Abstract
Respiratory muscle blood flow and organ blood flow was studied in two groups of dogs with radioactively labeled microspheres to assess the influence of the working respiratory muscles on the regional distribution of blood flow when arterial pressure and cardiac output were lowered by pericardial tamponade. In one group (n = 6), the dogs were paralyzed and mechanically ventilated (Mv), while in the other (n = 6), they were left to breathe spontaneously (Sb). Cardiac output fell to 30% of control values during tamponade in both groups and was maintained constant. None of the dogs was hypoxic. Ventilation in the Sb group peaked after 50 min of hypotension, but remained unchanged in the Mv group. Duplicate measurements of blood flow were made during a control period and after 50 min of tamponade (corresponding to the peak ventilation in Sb). Blood flow to the respiratory muscles increased significantly (P less than 0.001) during tamponade in Sb (diaphragmatic flow increased to 361% of control values), while it decreased in Mv. Although the arterial blood pressure and cardiac output were comparable in the two groups, blood flow distribution during tamponade was different. In Sb, the respiratory muscles received 21% of the cardiac output, compared with only 3% in the Mv group. Thus, by muscle paralysis and Mv, a large fraction of the cardiac output used by the working respiratory muscles can be made available for perfusion of other organs during low cardiac output state: blood flows to the liver, brain, and quadriceps muscles were significantly higher during tamponade in the Mv group compared with the Sb group. Similarly, blood lactate at all times after the induction of low cardiac output and hypotension was significantly lower in the Mv animals (P less than 0.005).
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi H., Strauss W., Ochi H., Wagner H. N., Jr The effect of hypoxia on the regional distribution of cardiac output in the dog. Circ Res. 1976 Sep;39(3):314–319. doi: 10.1161/01.res.39.3.314. [DOI] [PubMed] [Google Scholar]
- Archie J. P., Jr, Fixler D. E., Ullyot D. J., Hoffman J. I., Utley J. R., Carlson E. L. Measurement of cardiac output with and organ trapping of radioactive microspheres. J Appl Physiol. 1973 Jul;35(1):148–154. doi: 10.1152/jappl.1973.35.1.148. [DOI] [PubMed] [Google Scholar]
- Aubier M., Trippenbach T., Roussos C. Respiratory muscle fatigue during cardiogenic shock. J Appl Physiol Respir Environ Exerc Physiol. 1981 Aug;51(2):499–508. doi: 10.1152/jappl.1981.51.2.499. [DOI] [PubMed] [Google Scholar]
- BRODER G., WEIL M. H. EXCESS LACTATE: AN INDEX OF REVERSIBILITY OF SHOCK IN HUMAN PATIENTS. Science. 1964 Mar 27;143(3613):1457–1459. doi: 10.1126/science.143.3613.1457. [DOI] [PubMed] [Google Scholar]
- Berry M. N., Scheuer J. Splanchnic lactic acid metabolism in hyperventilation, metabolic alkalosis and shock. Metabolism. 1967 Jun;16(6):537–547. doi: 10.1016/0026-0495(67)90084-4. [DOI] [PubMed] [Google Scholar]
- Buckberg G. D., Luck J. C., Payne D. B., Hoffman J. I., Archie J. P., Fixler D. E. Some sources of error in measuring regional blood flow with radioactive microspheres. J Appl Physiol. 1971 Oct;31(4):598–604. doi: 10.1152/jappl.1971.31.4.598. [DOI] [PubMed] [Google Scholar]
- Daniel A. M., Shizgal H. M., MacLean L. D. Endogenous fuels in experimental shock. Surg Forum. 1976;27(62):32–33. [PubMed] [Google Scholar]
- Daniel A. M., Shizgal H. M., MacLean L. D. The anatomic and metabolic source of lactate in shock. Surg Gynecol Obstet. 1978 Nov;147(5):697–700. [PubMed] [Google Scholar]
- Domenech R. J., Hoffman J. I., Noble M. I., Saunders K. B., Henson J. R., Subijanto S. Total and regional coronary blood flow measured by radioactive microspheres in conscious and anesthetized dogs. Circ Res. 1969 Nov;25(5):581–596. doi: 10.1161/01.res.25.5.581. [DOI] [PubMed] [Google Scholar]
- Fixler D. E., Atkins J. M., Mitchell J. H., Horwitz L. D. Blood flow to respiratory, cardiac, and limb muscles in dogs during graded exercise. Am J Physiol. 1976 Nov;231(5 Pt 1):1515–1519. doi: 10.1152/ajplegacy.1976.231.5.1515. [DOI] [PubMed] [Google Scholar]
- HIRVONEN L., SONNENSCHEIN R. R. Relation between blood flow and contraction force in active skeletal muscle. Circ Res. 1962 Jan;10:94–104. doi: 10.1161/01.res.10.1.94. [DOI] [PubMed] [Google Scholar]
- Hales J. R. Effects of heat stress on blood flow in respiratory and non-respiratory muscles in the sheep. Pflugers Arch. 1973 Dec 12;345(2):123–130. doi: 10.1007/BF00585835. [DOI] [PubMed] [Google Scholar]
- Hoffbrand B. I., Forsyth R. P. Validity studies of the radioactive microsphere method for the study of the distribution of cardiac output, orn blood flow, and resistance in the conscious rhesus monkey. Cardiovasc Res. 1969 Oct;3(4):426–432. doi: 10.1093/cvr/3.4.426. [DOI] [PubMed] [Google Scholar]
- Horstman D. H., Gleser M., Delehunt J. Effects of altering O2 delivery on VO2 of isolated, working muscle. Am J Physiol. 1976 Feb;230(2):327–334. doi: 10.1152/ajplegacy.1976.230.2.327. [DOI] [PubMed] [Google Scholar]
- Kaihara S., Rutherford R. B., Schwentker E. P., Wagner H. N., Jr Distribution of cardiac output in experimental hemorrhagic shock in dogs. J Appl Physiol. 1969 Aug;27(2):218–222. doi: 10.1152/jappl.1969.27.2.218. [DOI] [PubMed] [Google Scholar]
- Kaihara S., Van Heerden P. D., Migita T., Wagner H. N., Jr Measure- ment of distribution of cardiac output. J Appl Physiol. 1968 Dec;25(6):696–700. doi: 10.1152/jappl.1968.25.6.696. [DOI] [PubMed] [Google Scholar]
- Karlsson J., Willerson J. T., Leshin S. J., Mullins C. B., Mitchell J. H. Skeletal muscle metabolites in patients with cardiogenic shock or severe congestive heart failure. Scand J Clin Lab Invest. 1975 Jan;35(1):73–79. [PubMed] [Google Scholar]
- Lloyd M. H., Iles R. A., Simpson B. R., Strunin J. M., Layton J. M., Cohen R. D. The effect of simulated metabolic acidosis on intracellular pH and lactate metabolism in the isolated perfused rat liver. Clin Sci Mol Med. 1973 Oct;45(4):543–549. doi: 10.1042/cs0450543. [DOI] [PubMed] [Google Scholar]
- Macklem P. T. Respiratory muscles: the vital pump. Chest. 1980 Nov;78(5):753–758. doi: 10.1378/chest.78.5.753. [DOI] [PubMed] [Google Scholar]
- Manohar M., Thurmon J. C., Tranquilli W. J., Devous M. D., Sr, Theodorakis M. C., Shawley R. V., Feller D. L., Benson J. G. Regional myocardial blood flow and coronary vascular reverse in unanesthetized vascular reserve in unanesthetized young calves with severe concentric right ventricular hypertrophy. Circ Res. 1981 Jun;48(6 Pt 1):785–796. doi: 10.1161/01.res.48.6.785. [DOI] [PubMed] [Google Scholar]
- Mognoni P., Saibene F., Sant'ambrogio G., Camporesi E. Perfusion of inspiratory muscles at different levels of ventilation in rabbits. Respir Physiol. 1974 Mar;20(2):171–179. doi: 10.1016/0034-5687(74)90105-4. [DOI] [PubMed] [Google Scholar]
- Neutze J. M., Wyler F., Rudolph A. M. Use of radioactive microspheres to assess distribution of cardiac output in rabbits. Am J Physiol. 1968 Aug;215(2):486–495. doi: 10.1152/ajplegacy.1968.215.2.486. [DOI] [PubMed] [Google Scholar]
- Robertson C. H., Jr, Eschenbacher W. L., Johnson R. L., Jr Respiratory muscle blood flow distribution during expiratory resistance. J Clin Invest. 1977 Aug;60(2):473–480. doi: 10.1172/JCI108798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson C. H., Jr, Foster G. H., Johnson R. L., Jr The relationship of respiratory failure to the oxygen consumption of, lactate production by, and distribution of blood flow among respiratory muscles during increasing inspiratory resistance. J Clin Invest. 1977 Jan;59(1):31–42. doi: 10.1172/JCI108619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson C. H., Jr, Pagel M. A., Johnson R. L., Jr The distribution of blood flow, oxygen consumption, and work output among the respiratory muscles during unobstructed hyperventilation. J Clin Invest. 1977 Jan;59(1):43–50. doi: 10.1172/JCI108620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rochester D. F., Bettini G. Diaphragmatic blood flow and energy expenditure in the dog. Effects of inspiratory airflow resistance and hypercapnia. J Clin Invest. 1976 Mar;57(3):661–672. doi: 10.1172/JCI108322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rochester D. F., Briscoe A. M. Metabolism of the working diaphragm. Am Rev Respir Dis. 1979 Feb;119(2 Pt 2):101–106. doi: 10.1164/arrd.1979.119.2P2.101. [DOI] [PubMed] [Google Scholar]
- Rochester D. F. Measurement of diaphragmatic blood flow and oxygen consumption in the dog by the Kety-Schmidt technique. J Clin Invest. 1974 May;53(5):1216–1225. doi: 10.1172/JCI107668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudolph A. M., Heymann M. A. The circulation of the fetus in utero. Methods for studying distribution of blood flow, cardiac output and organ blood flow. Circ Res. 1967 Aug;21(2):163–184. doi: 10.1161/01.res.21.2.163. [DOI] [PubMed] [Google Scholar]
- Schröder R., Gumpert J. R., Pluth J. R., Eltringham W. K., Jenny M. E., Zollinger R. M., Jr The role of the liver in the development of lactic acidosis in low flow states. Postgrad Med J. 1969 Aug;45(526):566–570. doi: 10.1136/pgmj.45.526.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright D. L., Sonnenschein R. R. Muscle force and electromyogram with alteration in flow and composition of blood. Am J Physiol. 1969 May;216(5):1075–1080. doi: 10.1152/ajplegacy.1969.216.5.1075. [DOI] [PubMed] [Google Scholar]
