Skip to main content
IUCrData logoLink to IUCrData
. 2024 Jul 23;9(Pt 7):x240704. doi: 10.1107/S2414314624007041

Chlorido­[(1,2,5,6-η)-cyclo­octa-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-yl­idene)rhodium(I)

Timothy G Lerch a, Michael Gau b, Daniel R Albert a, Edward Rajaseelan a,*
Editor: M Boltec
PMCID: PMC11299652  PMID: 39108937

A new neutral triazole-based N-heterocyclic carbene rhodium(I) complex [RhCl(C8H12)(C8H15N3)], has been synthesized and structurally characterized. The complex crystallizes with two mol­ecules in the asymmetric unit. The rhodium center has a distorted square-planar conformation, formed by a cyclo­octa-1,5-diene (COD) ligand, an N-heterocyclic carbene (NHC) ligand, and a chloride ligand.

Keywords: crystal structure, rhodium, N-heterocyclic carbenes, neutral transition-metal complexes

Abstract

A new neutral triazole-based N-heterocyclic carbene rhodium(I) complex [RhCl(C8H12)(C8H15N3)], has been synthesized and structurally characterized. The complex crystallizes with two mol­ecules in the asymmetric unit. The central rhodium(I) atom has a distorted square-planar coordination environment, formed by a cyclo­octa-1,5-diene (COD) ligand, an N-heterocyclic carbene (NHC) ligand, and a chlorido ligand. The bond lengths are unexceptional. A weak inter­molecular non-standard hydrogen-bonding inter­action exists between the chlorido and NHC ligands.graphic file with name x-09-x240704-scheme1-3D1.jpg

Structure description

Numerous and ever-increasing applications of N-heterocyclic carbenes (NHCs) as supporting ligands in late transition-metal catalysis have been reported (Diez-González et al., 2009; Cazin, 2013; Rovis & Nolan, 2013; Ruff et al., 2016; Zuo et al., 2014). Their catalytic activity in the transfer hydrogenation of ketones and imines has also been studied and reported (Albrecht et al., 2002; Gnanamgari et al., 2007). The NHC ligands can be tuned sterically and electronically by having different substituents on the nitro­gen atoms (Diez-González & Nolan, 2007; Gusev, 2009). Though many imidazole- and tri­azole-based NHC rhodium and iridium complexes have been synthesized and structurally characterized (Herrmann et al., 2006; Wang & Lin, 1998; Chianese et al., 2004; Nichol et al., 2009, 2010, 2011, 2012; Idrees et al., 2017a,b; Rood et al., 2021; Rushlow et al., 2021; Newman et al., 2021; Castaldi et al., 2021; Maynard et al., 2023; Lerch et al., 2024), new complexes with different substituents (‘wing tips’) on NHC ligands are being synthesized to study their effects in the catalytic properties of these complexes.

The compound [RhCl(C8H12)(C8H15N3)] (3), as illustrated in Fig. 1, crystallizes in the triclinic space group PInline graphic with two mol­ecules in the asymmetric unit. No solvent mol­ecules were found in the structure. The coordination sphere around the RhI ion is formed by the bidentate COD, NHC, and chlorido ligands, resulting in a distorted square-planar shape. The carbene atom, C1, deviates from the expected sp2 hybridization in that the N1—C1—N3 bond angle in the triazole-based carbene is 102.77 (17)° [N1′—C1′—N3′ is 102.45 (16)°]. Other selected bond lengths and angles in the structure are: Rh1—C1(NHC) = 2.020 (2) Å, Rh1′—C1′(NHC) = 2.012 (2) Å, Rh1—Cl1 = 2.3846 (5) Å, Rh1′—Cl1′ = 2.3887 (5) Å, C1—Rh1—Cl1 is 88.36 (5)°, and C1′—Rh1′—Cl1′is 88.57 (6)°. The two substit­uent ‘wing tips’ in the NHC (N1-ethyl and N3-isobut­yl) are oriented in a syn arrangement with respect to one-another. The ethyl and isobutyl ‘wingtips’ are both oriented away from the COD ring as illustrated in Fig. 2. The packing, as illus­trated in Fig. 3, is consolidated through weak non-standard hydrogen-bonding inter­action between the NHC and chlorido ligands of adjacent mol­ecules. The non-standard hydrogen-bonding inter­actions are summarized in Table 1 and shown as dotted green lines in Fig. 3.

Figure 1.

Figure 1

Asymmetric unit of the title compound (3) showing the two mol­ecular units. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

View of one mol­ecule of the title compound (3) showing the ethyl and isobutyl wingtips oriented on the same side of the NHC ring and away from the COD ligand.

Figure 3.

Figure 3

Crystal packing diagram of the title compound (3) viewed along the a axis. C—H⋯Cl non-standard hydrogen-bonding inter­actions are shown as dotted green lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2′—H2′⋯Cl1i 0.95 2.62 3.502 (2) 155

Symmetry code: (i) Inline graphic.

Synthesis and crystallization

1-Ethyl-1,2,4-triazole (1) was purchased from Matrix Scientific. All other compounds used in the syntheses, detailed in Fig. 4, were obtained from Sigma-Aldrich and Strem and used as received; all syntheses were performed under a nitro­gen atmosphere. NMR spectra were recorded at room temperature in CDCl3 on a 400 MHz (operating at 100 MHz for 13C and 162 MHz for 31P) Varian spectrometer and referenced to the residual solvent peak (δ in p.p.m.). The title compound (3) was crystallized by slow diffusion of pentane into a CH2Cl­2 solution.

Figure 4.

Figure 4

Reaction scheme for the synthesis of the title compound (3).

1-Ethyl-4-isobutyl-1,2,4-triazolium bromide (2): 1-Ethyl-1,2,4-triazole (1) (1.020 g, 10.50 mmol) and excess 1-bromo-2-methyl­propane (5.436 g, 39.67 mmol) were added to toluene (15 ml), and the mixture was refluxed in the dark for 48 h. After the mixture was cooled, the white solid was filtered, washed with ether, and dried under vacuum. Yield: 0.625 g (25.4%). 1H NMR: δ 11.71 (s, 1 H, N—C5H—N), 8.62 (s, 1 H, N—C3H—N), 4.90 (q, 2 H, N—CH2 of eth­yl), 4.38 (d, 2 H, N—CH­2 of isobut­yl), 2.32 (m, 1 H, CH of isobut­yl), 1.64 (t, 3H, CH3 of eth­yl), 1.03 (d, 6 H, CH3 of isobut­yl). 13C NMR: δ 143.49 (N—C5—N), 142.66 (N—C3—N), 55.46 (N—CH2 of isobut­yl), 48.50 (N—CH2 of eth­yl), 29.31 (CH of isobut­yl), 19.49 (CH­3 of isobut­yl), 14.18 (CH3 of eth­yl).

Chlorido­[(1,2,5,6-η)-cyclo­octa-1,5-diene](1-ethyl-4-iso­butyl-1,2,4-triazol-5-yl­idene)rhodium(I) (3): Triazolium bromide (2) (0.095 g, 0.406 mmol) and Ag2O (0.047 g, 0.203 mmol) were stirred at room temperature in the dark for 1 h in CH2Cl2 (10 ml). The mixture was then filtered through Celite into [Rh(cod)Cl]2 (0.100 g, 0.203 mmol), and stirred again in the dark for 1.5 h. The resulting solution was filtered through Celite and the solvent was removed under reduced pressure in a rotary evaporator. The yellow solid product (3) was dried under vacuum. Yield: 0.149 g (92%). 1H NMR: δ 7.82 (s, 1 H, N—C3H—N), 4.74 (q, 2 H, N—CH2 of eth­yl), 4.66 (d, 2 H, N—CH2 of isobut­yl), 4.30 (m, 2 H, CH of COD), 4.20 (m, 2H, CH of COD), 3.37, 3.24 (m, 4 H, CH2 of COD), 2.60, 2.46 (m, 4 H, CH2 of COD), 2.32 (m, 1 H, CH of isobut­yl), 1.59 (t, 3 H, CH3 of eth­yl), 1.08 (d, 6 H, CH3 of isobut­yl). 13C NMR: δ 184.95 (d, Rh—C, JC—Rh = 50.9 Hz), 142.29 (N—C3H—N), 99.43,99.36, 99.13, 99.06 (CH of COD), 56.21 (N—CH2 of isobut­yl), 48.01 (N—CH2 of eth­yl), 47.91, 33.29,32.45,30.80,29.30 (CH2 of COD), 29.13 (CH of isobut­yl), 20.02 (CH­3 of isobut­yl), 15.36 (CH3 of eth­yl).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [RhCl(C8H12)(C8H15N3)]
M r 399.76
Crystal system, space group Triclinic, PInline graphic
Temperature (K) 100
a, b, c (Å) 9.6253 (1), 13.6771 (2), 13.7938 (2)
α, β, γ (°) 76.410 (1), 83.455 (1), 80.345 (1)
V3) 1734.78 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.14
Crystal size (mm) 0.30 × 0.23 × 0.15
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2024)
Tmin, Tmax 0.770, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 52942, 8619, 7885
R int 0.037
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.03
No. of reflections 8619
No. of parameters 385
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.02, −0.50

Computer programs: CrysAlis PRO (Rigaku OD, 2024), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624007041/bt4153sup1.cif

x-09-x240704-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624007041/bt4153Isup2.hkl

x-09-x240704-Isup2.hkl (684.1KB, hkl)

CCDC reference: 2371669

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

TL was supported in this work by the Millersville University Neimeyer–Hodgson Research Grant and Student Research Grant

full crystallographic data

Chlorido[(1,2,5,6-η)-cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)rhodium(I). Crystal data

[RhCl(C8H12)(C8H15N3)] Z = 4
Mr = 399.76 F(000) = 824
Triclinic, P1 Dx = 1.531 Mg m3
a = 9.6253 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 13.6771 (2) Å Cell parameters from 36515 reflections
c = 13.7938 (2) Å θ = 2.0–28.3°
α = 76.410 (1)° µ = 1.14 mm1
β = 83.455 (1)° T = 100 K
γ = 80.345 (1)° Block, yellow
V = 1734.78 (4) Å3 0.3 × 0.23 × 0.15 mm

Chlorido[(1,2,5,6-η)-cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)rhodium(I). Data collection

Rigaku XtaLAB Synergy-S diffractometer 7885 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1 Rint = 0.037
ω scans θmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2024) h = −12→12
Tmin = 0.770, Tmax = 1.000 k = −18→18
52942 measured reflections l = −17→18
8619 independent reflections

Chlorido[(1,2,5,6-η)-cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)rhodium(I). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025 H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0321P)2 + 2.0009P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
8619 reflections Δρmax = 1.02 e Å3
385 parameters Δρmin = −0.50 e Å3

Chlorido[(1,2,5,6-η)-cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)rhodium(I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Chlorido[(1,2,5,6-η)-cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)rhodium(I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Rh1 0.35791 (2) 0.31385 (2) 0.72501 (2) 0.01343 (5)
Cl1 0.46921 (5) 0.44263 (3) 0.76187 (4) 0.01601 (9)
N1 0.63831 (18) 0.25377 (13) 0.61135 (13) 0.0179 (3)
N2 0.76467 (19) 0.18859 (15) 0.61666 (14) 0.0223 (4)
N3 0.62725 (18) 0.16069 (13) 0.75695 (13) 0.0163 (3)
C1 0.5521 (2) 0.23940 (15) 0.69543 (15) 0.0154 (4)
C2 0.7527 (2) 0.13252 (17) 0.70700 (16) 0.0212 (4)
H2 0.822845 0.078693 0.734610 0.025*
C3 0.6158 (2) 0.33469 (17) 0.52183 (16) 0.0214 (4)
H3A 0.514387 0.363675 0.521882 0.026*
H3B 0.641327 0.305673 0.461753 0.026*
C4 0.7029 (3) 0.41866 (19) 0.51641 (18) 0.0284 (5)
H4A 0.681758 0.472773 0.457157 0.043*
H4B 0.803667 0.391129 0.511948 0.043*
H4C 0.679746 0.446378 0.576607 0.043*
C5 0.5869 (2) 0.11712 (16) 0.86246 (15) 0.0184 (4)
H5A 0.579128 0.044357 0.870410 0.022*
H5B 0.493144 0.152359 0.882081 0.022*
C6 0.6947 (2) 0.12717 (16) 0.93138 (15) 0.0183 (4)
H6 0.789022 0.092337 0.909805 0.022*
C7 0.7068 (2) 0.23813 (17) 0.92465 (17) 0.0239 (4)
H7A 0.735865 0.269980 0.855600 0.036*
H7B 0.777314 0.242137 0.968970 0.036*
H7C 0.614982 0.273725 0.945043 0.036*
C8 0.6531 (3) 0.07327 (18) 1.03807 (16) 0.0255 (5)
H8A 0.559343 0.104992 1.059798 0.038*
H8B 0.722372 0.078770 1.082634 0.038*
H8C 0.650800 0.001393 1.040347 0.038*
C9 0.2598 (2) 0.18390 (16) 0.73460 (17) 0.0211 (4)
H9 0.326041 0.118340 0.745835 0.025*
C10 0.2672 (2) 0.24083 (17) 0.63539 (17) 0.0213 (4)
H10 0.337283 0.207878 0.589157 0.026*
C11 0.1444 (2) 0.31046 (19) 0.58410 (18) 0.0268 (5)
H11A 0.081133 0.268428 0.566191 0.032*
H11B 0.181354 0.353098 0.521253 0.032*
C12 0.0577 (2) 0.38023 (18) 0.64893 (18) 0.0249 (5)
H12A 0.012958 0.442801 0.604755 0.030*
H12B −0.018645 0.345144 0.689358 0.030*
C13 0.1475 (2) 0.40917 (16) 0.71818 (17) 0.0200 (4)
H13 0.150599 0.483800 0.706192 0.024*
C14 0.1654 (2) 0.35721 (17) 0.81537 (16) 0.0201 (4)
H14 0.178421 0.401299 0.861133 0.024*
C15 0.1063 (2) 0.26155 (18) 0.86783 (18) 0.0268 (5)
H15A 0.004525 0.279333 0.886938 0.032*
H15B 0.154345 0.231383 0.930027 0.032*
C16 0.1241 (2) 0.18177 (17) 0.80330 (19) 0.0260 (5)
H16A 0.125068 0.113287 0.847610 0.031*
H16B 0.042164 0.194752 0.762303 0.031*
Rh1' 0.07480 (2) 0.19144 (2) 0.24861 (2) 0.01290 (5)
Cl1' 0.24607 (5) 0.13510 (4) 0.12636 (3) 0.01603 (9)
N1' 0.32141 (18) 0.18781 (13) 0.36507 (13) 0.0163 (3)
N2' 0.42244 (19) 0.24024 (14) 0.38413 (14) 0.0199 (4)
N3' 0.27156 (18) 0.33698 (13) 0.27928 (13) 0.0161 (3)
C1' 0.2285 (2) 0.24327 (15) 0.30092 (14) 0.0146 (4)
C2' 0.3879 (2) 0.33103 (16) 0.33006 (16) 0.0199 (4)
H2' 0.437503 0.386481 0.326262 0.024*
C3' 0.3287 (2) 0.07959 (16) 0.40976 (16) 0.0206 (4)
H3'A 0.241691 0.055764 0.398081 0.025*
H3'B 0.333658 0.068364 0.482920 0.025*
C4' 0.4562 (3) 0.01840 (17) 0.36624 (19) 0.0280 (5)
H4'A 0.449460 0.027066 0.294282 0.042*
H4'B 0.459312 −0.053659 0.398999 0.042*
H4'C 0.542437 0.042190 0.377272 0.042*
C5' 0.2110 (2) 0.42804 (15) 0.20818 (16) 0.0191 (4)
H5'A 0.251695 0.487350 0.216000 0.023*
H5'B 0.107738 0.440969 0.224727 0.023*
C6' 0.2383 (2) 0.41853 (16) 0.09956 (16) 0.0212 (4)
H6' 0.184237 0.365842 0.089419 0.025*
C7' 0.3940 (3) 0.3873 (2) 0.07214 (18) 0.0317 (5)
H7'A 0.449099 0.435015 0.087651 0.048*
H7'B 0.408573 0.388173 0.000483 0.048*
H7'C 0.424780 0.318609 0.110580 0.048*
C8' 0.1823 (3) 0.52123 (18) 0.03371 (19) 0.0342 (6)
H8'A 0.081581 0.539251 0.052492 0.051*
H8'B 0.195075 0.516551 −0.036648 0.051*
H8'C 0.234411 0.573581 0.043154 0.051*
C9' −0.0801 (2) 0.28443 (15) 0.32074 (15) 0.0169 (4)
H9' −0.041860 0.336934 0.345470 0.020*
C10' −0.0575 (2) 0.18603 (15) 0.38251 (15) 0.0174 (4)
H10' −0.005804 0.182107 0.442522 0.021*
C11' −0.1593 (2) 0.10822 (17) 0.39879 (17) 0.0231 (4)
H11C −0.256713 0.144488 0.390277 0.028*
H11D −0.156544 0.067389 0.468255 0.028*
C12' −0.1232 (2) 0.03646 (17) 0.32576 (18) 0.0243 (5)
H12C −0.055371 −0.022884 0.355491 0.029*
H12D −0.210286 0.011085 0.316728 0.029*
C13' −0.0602 (2) 0.08679 (16) 0.22444 (16) 0.0196 (4)
H13' −0.012685 0.038113 0.182806 0.023*
C14' −0.1080 (2) 0.18225 (17) 0.16998 (16) 0.0205 (4)
H14' −0.088014 0.190447 0.095986 0.025*
C15' −0.2389 (2) 0.25045 (18) 0.20069 (18) 0.0241 (5)
H15C −0.304485 0.208130 0.245477 0.029*
H15D −0.287981 0.287450 0.140498 0.029*
C16' −0.2006 (2) 0.32711 (16) 0.25459 (16) 0.0216 (4)
H16C −0.174614 0.386987 0.204044 0.026*
H16D −0.284902 0.350564 0.295974 0.026*

Chlorido[(1,2,5,6-η)-cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)rhodium(I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rh1 0.01197 (8) 0.01211 (8) 0.01682 (8) −0.00219 (5) −0.00155 (5) −0.00392 (5)
Cl1 0.0141 (2) 0.00959 (19) 0.0263 (2) −0.00364 (16) −0.00341 (17) −0.00568 (17)
N1 0.0145 (8) 0.0195 (8) 0.0194 (8) −0.0007 (7) −0.0017 (6) −0.0050 (7)
N2 0.0173 (9) 0.0253 (9) 0.0232 (9) 0.0030 (7) −0.0012 (7) −0.0080 (7)
N3 0.0149 (8) 0.0149 (8) 0.0191 (8) −0.0008 (6) −0.0019 (6) −0.0047 (6)
C1 0.0161 (9) 0.0136 (9) 0.0184 (9) −0.0043 (7) −0.0020 (7) −0.0056 (7)
C2 0.0172 (10) 0.0220 (10) 0.0247 (11) 0.0017 (8) −0.0021 (8) −0.0088 (8)
C3 0.0209 (10) 0.0252 (11) 0.0169 (10) −0.0033 (8) −0.0027 (8) −0.0016 (8)
C4 0.0312 (12) 0.0287 (12) 0.0240 (11) −0.0109 (10) −0.0004 (9) 0.0003 (9)
C5 0.0187 (10) 0.0164 (9) 0.0191 (10) −0.0048 (8) −0.0014 (8) −0.0007 (7)
C6 0.0163 (9) 0.0174 (9) 0.0206 (10) −0.0024 (7) −0.0025 (8) −0.0028 (8)
C7 0.0254 (11) 0.0229 (11) 0.0253 (11) −0.0077 (9) −0.0052 (9) −0.0047 (9)
C8 0.0266 (11) 0.0284 (12) 0.0209 (10) −0.0092 (9) −0.0040 (9) 0.0007 (9)
C9 0.0184 (10) 0.0169 (10) 0.0313 (11) −0.0063 (8) −0.0030 (8) −0.0087 (8)
C10 0.0181 (10) 0.0224 (10) 0.0278 (11) −0.0034 (8) −0.0040 (8) −0.0130 (9)
C11 0.0239 (11) 0.0333 (12) 0.0267 (11) −0.0037 (9) −0.0092 (9) −0.0104 (10)
C12 0.0187 (10) 0.0267 (11) 0.0290 (12) −0.0002 (9) −0.0076 (9) −0.0048 (9)
C13 0.0128 (9) 0.0180 (10) 0.0289 (11) 0.0019 (7) −0.0010 (8) −0.0076 (8)
C14 0.0157 (9) 0.0223 (10) 0.0229 (10) −0.0012 (8) 0.0017 (8) −0.0088 (8)
C15 0.0214 (11) 0.0294 (12) 0.0272 (11) −0.0070 (9) 0.0043 (9) −0.0023 (9)
C16 0.0199 (10) 0.0213 (11) 0.0359 (12) −0.0078 (8) −0.0003 (9) −0.0021 (9)
Rh1' 0.01226 (8) 0.01255 (8) 0.01436 (8) −0.00244 (5) −0.00160 (5) −0.00315 (5)
Cl1' 0.0145 (2) 0.0157 (2) 0.0178 (2) −0.00018 (16) 0.00186 (17) −0.00625 (17)
N1' 0.0162 (8) 0.0159 (8) 0.0177 (8) −0.0057 (6) −0.0035 (6) −0.0020 (6)
N2' 0.0183 (8) 0.0200 (9) 0.0233 (9) −0.0077 (7) −0.0054 (7) −0.0035 (7)
N3' 0.0165 (8) 0.0149 (8) 0.0170 (8) −0.0050 (6) −0.0014 (6) −0.0021 (6)
C1' 0.0154 (9) 0.0139 (9) 0.0143 (9) −0.0025 (7) 0.0012 (7) −0.0039 (7)
C2' 0.0186 (10) 0.0203 (10) 0.0225 (10) −0.0075 (8) −0.0027 (8) −0.0039 (8)
C3' 0.0223 (10) 0.0156 (10) 0.0228 (10) −0.0061 (8) −0.0075 (8) 0.0029 (8)
C4' 0.0267 (12) 0.0189 (11) 0.0391 (13) −0.0010 (9) −0.0125 (10) −0.0048 (9)
C5' 0.0201 (10) 0.0132 (9) 0.0229 (10) −0.0031 (8) −0.0018 (8) −0.0013 (8)
C6' 0.0290 (11) 0.0139 (9) 0.0209 (10) −0.0038 (8) −0.0056 (8) −0.0020 (8)
C7' 0.0355 (13) 0.0318 (13) 0.0243 (12) −0.0035 (10) 0.0067 (10) −0.0046 (10)
C8' 0.0565 (17) 0.0180 (11) 0.0267 (12) −0.0020 (11) −0.0129 (11) 0.0002 (9)
C9' 0.0163 (9) 0.0172 (9) 0.0183 (9) −0.0035 (7) 0.0022 (7) −0.0073 (7)
C10' 0.0180 (9) 0.0182 (10) 0.0168 (9) −0.0057 (8) 0.0018 (7) −0.0049 (7)
C11' 0.0234 (11) 0.0214 (10) 0.0260 (11) −0.0105 (9) 0.0043 (9) −0.0062 (8)
C12' 0.0209 (10) 0.0198 (10) 0.0343 (12) −0.0083 (8) 0.0044 (9) −0.0092 (9)
C13' 0.0163 (9) 0.0211 (10) 0.0262 (11) −0.0052 (8) −0.0025 (8) −0.0127 (8)
C14' 0.0165 (10) 0.0259 (11) 0.0227 (10) −0.0025 (8) −0.0054 (8) −0.0111 (8)
C15' 0.0163 (10) 0.0277 (11) 0.0295 (12) 0.0024 (8) −0.0072 (9) −0.0098 (9)
C16' 0.0198 (10) 0.0196 (10) 0.0239 (11) 0.0019 (8) −0.0004 (8) −0.0059 (8)

Chlorido[(1,2,5,6-η)-cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)rhodium(I). Geometric parameters (Å, º)

Rh1—Cl1 2.3846 (5) Rh1'—Cl1' 2.3887 (5)
Rh1—C1 2.020 (2) Rh1'—C1' 2.012 (2)
Rh1—C9 2.120 (2) Rh1'—C9' 2.110 (2)
Rh1—C10 2.099 (2) Rh1'—C10' 2.114 (2)
Rh1—C13 2.216 (2) Rh1'—C13' 2.190 (2)
Rh1—C14 2.189 (2) Rh1'—C14' 2.205 (2)
N1—N2 1.380 (2) N1'—N2' 1.382 (2)
N1—C1 1.342 (3) N1'—C1' 1.340 (3)
N1—C3 1.461 (3) N1'—C3' 1.457 (3)
N2—C2 1.305 (3) N2'—C2' 1.301 (3)
N3—C1 1.361 (3) N3'—C1' 1.369 (2)
N3—C2 1.364 (3) N3'—C2' 1.369 (3)
N3—C5 1.471 (3) N3'—C5' 1.471 (3)
C2—H2 0.9500 C2'—H2' 0.9500
C3—H3A 0.9900 C3'—H3'A 0.9900
C3—H3B 0.9900 C3'—H3'B 0.9900
C3—C4 1.515 (3) C3'—C4' 1.514 (3)
C4—H4A 0.9800 C4'—H4'A 0.9800
C4—H4B 0.9800 C4'—H4'B 0.9800
C4—H4C 0.9800 C4'—H4'C 0.9800
C5—H5A 0.9900 C5'—H5'A 0.9900
C5—H5B 0.9900 C5'—H5'B 0.9900
C5—C6 1.527 (3) C5'—C6' 1.524 (3)
C6—H6 1.0000 C6'—H6' 1.0000
C6—C7 1.522 (3) C6'—C7' 1.517 (3)
C6—C8 1.525 (3) C6'—C8' 1.532 (3)
C7—H7A 0.9800 C7'—H7'A 0.9800
C7—H7B 0.9800 C7'—H7'B 0.9800
C7—H7C 0.9800 C7'—H7'C 0.9800
C8—H8A 0.9800 C8'—H8'A 0.9800
C8—H8B 0.9800 C8'—H8'B 0.9800
C8—H8C 0.9800 C8'—H8'C 0.9800
C9—H9 1.0000 C9'—H9' 1.0000
C9—C10 1.407 (3) C9'—C10' 1.411 (3)
C9—C16 1.524 (3) C9'—C16' 1.511 (3)
C10—H10 1.0000 C10'—H10' 1.0000
C10—C11 1.517 (3) C10'—C11' 1.527 (3)
C11—H11A 0.9900 C11'—H11C 0.9900
C11—H11B 0.9900 C11'—H11D 0.9900
C11—C12 1.540 (3) C11'—C12' 1.539 (3)
C12—H12A 0.9900 C12'—H12C 0.9900
C12—H12B 0.9900 C12'—H12D 0.9900
C12—C13 1.516 (3) C12'—C13' 1.513 (3)
C13—H13 1.0000 C13'—H13' 1.0000
C13—C14 1.377 (3) C13'—C14' 1.377 (3)
C14—H14 1.0000 C14'—H14' 1.0000
C14—C15 1.507 (3) C14'—C15' 1.519 (3)
C15—H15A 0.9900 C15'—H15C 0.9900
C15—H15B 0.9900 C15'—H15D 0.9900
C15—C16 1.540 (3) C15'—C16' 1.532 (3)
C16—H16A 0.9900 C16'—H16C 0.9900
C16—H16B 0.9900 C16'—H16D 0.9900
C1—Rh1—Cl1 88.36 (5) C1'—Rh1'—Cl1' 88.57 (6)
C1—Rh1—C9 92.59 (8) C1'—Rh1'—C9' 90.29 (8)
C1—Rh1—C10 91.43 (8) C1'—Rh1'—C10' 93.67 (8)
C1—Rh1—C13 166.29 (8) C1'—Rh1'—C13' 160.34 (8)
C1—Rh1—C14 157.23 (8) C1'—Rh1'—C14' 163.12 (8)
C9—Rh1—Cl1 164.45 (6) C9'—Rh1'—Cl1' 161.60 (6)
C9—Rh1—C13 89.51 (8) C9'—Rh1'—C10' 39.02 (8)
C9—Rh1—C14 81.88 (8) C9'—Rh1'—C13' 98.19 (8)
C10—Rh1—Cl1 156.57 (6) C9'—Rh1'—C14' 81.70 (8)
C10—Rh1—C9 38.96 (9) C10'—Rh1'—Cl1' 159.36 (6)
C10—Rh1—C13 81.72 (8) C10'—Rh1'—C13' 82.22 (8)
C10—Rh1—C14 97.75 (8) C10'—Rh1'—C14' 89.42 (8)
C13—Rh1—Cl1 93.23 (6) C13'—Rh1'—Cl1' 88.80 (6)
C14—Rh1—Cl1 91.27 (6) C13'—Rh1'—C14' 36.52 (8)
C14—Rh1—C13 36.43 (8) C14'—Rh1'—Cl1' 94.37 (6)
N2—N1—C3 119.00 (17) N2'—N1'—C3' 119.18 (16)
C1—N1—N2 114.16 (17) C1'—N1'—N2' 114.54 (16)
C1—N1—C3 126.62 (18) C1'—N1'—C3' 126.18 (17)
C2—N2—N1 102.62 (17) C2'—N2'—N1' 102.61 (16)
C1—N3—C2 108.75 (17) C1'—N3'—C5' 126.56 (17)
C1—N3—C5 126.42 (17) C2'—N3'—C1' 108.60 (17)
C2—N3—C5 124.68 (18) C2'—N3'—C5' 124.71 (17)
N1—C1—Rh1 129.32 (15) N1'—C1'—Rh1' 125.97 (14)
N1—C1—N3 102.77 (17) N1'—C1'—N3' 102.45 (16)
N3—C1—Rh1 127.91 (14) N3'—C1'—Rh1' 131.50 (15)
N2—C2—N3 111.69 (19) N2'—C2'—N3' 111.78 (18)
N2—C2—H2 124.2 N2'—C2'—H2' 124.1
N3—C2—H2 124.2 N3'—C2'—H2' 124.1
N1—C3—H3A 109.2 N1'—C3'—H3'A 109.3
N1—C3—H3B 109.2 N1'—C3'—H3'B 109.3
N1—C3—C4 111.92 (18) N1'—C3'—C4' 111.53 (18)
H3A—C3—H3B 107.9 H3'A—C3'—H3'B 108.0
C4—C3—H3A 109.2 C4'—C3'—H3'A 109.3
C4—C3—H3B 109.2 C4'—C3'—H3'B 109.3
C3—C4—H4A 109.5 C3'—C4'—H4'A 109.5
C3—C4—H4B 109.5 C3'—C4'—H4'B 109.5
C3—C4—H4C 109.5 C3'—C4'—H4'C 109.5
H4A—C4—H4B 109.5 H4'A—C4'—H4'B 109.5
H4A—C4—H4C 109.5 H4'A—C4'—H4'C 109.5
H4B—C4—H4C 109.5 H4'B—C4'—H4'C 109.5
N3—C5—H5A 109.3 N3'—C5'—H5'A 108.9
N3—C5—H5B 109.3 N3'—C5'—H5'B 108.9
N3—C5—C6 111.69 (16) N3'—C5'—C6' 113.21 (17)
H5A—C5—H5B 107.9 H5'A—C5'—H5'B 107.7
C6—C5—H5A 109.3 C6'—C5'—H5'A 108.9
C6—C5—H5B 109.3 C6'—C5'—H5'B 108.9
C5—C6—H6 108.3 C5'—C6'—H6' 108.7
C7—C6—C5 111.33 (17) C5'—C6'—C8' 107.67 (18)
C7—C6—H6 108.3 C7'—C6'—C5' 111.82 (19)
C7—C6—C8 111.59 (18) C7'—C6'—H6' 108.7
C8—C6—C5 109.01 (17) C7'—C6'—C8' 111.1 (2)
C8—C6—H6 108.3 C8'—C6'—H6' 108.7
C6—C7—H7A 109.5 C6'—C7'—H7'A 109.5
C6—C7—H7B 109.5 C6'—C7'—H7'B 109.5
C6—C7—H7C 109.5 C6'—C7'—H7'C 109.5
H7A—C7—H7B 109.5 H7'A—C7'—H7'B 109.5
H7A—C7—H7C 109.5 H7'A—C7'—H7'C 109.5
H7B—C7—H7C 109.5 H7'B—C7'—H7'C 109.5
C6—C8—H8A 109.5 C6'—C8'—H8'A 109.5
C6—C8—H8B 109.5 C6'—C8'—H8'B 109.5
C6—C8—H8C 109.5 C6'—C8'—H8'C 109.5
H8A—C8—H8B 109.5 H8'A—C8'—H8'B 109.5
H8A—C8—H8C 109.5 H8'A—C8'—H8'C 109.5
H8B—C8—H8C 109.5 H8'B—C8'—H8'C 109.5
Rh1—C9—H9 114.1 Rh1'—C9'—H9' 113.9
C10—C9—Rh1 69.75 (12) C10'—C9'—Rh1' 70.67 (12)
C10—C9—H9 114.1 C10'—C9'—H9' 113.9
C10—C9—C16 123.7 (2) C10'—C9'—C16' 126.31 (19)
C16—C9—Rh1 113.47 (15) C16'—C9'—Rh1' 109.39 (14)
C16—C9—H9 114.1 C16'—C9'—H9' 113.9
Rh1—C10—H10 113.9 Rh1'—C10'—H10' 113.7
C9—C10—Rh1 71.29 (12) C9'—C10'—Rh1' 70.32 (11)
C9—C10—H10 113.9 C9'—C10'—H10' 113.7
C9—C10—C11 125.0 (2) C9'—C10'—C11' 124.48 (19)
C11—C10—Rh1 110.99 (15) C11'—C10'—Rh1' 113.29 (14)
C11—C10—H10 113.9 C11'—C10'—H10' 113.7
C10—C11—H11A 108.9 C10'—C11'—H11C 109.1
C10—C11—H11B 108.9 C10'—C11'—H11D 109.1
C10—C11—C12 113.42 (18) C10'—C11'—C12' 112.48 (17)
H11A—C11—H11B 107.7 H11C—C11'—H11D 107.8
C12—C11—H11A 108.9 C12'—C11'—H11C 109.1
C12—C11—H11B 108.9 C12'—C11'—H11D 109.1
C11—C12—H12A 109.1 C11'—C12'—H12C 108.9
C11—C12—H12B 109.1 C11'—C12'—H12D 108.9
H12A—C12—H12B 107.9 H12C—C12'—H12D 107.7
C13—C12—C11 112.38 (18) C13'—C12'—C11' 113.21 (18)
C13—C12—H12A 109.1 C13'—C12'—H12C 108.9
C13—C12—H12B 109.1 C13'—C12'—H12D 108.9
Rh1—C13—H13 114.2 Rh1'—C13'—H13' 114.2
C12—C13—Rh1 111.23 (14) C12'—C13'—Rh1' 107.61 (14)
C12—C13—H13 114.2 C12'—C13'—H13' 114.2
C14—C13—Rh1 70.71 (12) C14'—C13'—Rh1' 72.31 (12)
C14—C13—C12 124.2 (2) C14'—C13'—C12' 125.9 (2)
C14—C13—H13 114.2 C14'—C13'—H13' 114.2
Rh1—C14—H14 113.9 Rh1'—C14'—H14' 114.1
C13—C14—Rh1 72.87 (12) C13'—C14'—Rh1' 71.16 (12)
C13—C14—H14 113.9 C13'—C14'—H14' 114.1
C13—C14—C15 126.2 (2) C13'—C14'—C15' 124.4 (2)
C15—C14—Rh1 107.91 (14) C15'—C14'—Rh1' 111.23 (14)
C15—C14—H14 113.9 C15'—C14'—H14' 114.1
C14—C15—H15A 108.9 C14'—C15'—H15C 109.4
C14—C15—H15B 108.9 C14'—C15'—H15D 109.4
C14—C15—C16 113.18 (19) C14'—C15'—C16' 111.22 (17)
H15A—C15—H15B 107.8 H15C—C15'—H15D 108.0
C16—C15—H15A 108.9 C16'—C15'—H15C 109.4
C16—C15—H15B 108.9 C16'—C15'—H15D 109.4
C9—C16—C15 112.07 (18) C9'—C16'—C15' 113.46 (18)
C9—C16—H16A 109.2 C9'—C16'—H16C 108.9
C9—C16—H16B 109.2 C9'—C16'—H16D 108.9
C15—C16—H16A 109.2 C15'—C16'—H16C 108.9
C15—C16—H16B 109.2 C15'—C16'—H16D 108.9
H16A—C16—H16B 107.9 H16C—C16'—H16D 107.7
Rh1—C9—C10—C11 −103.0 (2) Rh1'—C9'—C10'—C11' −105.3 (2)
Rh1—C9—C16—C15 −12.6 (2) Rh1'—C9'—C16'—C15' 39.8 (2)
Rh1—C10—C11—C12 −35.7 (2) Rh1'—C10'—C11'—C12' 11.5 (2)
Rh1—C13—C14—C15 −100.0 (2) Rh1'—C13'—C14'—C15' −103.3 (2)
Rh1—C14—C15—C16 −37.0 (2) Rh1'—C14'—C15'—C16' 15.3 (2)
N1—N2—C2—N3 −0.6 (2) N1'—N2'—C2'—N3' 0.1 (2)
N2—N1—C1—Rh1 −179.85 (14) N2'—N1'—C1'—Rh1' 175.92 (14)
N2—N1—C1—N3 −0.4 (2) N2'—N1'—C1'—N3' −1.1 (2)
N2—N1—C3—C4 −72.5 (2) N2'—N1'—C3'—C4' −67.9 (2)
N3—C5—C6—C7 61.0 (2) N3'—C5'—C6'—C7' −52.5 (2)
N3—C5—C6—C8 −175.51 (17) N3'—C5'—C6'—C8' −174.82 (19)
C1—N1—N2—C2 0.6 (2) C1'—N1'—N2'—C2' 0.6 (2)
C1—N1—C3—C4 101.8 (2) C1'—N1'—C3'—C4' 108.2 (2)
C1—N3—C2—N2 0.5 (3) C1'—N3'—C2'—N2' −0.8 (3)
C1—N3—C5—C6 −118.8 (2) C1'—N3'—C5'—C6' −68.1 (3)
C2—N3—C1—Rh1 179.44 (14) C2'—N3'—C1'—Rh1' −175.68 (16)
C2—N3—C1—N1 −0.1 (2) C2'—N3'—C1'—N1' 1.1 (2)
C2—N3—C5—C6 56.2 (3) C2'—N3'—C5'—C6' 107.3 (2)
C3—N1—N2—C2 175.61 (19) C3'—N1'—N2'—C2' 177.21 (19)
C3—N1—C1—Rh1 5.6 (3) C3'—N1'—C1'—Rh1' −0.4 (3)
C3—N1—C1—N3 −174.88 (19) C3'—N1'—C1'—N3' −177.37 (19)
C5—N3—C1—Rh1 −4.9 (3) C5'—N3'—C1'—Rh1' 0.3 (3)
C5—N3—C1—N1 175.64 (18) C5'—N3'—C1'—N1' 177.04 (18)
C5—N3—C2—N2 −175.31 (18) C5'—N3'—C2'—N2' −176.84 (18)
C9—C10—C11—C12 45.6 (3) C9'—C10'—C11'—C12' 92.9 (3)
C10—C9—C16—C15 −93.2 (3) C10'—C9'—C16'—C15' −40.0 (3)
C10—C11—C12—C13 31.7 (3) C10'—C11'—C12'—C13' −32.6 (3)
C11—C12—C13—Rh1 −12.7 (2) C11'—C12'—C13'—Rh1' 36.5 (2)
C11—C12—C13—C14 −93.2 (3) C11'—C12'—C13'—C14' −44.0 (3)
C12—C13—C14—Rh1 103.1 (2) C12'—C13'—C14'—Rh1' 99.3 (2)
C12—C13—C14—C15 3.1 (3) C12'—C13'—C14'—C15' −4.0 (3)
C13—C14—C15—C16 44.6 (3) C13'—C14'—C15'—C16' 96.4 (2)
C14—C15—C16—C9 33.5 (3) C14'—C15'—C16'—C9' −36.4 (3)
C16—C9—C10—Rh1 105.3 (2) C16'—C9'—C10'—Rh1' 100.3 (2)
C16—C9—C10—C11 2.4 (3) C16'—C9'—C10'—C11' −5.0 (3)

Chlorido[(1,2,5,6-η)-cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)rhodium(I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2′—H2′···Cl1i 0.95 2.62 3.502 (2) 155

Symmetry code: (i) −x+1, −y+1, −z+1.

References

  1. Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.
  2. Castaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142. [DOI] [PMC free article] [PubMed]
  3. Cazin, C. S. J. (2013). Dalton Trans.42, 7254. [DOI] [PubMed]
  4. Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.
  5. Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev.109, 3612–3676. [DOI] [PubMed]
  6. Díez-González, S. & Nolan, S. P. (2007). Coord. Chem. Rev.251, 874–883.
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  8. Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.
  9. Gusev, D. G. (2009). Organometallics, 28, 6458–6461.
  10. Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.
  11. Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.
  12. Idrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.
  13. Lerch, G. L., Gau, M., Albert, D. R. & Rajaseelan, E. (2024). IUCrData, 9, x240060. [DOI] [PMC free article] [PubMed]
  14. Maynard, A., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230903. [DOI] [PMC free article] [PubMed]
  15. Newman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836. [DOI] [PMC free article] [PubMed]
  16. Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320–4328.
  17. Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861. [DOI] [PMC free article] [PubMed]
  18. Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114. [DOI] [PMC free article] [PubMed]
  19. Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158–m159. [DOI] [PMC free article] [PubMed]
  20. Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England
  21. Rood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597. [DOI] [PMC free article] [PubMed]
  22. Rovis, T. & Nolan, S. (2013). Synlett, 24, 1188–1189.
  23. Ruff, A., Kirby, C., Chan, B. C. & O’Connor, A. R. (2016). Organometallics, 35, 327–335.
  24. Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811. [DOI] [PMC free article] [PubMed]
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.
  28. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  29. Zuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791–5801.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624007041/bt4153sup1.cif

x-09-x240704-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624007041/bt4153Isup2.hkl

x-09-x240704-Isup2.hkl (684.1KB, hkl)

CCDC reference: 2371669

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES