Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 Sep;72(3):1058–1063. doi: 10.1172/JCI111030

Impaired rat sciatic nerve sodium-potassium adenosine triphosphatase in acute streptozocin diabetes and its correction by dietary myo-inositol supplementation.

D A Greene, S A Lattimer
PMCID: PMC1129273  PMID: 6309904

Abstract

Nerve conduction impairment in experimental diabetes has been empirically but not mechanistically linked to altered nerve myo-inositol metabolism. The phospholipid-dependent membrane-bound sodium-potassium ATPase provides a potential mechanism to relate defects in diabetic peripheral nerve myo-inositol-phospholipid metabolism, impulse conduction, and energy utilization. Therefore, the effect of streptozocin-induced diabetes mellitus and dietary myo-inositol supplementation on rat sciatic nerve sodium-potassium ATPase was studied. ATPase activity was measured enzymatically in sciatic nerve homogenates from 4-wk streptozocin diabetic rats and age-matched controls either fed a standard or 1% myo-inositol supplemented diet. The sodium-potassium ATPase components were assessed by ouabain inhibition or the omission of sodium and potassium ions. Diabetes reduced the composite ATPase activity recovered in crude homogenates of sciatic nerve. The 40% reduction in the sodium-potassium ATPase was selectively prevented by 1% myo-inositol supplementation (which preserved normal nerve conduction). Thus, in diabetic peripheral nerve, abnormal myo-inositol metabolism is associated with abnormal sodium-potassium ATPase activity. The mechanism of the effect of dietary myo-inositol to correct diabetic nerve conduction may be through changes in a sodium-potassium ATPase, possibly via changes in myo-inositol-containing phospholipids.

Full text

PDF
1058

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behse F., Buchthal F., Carlsen F. Nerve biopsy and conduction studies in diabetic neuropathy. J Neurol Neurosurg Psychiatry. 1977 Nov;40(11):1072–1082. doi: 10.1136/jnnp.40.11.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brismar T., Sima A. A. Changes in nodal function in nerve fibres of the spontaneously diabetic BB-Wistar rat: potential clamp analysis. Acta Physiol Scand. 1981 Dec;113(4):499–506. doi: 10.1111/j.1748-1716.1981.tb06928.x. [DOI] [PubMed] [Google Scholar]
  3. Clements R. S., Jr Diabetic neuropathy--new concepts of its etiology. Diabetes. 1979 Jun;28(6):604–611. doi: 10.2337/diab.28.6.604. [DOI] [PubMed] [Google Scholar]
  4. Clements R. S., Jr, Stockard C. R. Abnormal sciatic nerve myo-inositol metabolism in the streptozotocin-diabetic rat: effect of insulin treatment. Diabetes. 1980 Mar;29(3):227–235. doi: 10.2337/diab.29.3.227. [DOI] [PubMed] [Google Scholar]
  5. Das P. K., Bray G. M., Aguayo A. J., Rasminsky M. Diminished ouabain-sensitive, sodium-potassium ATPase activity in sciatic nerves of rats with streptozotocin-induced diabetes. Exp Neurol. 1976 Oct;53(1):285–288. doi: 10.1016/0014-4886(76)90299-5. [DOI] [PubMed] [Google Scholar]
  6. ELIASSON S. G. NERVE CONDUCTION CHANGES IN EXPERIMENTAL DIABETES. J Clin Invest. 1964 Dec;43:2353–2358. doi: 10.1172/JCI105109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ferrendelli J. A., Rubin E. H., Orr H. T., Kinscherf D. A., Lowry O. H. Measurement of cyclic nucleotides in histologically defined samples of brain and retina. Anal Biochem. 1977 Mar;78(1):252–259. doi: 10.1016/0003-2697(77)90030-6. [DOI] [PubMed] [Google Scholar]
  8. Gillon K. R., Hawthorne J. N. Sorbitol, inositol and nerve conduction in diabetes. Life Sci. 1983 Apr 25;32(17):1943–1947. doi: 10.1016/0024-3205(83)90045-0. [DOI] [PubMed] [Google Scholar]
  9. Greene D. A., De Jesus P. V., Jr, Winegrad A. I. Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest. 1975 Jun;55(6):1326–1336. doi: 10.1172/JCI108052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greene D. A., Lattimer S. A. Sodium- and energy-dependent uptake of myo-inositol by rabbit peripheral nerve. Competitive inhibition by glucose and lack of an insulin effect. J Clin Invest. 1982 Nov;70(5):1009–1018. doi: 10.1172/JCI110688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greene D. A., Lewis R. A., Lattimer S. A., Brown M. J. Selective effects of myo-inositol administration on sciatic and tibial motor nerve conduction parameters in the streptozocin-diabetic rat. Diabetes. 1982 Jul;31(7):573–578. doi: 10.2337/diab.31.7.573. [DOI] [PubMed] [Google Scholar]
  12. Greene D. A. Metabolic abnormalities in diabetic peripheral nerve: relation to impaired function. Metabolism. 1983 Jul;32(7 Suppl 1):118–123. doi: 10.1016/s0026-0495(83)80024-9. [DOI] [PubMed] [Google Scholar]
  13. Greene D. A., Winegrad A. I. Effects of acute experimental diabetes on composite energy metabolism in peripheral nerve axons and Schwann cells. Diabetes. 1981 Nov;30(11):967–974. doi: 10.2337/diab.30.11.967. [DOI] [PubMed] [Google Scholar]
  14. Jakobsen J. Early and preventable changes of peripheral nerve structure and function in insulin-deficient diabetic rats. J Neurol Neurosurg Psychiatry. 1979 Jun;42(6):509–518. doi: 10.1136/jnnp.42.6.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Leone J., Ochs S. Anoxic block and recovery of axoplasmic transport and electrical excitability of nerve. J Neurobiol. 1978 May;9(3):229–245. doi: 10.1002/neu.480090305. [DOI] [PubMed] [Google Scholar]
  17. Mandersloot J. G., Roelofsen B., de Gier J. Phosphatidylinositol as the endogenous activator of the (Na+ + K+)-ATPase in microsomes of rabbit kidney. Biochim Biophys Acta. 1978 Apr 20;508(3):478–485. doi: 10.1016/0005-2736(78)90093-7. [DOI] [PubMed] [Google Scholar]
  18. Mayhew J. A., Gillon K. R., Hawthorne J. N. Free and lipid inositol, sorbitol and sugars in sciatic nerve obtained post-mortem from diabetic patients and control subjects. Diabetologia. 1983 Jan;24(1):13–15. doi: 10.1007/BF00275940. [DOI] [PubMed] [Google Scholar]
  19. Molitoris B. A., Karl I. E., Daughaday W. H. Concentration of myo-inositol in skeletal muscle of the rat occurs without active transport. J Clin Invest. 1980 Apr;65(4):783–788. doi: 10.1172/JCI109728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Natarajan V., Dyck P. J., Schmid H. H. Alterations of inositol lipid metabolism of rat sciatic nerve in streptozotocin-induced diabetes. J Neurochem. 1981 Feb;36(2):413–419. doi: 10.1111/j.1471-4159.1981.tb01609.x. [DOI] [PubMed] [Google Scholar]
  21. Palmano K. P., Whiting P. H., Hawthorne J. N. Free and lipid myo-inositol in tissues from rats with acute and less severe streptozotocin-induced diabetes. Biochem J. 1977 Oct 1;167(1):229–235. doi: 10.1042/bj1670229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ritchie J. M. The oxygen consumption of mammalian non-myelinated nerve fibres at rest and during activity. J Physiol. 1967 Feb;188(3):309–329. doi: 10.1113/jphysiol.1967.sp008141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roelofsen B. The (non)specificity in the lipid-requirement of calcium- and (sodium plus potassium)-transporting adenosine triphosphatases. Life Sci. 1981 Nov 30;29(22):2235–2247. doi: 10.1016/0024-3205(81)90556-7. [DOI] [PubMed] [Google Scholar]
  24. Sidenius P. The axonopathy of diabetic neuropathy. Diabetes. 1982 Apr;31(4 Pt 1):356–363. doi: 10.2337/diab.31.4.356. [DOI] [PubMed] [Google Scholar]
  25. Simmons D. A., Winegrad A. I., Martin D. B. Significance of tissue myo-inositol concentrations in metabolic regulation in nerve. Science. 1982 Aug 27;217(4562):848–851. doi: 10.1126/science.6285474. [DOI] [PubMed] [Google Scholar]
  26. Trachtenberg M. C., Packey D. J., Sweeney T. In vivo functioning of the Na+, K+-activated ATPase. Curr Top Cell Regul. 1981;19:159–217. doi: 10.1016/b978-0-12-152819-5.50022-1. [DOI] [PubMed] [Google Scholar]
  27. Wheeler D. D. Amino acid transport in peripheral nerve: specificity of uptake. J Neurochem. 1975 Jan;24(1):97–104. doi: 10.1111/j.1471-4159.1975.tb07633.x. [DOI] [PubMed] [Google Scholar]
  28. Winegrad A. I., Greene D. A. Diabetic polyneuropathy: the importance of insulin deficiency, hyperglycemia and alterations in myoinositol metabolism in its pathogenesis. N Engl J Med. 1976 Dec 16;295(25):1416–1421. doi: 10.1056/NEJM197612162952507. [DOI] [PubMed] [Google Scholar]
  29. Yoda A., Yoda S. A new simple preparation method for NaK-ATPase-rich membrane fragments. Anal Biochem. 1981 Jan 1;110(1):82–88. doi: 10.1016/0003-2697(81)90115-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES