic affinity are not necessarily integral parts of the response of sodium-transporting epithelial to "mineralocorticoids."
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Awqati Q., Norby L. H., Mueller A., Steinmetz P. R. Characteristics of stimulation of H+ transport by aldosterone in turtle urinary bladder. J Clin Invest. 1976 Aug;58(2):351–358. doi: 10.1172/JCI108479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beauwens R., Beaujean V., Crabbé J. The significance of changes in thermodynamic affinity induced by aldosterone in sodium-transporting epithelia. J Membr Biol. 1982;68(1):11–18. doi: 10.1007/BF01872249. [DOI] [PubMed] [Google Scholar]
- CRABBE J. Stimulation of active sodium transport by the isolated toad bladder with aldosterone in vitro. J Clin Invest. 1961 Nov;40:2103–2110. doi: 10.1172/JCI104436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crabbé J., Decoene A., Ehrlich E. N. Some characteristics of the response of the ventral skin of the toad, "Bufo marinus", to aldosterone "in vitro". Arch Int Physiol Biochim. 1971 Oct;79(4):805–808. [PubMed] [Google Scholar]
- Crabbé J., Nagel W. Analysis of cellular reaction to glucose of toad skin treated with aldosterone. Pflugers Arch. 1982 Apr;393(2):130–132. doi: 10.1007/BF00582934. [DOI] [PubMed] [Google Scholar]
- EDELMAN I. S., BOGOROCH R., PORTER G. A. ON THE MECHANISM OF ACTION OF ALDOSTERONE ON SODIUM TRANSPORT: THE ROLE OF PROTEIN SYNTHESIS. Proc Natl Acad Sci U S A. 1963 Dec;50:1169–1177. doi: 10.1073/pnas.50.6.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Essig A., Caplan S. R. Energetics of active transport processes. Biophys J. 1968 Dec;8(12):1434–1457. doi: 10.1016/S0006-3495(68)86565-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Essig A. Evaluation of kinetic and energetic parameters of active sodium transport. J Membr Biol. 1978;40(Spec No):15–27. doi: 10.1007/BF02025996. [DOI] [PubMed] [Google Scholar]
- FRAZIER H. S., DEMPSEY E. F., LEAF A. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin. J Gen Physiol. 1962 Jan;45:529–543. doi: 10.1085/jgp.45.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geheb M., Hercker E., Singer I., Cox M. Subcellular localization of aldosterone-induced proteins in toad urinary bladders. Biochim Biophys Acta. 1981 Mar 6;641(2):422–426. doi: 10.1016/0005-2736(81)90499-5. [DOI] [PubMed] [Google Scholar]
- Kirsten E., Kirsten R., Leaf A., Sharp G. W. Increased activity of enzymes of the tricarboxylic acid cycle in response to aldosterone in the toad bladder. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;300(4):213–225. doi: 10.1007/BF00364295. [DOI] [PubMed] [Google Scholar]
- Kusch M., Farman N., Edelman I. S. Binding of aldosterone to cytoplasmic and nuclear receptors of the urinary bladder epithelium of Bufo marinus. Am J Physiol. 1978 Sep;235(3):C82–C89. doi: 10.1152/ajpcell.1978.235.3.C82. [DOI] [PubMed] [Google Scholar]
- Law P. Y., Edelman I. S. Induction of citrate synthase by aldosterone in the rat kidney. J Membr Biol. 1978 Jun 22;41(1):41–64. doi: 10.1007/BF01873339. [DOI] [PubMed] [Google Scholar]
- Nagel W., Crabbé J. Mechanism of action of aldosterone on active sodium transport across toad skin. Pflugers Arch. 1980 Jun;385(3):181–187. doi: 10.1007/BF00647455. [DOI] [PubMed] [Google Scholar]
- PORTER G. A., EDELMAN I. S. THE ACTION OF ALDOSTERONE AND RELATED CORTICOSTEROIDS ON SODIUM TRANSPORT ACROSS THE TOAD BLADDER. J Clin Invest. 1964 Apr;43:611–620. doi: 10.1172/JCI104946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raynaud J. P., Bouton M. M., Moguilewsky M., Ojasoo T., Philibert D., Beck G., Labrie F., Mornon J. P. Steroid hormone receptors and pharmacology. J Steroid Biochem. 1980 Jan;12:143–157. doi: 10.1016/0022-4731(80)90264-2. [DOI] [PubMed] [Google Scholar]
- Scott W. N., Yang C. P., Skipski I. A., Cobb M. H., Reich I. M., Terry P. M. Aldosterone-induced synthesis of proteins related to sodium transport in the toad's urinary bladder. Ann N Y Acad Sci. 1981;372:15–29. doi: 10.1111/j.1749-6632.1981.tb15454.x. [DOI] [PubMed] [Google Scholar]
- USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]
