Skip to main content
IUCrData logoLink to IUCrData
. 2024 Jul 12;9(Pt 7):x240667. doi: 10.1107/S2414314624006679

Bis(ethyl­enedi­ammonium) μ-ethyl­enedi­aminetetra­acetato-1κ3O,N,O′:2κ3O′′,N′,O′′′-bis­[tri­oxidomolybdate(VI)] tetra­hydrate

Lamine Yaffa a,*, Dame Seye b, Antoine Blaise Kama c, Assane Toure a, Cheikh Abdoul Khadir Diop a
Editor: S Bernèsd
PMCID: PMC11299656  PMID: 39108940

The title compound is a binuclear complex of molybdenum with a ethyl­enedi­amine­tretra­acetate ligand bridging two MoO3 units.

Keywords: crystal structure, edta complex, molybdenum oxide, ethyl­enedi­amine­tetra­acetic acid

Abstract

The title compound, (C2H10N2)2[(C10H12N2O8)(MoO3)2]·4H2O, which crystallizes in the monoclinic C2/c space group, was obtained by mixing molybdenum oxide, ethyl­enedi­amine and ethyl­enedi­amine­tetra­acetic acid (H4edta) in a 2:4:1 ratio. The complex anion contains two MoO3 units bridged by an edta4− anion. The midpoint of the central C—C bond of the edta4− anion is located on a crystallographic inversion centre. The independent Mo atom is tridentately coordin­ated by a nitro­gen atom and two carboxyl­ate groups of the edta4− ligand, together with the three oxo ligands, producing a distorted octa­hedral coordination environment. In the three-dimensional supra­molecular crystal structure, the dinuclear anions, the organo­ammonium counter-ions and the solvent water mol­ecules are linked by N—H⋯Ow, N—H⋯Oedta and O—H⋯O hydrogen bonds.graphic file with name x-09-x240667-scheme1-3D1.jpg

Structure description

The advancement of materials science has meant that many well-established materials, such as metals, ceramics or plastics, cannot meet the demand for new applications (photovoltaic cells, field-effect transistors, etc.). This desire to design new functional materials demands enormous research effort. In order to overcome this challenge, scientists quickly understood that mixtures of materials could have properties superior to those of their pure counterparts, and thus meet this demand. Hybrid framework materials research is one of the fastest growing research fields.

Their unique hybrid nature enables the combination of properties from both inorganic and organic materials (Cheetham & Rao, 2007). As organic ligands, polycarboxyl­ates are multidentate chelating agents, widespread in nature and industry, due to their ability to coordinate to various transition metals in different ratios. In this field, the study of molybdenum polycarboxyl­ate complexes has led to thorough investigation over the past three decades. Some well-characterized mono-, bi- and polynuclear molybdenum and tungsten complexes have been reported, for example [(H2TEMED)Mo2O6(H2edta)]·H2O (TMED = tetra­methyl­ethylenedi­amine; Kumar et al., 2012), Mo2(O2CCH2OH)4, M2[MoO3(C2O4)] (M = Na, K, Rb, Cs) and Na2[MO2(C6H6O7)2]·3H2O (M = Mo, W; Cotton et al., 2002; Cindrić et al., 2000; Zhou et al., 1999), Na2K2[Mo2O6(edta)]·10H2O and Na4[W2O6(edta)]·8H2O (Lin et al., 2006). In our study, the reaction of H4edta (ethyl­enedi­amine­tetra­acetic acid) with molybdenum oxide has been investigated, and a new binuclear 2:1 Mo–edta complex, (C2H10N2)2[(C10H12N2O8)(MoO3)2]·4H2O, including edta4− as ligand has been isolated and structurally characterized.

The single-crystal structure shows that the 2:1 Mo–edta complex anion of the title compound is discrete (Fig. 1). All of the carb­oxy­lic groups of H4edta are deprotonated, coordin­ating the molybdenum oxide groups by nitro­gen and two oxygen atoms. The edta4− ligand itself is a bridge between the two MoO3 units, and the midpoint of the central C—C bond is situated on an inversion centre. In the 2:1 Mo–edta complex, the edta4− ligand thus chelates a pair of MoVI centres, in a tridentate fashion, giving a trans configuration to the complex. Each MoVI ion is chelated by the edta4− ligand, simultaneously forming two glycinato rings occupying contiguous vertices that define one face of the coordination polyhedron. The other three vertices of the opposite face are occupied by three terminal oxo atoms of the MoO3 unit, completing the octa­hedral geometry. In the complex, the Mo—O bond lengths are in the range 1.7195 (16) to 1.7686 (15) Å for Mo=Ot groups (Ot are terminal oxygen atoms: O5, O6 and O7). The resulting bond angles Ot—Mo—Ot are 107.27 (7), 103.83 (7) and 106.75 (7)°, considerably larger than the expected value of 90° for a regular octa­hedron, confirming the distortion from octa­hedral geometry.

Figure 1.

Figure 1

Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are generated by inversion symmetry.

The crystal packing can be rationalized in terms of non-bonding inter­actions between the three tectons: the Mo–edta complex anion, two (C2H10N2)+ cations and four lattice water mol­ecules. These units are linked through hydrogen bonds of the type N—H⋯Owater, N—H⋯Oedta and O—H⋯O (Table 1). This inter­connection leads to the supra­molecular structure, as shown in Fig. 2.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O1i 0.91 1.93 2.795 (2) 159
N2—H2D⋯O10 0.91 2.00 2.715 (4) 134
N2—H2D⋯O7ii 0.91 2.21 2.786 (2) 121
N2—H2E⋯O6iii 0.91 1.84 2.748 (2) 172
N3—H3C⋯O9i 0.91 1.88 2.785 (3) 170
N3—H3D⋯O1iv 0.91 1.98 2.838 (2) 156
N3—H3E⋯O5v 0.91 1.84 2.753 (2) 177
O1—H1A⋯O5vi 0.87 1.83 2.694 (2) 173
O1—H1B⋯O2 0.87 1.83 2.694 (2) 173
O10—H10A⋯O8 0.87 1.86 2.692 (4) 160
O10—H10B⋯O8i 0.87 2.13 2.978 (4) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 2.

Figure 2

Supra­molecular arrangement of the title compound with hydrogen bonds shown as dotted lines.

Synthesis and crystallization

Solid molybdenum oxide (4 mmol) and ethyl­enedi­amine (4 mmol) were mixed in 30 ml of distilled water. To this mixture were slowly added 2 mmol of ethyl­enediammine­tetra­acetic acid (H4edta) under vigorous stirring. The solution was then stirred for 2 h at room temperature. The colourless solution thus obtained was left at room temperature for slow evaporation of water. After a few days, colourless crystals (yield 13.6% based on Mo) were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula (C2H10N2)2[(C10H12N2O8)(MoO3)2]·4H2O
M r 772.40
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 22.5897 (14), 7.5100 (4), 16.3743 (10)
β (°) 94.716 (2)
V3) 2768.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.17 × 0.17 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.691, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 24031, 3192, 2946
R int 0.032
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.060, 1.06
No. of reflections 3192
No. of parameters 189
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.67, −1.06

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/32 (Sheldrick, 2015b), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624006679/bh4085sup1.cif

x-09-x240667-sup1.cif (319KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624006679/bh4085Isup2.hkl

x-09-x240667-Isup2.hkl (175.4KB, hkl)

CCDC reference: 2368916

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) for financial support.

full crystallographic data

Bis(ethylenediammonium) µ-ethylenediaminetetraacetato-1κ3O,N,O':2κ3O'',N',O'''-bis[trioxidomolybdate(VI)] tetrahydrate . Crystal data

(C2H10N2)2[Mo2(C10H12N2O8)O6]·4H2O F(000) = 1576
Mr = 772.40 Dx = 1.853 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 22.5897 (14) Å Cell parameters from 9873 reflections
b = 7.5100 (4) Å θ = 2.9–27.5°
c = 16.3743 (10) Å µ = 1.00 mm1
β = 94.716 (2)° T = 150 K
V = 2768.5 (3) Å3 Block, colourless
Z = 4 0.17 × 0.17 × 0.13 mm

Bis(ethylenediammonium) µ-ethylenediaminetetraacetato-1κ3O,N,O':2κ3O'',N',O'''-bis[trioxidomolybdate(VI)] tetrahydrate . Data collection

Bruker APEXII CCD diffractometer 2946 reflections with I > 2σ(I)
φ and ω scans Rint = 0.032
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 27.5°, θmin = 1.8°
Tmin = 0.691, Tmax = 0.746 h = −29→29
24031 measured reflections k = −9→9
3192 independent reflections l = −20→21

Bis(ethylenediammonium) µ-ethylenediaminetetraacetato-1κ3O,N,O':2κ3O'',N',O'''-bis[trioxidomolybdate(VI)] tetrahydrate . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0247P)2 + 9.3382P] where P = (Fo2 + 2Fc2)/3
3192 reflections (Δ/σ)max = 0.001
189 parameters Δρmax = 0.67 e Å3
0 restraints Δρmin = −1.06 e Å3

Bis(ethylenediammonium) µ-ethylenediaminetetraacetato-1κ3O,N,O':2κ3O'',N',O'''-bis[trioxidomolybdate(VI)] tetrahydrate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mo1 0.34131 (2) 0.30046 (2) 0.43898 (2) 0.01140 (6)
O2 0.38304 (7) 0.07064 (19) 0.38526 (10) 0.0184 (3)
O3 0.34930 (6) 0.3750 (2) 0.31149 (9) 0.0153 (3)
O5 0.32695 (7) 0.5278 (2) 0.45742 (9) 0.0167 (3)
O6 0.27328 (7) 0.1984 (2) 0.41260 (10) 0.0192 (3)
O7 0.36649 (7) 0.2195 (2) 0.53376 (10) 0.0199 (3)
O8 0.46292 (8) −0.0988 (2) 0.38094 (12) 0.0305 (4)
O9 0.40393 (8) 0.4592 (3) 0.21238 (10) 0.0313 (4)
N1 0.44444 (7) 0.3699 (2) 0.42662 (10) 0.0110 (3)
N2 0.68095 (9) −0.1480 (2) 0.31790 (11) 0.0180 (4)
H2C 0.682765 −0.194661 0.266874 0.022*
H2D 0.644495 −0.169814 0.335592 0.022*
H2E 0.709362 −0.199255 0.352923 0.022*
N3 0.68986 (8) 0.3285 (2) 0.39152 (11) 0.0166 (4)
H3C 0.662370 0.374203 0.353458 0.020*
H3D 0.726961 0.352136 0.376498 0.020*
H3E 0.685339 0.379149 0.441115 0.020*
C1 0.43883 (10) 0.0440 (3) 0.39471 (13) 0.0165 (4)
C2 0.46667 (9) 0.4795 (3) 0.49874 (12) 0.0136 (4)
H2A 0.458550 0.415662 0.549512 0.016*
H2B 0.444417 0.593202 0.497625 0.016*
C3 0.44903 (9) 0.4682 (3) 0.34868 (12) 0.0158 (4)
H3A 0.486764 0.435686 0.325738 0.019*
H3B 0.450105 0.597629 0.360192 0.019*
C4 0.68156 (10) 0.1326 (3) 0.39721 (13) 0.0181 (4)
H4A 0.640934 0.106237 0.412324 0.022*
H4B 0.710243 0.083077 0.440266 0.022*
C5 0.39759 (10) 0.4287 (3) 0.28535 (13) 0.0159 (4)
C6 0.47677 (9) 0.1985 (3) 0.42775 (15) 0.0184 (4)
H6A 0.492092 0.171560 0.484797 0.022*
H6B 0.511335 0.210675 0.394705 0.022*
C7 0.69112 (12) 0.0470 (3) 0.31517 (13) 0.0225 (5)
H7A 0.663501 0.100557 0.271922 0.027*
H7B 0.732207 0.070407 0.301180 0.027*
O1 0.30869 (7) −0.2039 (2) 0.34909 (9) 0.0180 (3)
H1A 0.317459 −0.290614 0.383210 0.027*
H1B 0.333866 −0.120160 0.364109 0.027*
O10 0.56206 (14) −0.0882 (7) 0.30040 (19) 0.1003 (14)
H10A 0.533675 −0.115649 0.330976 0.151*
H10B 0.549760 −0.103261 0.249098 0.151*

Bis(ethylenediammonium) µ-ethylenediaminetetraacetato-1κ3O,N,O':2κ3O'',N',O'''-bis[trioxidomolybdate(VI)] tetrahydrate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo1 0.01159 (9) 0.01140 (9) 0.01128 (9) −0.00124 (6) 0.00129 (6) −0.00028 (6)
O2 0.0146 (7) 0.0131 (7) 0.0272 (8) −0.0018 (6) −0.0006 (6) −0.0051 (6)
O3 0.0139 (7) 0.0207 (7) 0.0113 (7) −0.0022 (6) −0.0005 (5) 0.0000 (6)
O5 0.0197 (8) 0.0149 (7) 0.0157 (7) 0.0013 (6) 0.0031 (6) −0.0022 (6)
O6 0.0142 (7) 0.0206 (8) 0.0229 (8) −0.0029 (6) 0.0024 (6) −0.0023 (6)
O7 0.0201 (8) 0.0226 (8) 0.0172 (7) −0.0033 (6) 0.0021 (6) 0.0059 (6)
O8 0.0238 (9) 0.0153 (8) 0.0507 (12) 0.0053 (7) −0.0067 (8) −0.0107 (8)
O9 0.0263 (9) 0.0548 (12) 0.0123 (7) −0.0165 (8) −0.0016 (7) 0.0047 (8)
N1 0.0129 (8) 0.0100 (7) 0.0097 (7) −0.0009 (6) −0.0016 (6) −0.0013 (6)
N2 0.0225 (9) 0.0163 (9) 0.0152 (8) 0.0008 (7) 0.0019 (7) 0.0001 (7)
N3 0.0183 (9) 0.0176 (9) 0.0137 (8) 0.0017 (7) −0.0007 (7) −0.0025 (7)
C1 0.0174 (10) 0.0132 (9) 0.0185 (10) 0.0003 (8) −0.0018 (8) −0.0013 (8)
C2 0.0133 (10) 0.0156 (9) 0.0115 (9) −0.0025 (7) −0.0017 (7) −0.0027 (7)
C3 0.0150 (10) 0.0198 (10) 0.0125 (9) −0.0062 (8) 0.0001 (7) 0.0020 (8)
C4 0.0234 (11) 0.0170 (10) 0.0138 (9) 0.0003 (8) 0.0019 (8) −0.0002 (8)
C5 0.0190 (10) 0.0160 (10) 0.0125 (9) −0.0031 (8) −0.0002 (8) 0.0000 (8)
C6 0.0130 (10) 0.0141 (10) 0.0273 (11) 0.0015 (8) −0.0038 (8) −0.0038 (8)
C7 0.0376 (13) 0.0159 (10) 0.0138 (10) −0.0012 (9) 0.0013 (9) −0.0001 (8)
O1 0.0207 (8) 0.0152 (7) 0.0175 (7) −0.0052 (6) −0.0025 (6) 0.0023 (6)
O10 0.0533 (18) 0.200 (4) 0.0469 (16) 0.015 (2) 0.0000 (14) 0.007 (2)

Bis(ethylenediammonium) µ-ethylenediaminetetraacetato-1κ3O,N,O':2κ3O'',N',O'''-bis[trioxidomolybdate(VI)] tetrahydrate . Geometric parameters (Å, º)

Mo1—O2 2.1858 (15) N3—C4 1.487 (3)
Mo1—O3 2.1831 (14) C1—C6 1.516 (3)
Mo1—O5 1.7686 (15) C2—C2i 1.534 (4)
Mo1—O6 1.7397 (15) C2—H2A 0.9900
Mo1—O7 1.7195 (16) C2—H2B 0.9900
Mo1—N1 2.4121 (17) C3—H3A 0.9900
O2—C1 1.273 (3) C3—H3B 0.9900
O3—C5 1.270 (3) C3—C5 1.521 (3)
O8—C1 1.232 (3) C4—H4A 0.9900
O9—C5 1.236 (3) C4—H4B 0.9900
N1—C2 1.492 (2) C4—C7 1.521 (3)
N1—C3 1.485 (3) C6—H6A 0.9900
N1—C6 1.479 (3) C6—H6B 0.9900
N2—H2C 0.9100 C7—H7A 0.9900
N2—H2D 0.9100 C7—H7B 0.9900
N2—H2E 0.9100 O1—H1A 0.8703
N2—C7 1.484 (3) O1—H1B 0.8697
N3—H3C 0.9100 O10—H10A 0.8701
N3—H3D 0.9100 O10—H10B 0.8702
N3—H3E 0.9100
O2—Mo1—N1 71.68 (6) O8—C1—C6 119.11 (19)
O3—Mo1—O2 75.25 (6) N1—C2—C2i 113.4 (2)
O3—Mo1—N1 73.02 (5) N1—C2—H2A 108.9
O5—Mo1—O2 157.26 (6) N1—C2—H2B 108.9
O5—Mo1—O3 86.93 (6) C2i—C2—H2A 108.9
O5—Mo1—N1 89.85 (6) C2i—C2—H2B 108.9
O6—Mo1—O2 87.34 (6) H2A—C2—H2B 107.7
O6—Mo1—O3 90.94 (7) N1—C3—H3A 109.1
O6—Mo1—O5 107.27 (7) N1—C3—H3B 109.1
O6—Mo1—N1 156.07 (6) N1—C3—C5 112.68 (16)
O7—Mo1—O2 87.85 (7) H3A—C3—H3B 107.8
O7—Mo1—O3 155.03 (7) C5—C3—H3A 109.1
O7—Mo1—O5 103.83 (7) C5—C3—H3B 109.1
O7—Mo1—O6 106.75 (7) N3—C4—H4A 109.8
O7—Mo1—N1 84.38 (7) N3—C4—H4B 109.8
C1—O2—Mo1 122.03 (13) N3—C4—C7 109.60 (17)
C5—O3—Mo1 123.00 (13) H4A—C4—H4B 108.2
C2—N1—Mo1 108.51 (11) C7—C4—H4A 109.8
C3—N1—Mo1 108.40 (12) C7—C4—H4B 109.8
C3—N1—C2 111.30 (15) O3—C5—C3 117.47 (18)
C6—N1—Mo1 106.85 (12) O9—C5—O3 123.7 (2)
C6—N1—C2 109.66 (16) O9—C5—C3 118.68 (19)
C6—N1—C3 111.95 (16) N1—C6—C1 113.43 (17)
H2C—N2—H2D 109.5 N1—C6—H6A 108.9
H2C—N2—H2E 109.5 N1—C6—H6B 108.9
H2D—N2—H2E 109.5 C1—C6—H6A 108.9
C7—N2—H2C 109.5 C1—C6—H6B 108.9
C7—N2—H2D 109.5 H6A—C6—H6B 107.7
C7—N2—H2E 109.5 N2—C7—C4 110.94 (18)
H3C—N3—H3D 109.5 N2—C7—H7A 109.5
H3C—N3—H3E 109.5 N2—C7—H7B 109.5
H3D—N3—H3E 109.5 C4—C7—H7A 109.5
C4—N3—H3C 109.5 C4—C7—H7B 109.5
C4—N3—H3D 109.5 H7A—C7—H7B 108.0
C4—N3—H3E 109.5 H1A—O1—H1B 104.5
O2—C1—C6 116.65 (18) H10A—O10—H10B 109.4
O8—C1—O2 124.2 (2)
Mo1—O2—C1—O8 164.21 (18) N1—C3—C5—O3 24.0 (3)
Mo1—O2—C1—C6 −13.7 (3) N1—C3—C5—O9 −159.7 (2)
Mo1—O3—C5—O9 174.61 (18) N3—C4—C7—N2 −177.90 (18)
Mo1—O3—C5—C3 −9.3 (3) C2—N1—C3—C5 −143.96 (17)
Mo1—N1—C2—C2i 175.59 (18) C2—N1—C6—C1 145.79 (18)
Mo1—N1—C3—C5 −24.7 (2) C3—N1—C2—C2i −65.2 (3)
Mo1—N1—C6—C1 28.4 (2) C3—N1—C6—C1 −90.2 (2)
O2—C1—C6—N1 −13.0 (3) C6—N1—C2—C2i 59.2 (3)
O8—C1—C6—N1 169.0 (2) C6—N1—C3—C5 92.9 (2)

Symmetry code: (i) −x+1, −y+1, −z+1.

Bis(ethylenediammonium) µ-ethylenediaminetetraacetato-1κ3O,N,O':2κ3O'',N',O'''-bis[trioxidomolybdate(VI)] tetrahydrate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2C···O1ii 0.91 1.93 2.795 (2) 159
N2—H2D···O10 0.91 2.00 2.715 (4) 134
N2—H2D···O7iii 0.91 2.21 2.786 (2) 121
N2—H2E···O6iv 0.91 1.84 2.748 (2) 172
N3—H3C···O9ii 0.91 1.88 2.785 (3) 170
N3—H3D···O1v 0.91 1.98 2.838 (2) 156
N3—H3E···O5i 0.91 1.84 2.753 (2) 177
O1—H1A···O5vi 0.87 1.83 2.694 (2) 173
O1—H1B···O2 0.87 1.83 2.694 (2) 173
O10—H10A···O8 0.87 1.86 2.692 (4) 160
O10—H10B···O8ii 0.87 2.13 2.978 (4) 166

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+1/2; (iii) −x+1, −y, −z+1; (iv) x+1/2, y−1/2, z; (v) x+1/2, y+1/2, z; (vi) x, y−1, z.

References

  1. Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cheetham, A. K. & Rao, C. N. R. (2007). Science, 318, 58–59. [DOI] [PubMed]
  3. Cindrić, M., Strukan, N., Vrdoljak, V., Devčić, M., Veksli, Z. & Kamenar, B. (2000). Inorg. Chim. Acta, 304, 260–267.
  4. Cotton, F. A., Barnard, T. S., Daniels, L. M. & Murillo, C. A. (2002). Inorg. Chem. Commun.5, 527–532.
  5. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  6. Kumar, D., Singh, M. & Ramanan, A. (2012). J. Mol. Struct.1030, 89–94.
  7. Lin, H. B., Chen, C. Y., Liao, X. L., Lin, T. R. & Zhou, Z. H. (2006). Synth. React. Inorg. Met.-Org. Nano-Met. Chem.36, 411–414.
  8. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst.53, 226–235. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  10. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  11. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  12. Zhou, Z.-H., Wan, H.-L. & Tsai, K.-R. (1999). J. Chem. Soc. Dalton Trans. pp. 4289–4290.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624006679/bh4085sup1.cif

x-09-x240667-sup1.cif (319KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624006679/bh4085Isup2.hkl

x-09-x240667-Isup2.hkl (175.4KB, hkl)

CCDC reference: 2368916

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES