Skip to main content
IUCrData logoLink to IUCrData
. 2024 Jun 16;9(Pt 7):x240555. doi: 10.1107/S2414314624005558

Bis{(S)-(−)-N-[(2-biphen­yl)methyl­idene]-1-(4-meth­oxy­phen­yl)ethyl­amine-κN}di­chlorido­palladium(II)

Bertin Anzaldo a, René Gutiérrez Pérez a, Guadalupe Hernández Téllez a, Ángel Mendoza a, Gloria E Moreno Morales a,*
Editor: I Britob
PMCID: PMC11299657  PMID: 39108936

The Pd atom is coordinated by two nitro­gen atoms from two trans-aligned imine ligands and two chlorine atoms in an essentially square-planar environment.

Keywords: crystal structure, Schiff base, palladium(II) complex, monodentate

Abstract

The PdII complex bis­{(S)-(−)-N-[(biphenyl-2-yl)methyl­idene]1-(4-meth­oxy­phen­yl)ethanamine-κN}di­chlorido­palladium(II), [PdCl2(C22H21NO)2], crystallizes in the monoclinic Sohncke space group P21 with a single mol­ecule in the asymmetric unit. The coordination environment around the palladium is slightly distorted square planar. The N—Pd—Cl bond angles are 91.85 (19), 88.10 (17), 89.96 (18), and 90.0 (2)°, while the Pd—Cl and Pd—N bond lengths are 2.310 (2) and 2.315 (2) Å and 2.015 (2) and 2.022 (6) Å, respectively. The crystal structure features inter­molecular N—H⋯Cl and intramolecular C—H⋯Pd inter­actions, which lead to the formation of a supramolecular framework structure.graphic file with name x-09-x240555-scheme1-3D1.jpg

Structure description

Schiff bases, derived from the condensation of primary amines and aldehydes, are well established and versatile ligands in coordination chemistry. Their flexibility has led to a diverse range of coordination complexes (Boulechfar et al., 2023). Metal complexes with Schiff base ligands play crucial roles in enhancing catalytic efficiency in various chemical reactions, including oxidation, hy­droxy­lation, aldol condensation, and epoxidation (Gupta & Sutar, 2008; Brayton et al., 2009; Bowes et al., 2011). In addition to their catalytic capabilities, palladium(II) imine complexes exhibit significant biological potential. Their reactivity, influenced by electronic and steric factors, is highly tunable through substituent modifications, particularly with the introduction of chirality. Herein, we report the crystal structure of a novel palladium(II) complex [PdCl2(C22H21NO)2].

The title PdII complex crystallizes in the monoclinic system with the P21 space group. The structure of the trans complex, which contains a single mol­ecule in the asymmetric unit, is shown in Fig. 1. Inspection of the molecular structure confirms the expected square-planar coordination environment around the central palladium(II) atom. The two imine ligands coordinated to the PdII atom through their nitro­gen atoms in a trans configuration, with Pd1—N1 and Pd1—N2 bond lengths of 2.015 (6) and 2.022 (6) Å, respectively. The Pd—Cl bond lengths [Pd1—Cl1 = 2.310 (2) Å and Pd1—Cl2 = 2.315 (2) Å] fall within the expected ranges for this type of complex, which confirms the nature of the bonds. There is a slight distortion from the ideal square-planar geometry, as revealed by a deviation of 0.054 Å of the PdII atom from the plane defined by atoms Cl2–N2–Cl1–N1. The steric effects in the PdII complex are evident in the torsion angles C26—C23—N2—C24 [−175.5 (7)°] and C2—N1—C1—C4 [175.4 (7)°]. The N1—Pd1—Cl1 [91.85 (19)°] and N1—Pd1—Cl2 [88.10 (17)°] bond angles also deviate slightly from 90°, demonstrating steric influence. The bond lengths of the imine group are N2=C23 = 1.299 (9) Å and N1=C1 = 1.238 (10) Å. The bond angles [C1—N1—Pd1 = 124.5 (5)° and C23—N2—Pd1 = 122.7 (5)°] are slightly different. These bond lengths and angles, however, confirm the sp2 hybridization of the C and N atoms.

Figure 1.

Figure 1

Mol­ecular structure of [PdCl2(C22H21NO)2]. Displacement ellipsoids are drawn at the 40% probability level.

The closest inter­molecular π–π stacking contact between the arene rings is 4.494 Å, which is above the typical range of 3.3–3.8 Å for favorable π–π inter­actions. Therefore, this inter­action does not significantly contribute to the cohesion of the crystal structure. The imine mean planes (C24—N2—C23 and C2—N1—C1) are twisted by 86 (2) and 85 (2)°, respectively, relative to the square-planar coordination mean plane (Cl2/Pd/Cl1). The two attached phenyl rings are not coplanar, as evidenced by the rotation of the mean plane C32–C37 with respect to the mean plane C26–C31 by an angle of 52.8 (4)°. Similarly, the mean plane C10–C15 is rotated with respect to the mean plane C4–C9 by an angle of 43.4 (6)°.

The complex mol­ecules are are stacked parallel to [001]. This arrangement is primarily driven by short-range van der Waals inter­actions and inter­molecular hydrogen bonds, particularly C—H⋯Cl inter­actions (Kinzhalov et al., 2019), detailed in Table 1, which lead to a tri-periodic supramolecular framework (Fig. 2). The square-planar shape of the complex prevents the formation of Pd–Pd or π–π inter­molecular inter­actions, as evidenced by the shortest Pd⋯Pd distance of 10.634 Å and the shortest π–π distance of 4.494 Å, both exceeding van der Waals radii.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯Cl1 0.96 2.90 3.662 (6) 138
C22—H22A⋯Cl1i 0.96 2.87 3.765 (10) 155
C25—H25A⋯Cl2 0.96 2.71 3.460 (6) 135
C44—H44C⋯Cl2ii 0.96 2.82 3.757 (9) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

The crystal packing of the palladium(II) complex ialong [201]. The dashed lines indicate inter­molecular contacts. All H atoms not involved in these inter­actions have been omitted for clarity. Displacement ellipsoids are at the 40% probability level.

While the Pd⋯Pd distances exceed 10 Å, indicating minimal direct inter­action between palladium atoms, intra­molecular Pd⋯H inter­actions are observed (Fig. 3). These inter­actions are due to the specific orientations adopted by the phenyl rings (C26–C31 and C4–C9). The distances from the ortho-H atoms in these phenyl rings to the central PdII atom range from 2.67 Å (H27⋯Pd1) to 2.84 Å (H5⋯Pd1), suggesting a directional inter­action where the ortho-H atoms are oriented towards the PdII atom. These distances are shorter compared to the Pd⋯H distances involving the CH groups and CH3 groups within the complex.

Figure 3.

Figure 3

Pd⋯H inter­actions.

A search of the Cambridge Structural Database (CSD, version 5.42, current as of February 2024; Groom et al., 2016) revealed previously reported structures related to the PdII complex. UQUFIW (Duong et al., 2011) crystallizes in space group P1. The chloride and (pyridin-4-yl)boronic acid ligands adopt a trans arrangement due to mol­ecular symmetry, with angles around 90°. FATQAU and FATPUN (Motswainyana et al., 2012b) crystallize in space group P21/n. The two mol­ecular structures both exhibit a square-planar environment around the palladium atom. In each mol­ecule, the palladium(II) atom is coordinated by two trans-ferrocenyl­imine mol­ecules via their imine nitro­gen atoms, and either two chlorine atoms or a chlorine atom and a methyl group. The structure of LATNAV (Rochon et al., 1993) exhibits hydrogen-bonding inter­actions between the hydroxyl groups and the chlorido ligands, with the PdII ion exhibiting a square-planar coordination environment around the central metal atom. YATQAN (Motswainyana et al., 2012a) in P21/n exhibits a square-planar coordination environment around the palladium(II) atom, coordinated by two ferrocenyl­imine ligands via the imine nitro­gen atoms and chlorine atoms. The ferrocenyl­imine mol­ecules are trans to each other across the center of symmetry. The POCWEN (Anzaldo et al., 2024) complex crystallizes in space group P21, with the central atom tetra­coordinated by two nitro­gen atoms and two chlorine atoms, resulting in a square-planar configuration.

Synthesis and crystallization

A solution of (S)-(−)-[1-(4-meth­oxy­phen­yl)-N-(2-biphen­yl)methyl­idene]ethyl­amine (0.100 g, 0.31 mmol) in di­chloro­methane (10 ml) was treated with bis­(benzo­nitrile)­palladium(II) chloride (0.060 g, 0.15 mmol) with stirring at room temperature for 8 h. After a few days, orange crystals of the title palladium(II) complex were obtained upon crystallization from a di­chloro­methane solution (yield 26%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [PdCl2(C22H21NO)2]
M r 808.09
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 10.2505 (4), 18.6165 (9), 10.6345 (5)
β (°) 96.388 (4)
V3) 2016.77 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.63
Crystal size (mm) 0.27 × 0.15 × 0.09
 
Data collection
Diffractometer Xcalibur, Atlas, Gemini
Absorption correction Analytical CrysAlis PRO (Agilent, 2013)
Tmin, Tmax 0.938, 0.976
No. of measured, independent and observed [I > 2σ(I)] reflections 25419, 10009, 6673
R int 0.040
(sin θ/λ)max−1) 0.706
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.077, 1.02
No. of reflections 10009
No. of parameters 464
No. of restraints 108
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.30
Absolute structure Flack x determined using 2435 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013)
Absolute structure parameter 0.00 (3)

Computer programs: CrysAlis PRO (Agilent, 2013), olex2.solve (Bourhis et al 2015), SHELXL2019/2 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624005558/bx4025sup1.cif

x-09-x240555-sup1.cif (341KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624005558/bx4025Isup2.hkl

x-09-x240555-Isup2.hkl (558KB, hkl)

CCDC references: 2333807, 2371278

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

(I). Crystal data

[PdCl2(C22H21NO)2] F(000) = 832
Mr = 808.09 Dx = 1.331 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 10.2505 (4) Å Cell parameters from 5972 reflections
b = 18.6165 (9) Å θ = 3.4–25.6°
c = 10.6345 (5) Å µ = 0.63 mm1
β = 96.388 (4)° T = 293 K
V = 2016.77 (16) Å3 Prism, clear gold
Z = 2 0.27 × 0.14 × 0.09 mm

(I). Data collection

Xcalibur, Atlas, Gemini diffractometer 6673 reflections with I > 2σ(I)
Detector resolution: 10.5564 pixels mm-1 Rint = 0.040
ω scans θmax = 30.1°, θmin = 2.9°
Absorption correction: analytical (CrysAlisPro; Agilent, 2013) h = −14→14
Tmin = 0.938, Tmax = 0.976 k = −26→25
25419 measured reflections l = −15→14
10009 independent reflections

(I). Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0246P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.53 e Å3
10009 reflections Δρmin = −0.30 e Å3
464 parameters Absolute structure: Flack x determined using 2435 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
108 restraints Absolute structure parameter: 0.00 (3)
Primary atom site location: iterative

(I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.24859 (6) 0.40648 (10) 0.75111 (6) 0.03890 (9)
Cl1 0.43721 (19) 0.47538 (12) 0.7684 (2) 0.0604 (6)
Cl2 0.05859 (18) 0.33839 (10) 0.7241 (2) 0.0550 (6)
O1 0.1719 (6) 0.0486 (4) 0.3702 (8) 0.100 (3)
O2 0.3184 (6) 0.7648 (4) 1.1169 (7) 0.082 (2)
N1 0.3499 (5) 0.3166 (3) 0.7207 (6) 0.0386 (16)
N2 0.1404 (6) 0.4957 (3) 0.7708 (6) 0.0395 (16)
C1 0.3795 (7) 0.2697 (5) 0.8014 (7) 0.052 (2)
H1 0.416918 0.227848 0.773721 0.062*
C2 0.3844 (7) 0.3062 (4) 0.5886 (7) 0.0483 (18)
H2 0.336977 0.343456 0.536804 0.058*
C3 0.5288 (6) 0.3208 (3) 0.5841 (6) 0.0785 (19)
H3A 0.548930 0.368729 0.613494 0.118*
H3B 0.549528 0.315922 0.498733 0.118*
H3C 0.579616 0.287057 0.637410 0.118*
C4 0.3616 (7) 0.2734 (6) 0.9367 (8) 0.060 (2)
C5 0.3996 (7) 0.3345 (6) 1.0049 (8) 0.081 (2)
H5 0.431888 0.373415 0.963132 0.097*
C6 0.3909 (8) 0.3395 (7) 1.1334 (9) 0.115 (3)
H6 0.414431 0.381245 1.178252 0.138*
C7 0.3454 (11) 0.2792 (10) 1.1929 (10) 0.141 (5)
H7 0.340691 0.280884 1.279651 0.169*
C8 0.3086 (10) 0.2196 (9) 1.1305 (11) 0.124 (4)
H8 0.276143 0.181801 1.175099 0.149*
C9 0.3161 (11) 0.2106 (8) 0.9996 (11) 0.082 (3)
C10 0.2782 (10) 0.1453 (7) 0.9353 (13) 0.089 (3)
C11 0.3238 (11) 0.0769 (8) 0.9826 (14) 0.134 (5)
H11 0.379967 0.074179 1.057397 0.160*
C12 0.2858 (15) 0.0164 (8) 0.9193 (18) 0.169 (6)
H12 0.320193 −0.027287 0.949817 0.203*
C13 0.1997 (12) 0.0166 (8) 0.8132 (17) 0.152 (5)
H13 0.170297 −0.026383 0.775614 0.182*
C14 0.1561 (10) 0.0815 (6) 0.7616 (12) 0.102 (3)
H14 0.101062 0.082413 0.685895 0.123*
C15 0.1929 (10) 0.1431 (6) 0.8204 (11) 0.080 (3)
H15 0.161244 0.186121 0.784604 0.096*
C16 0.3373 (7) 0.2364 (4) 0.5340 (7) 0.0430 (18)
C17 0.2051 (9) 0.2281 (6) 0.4933 (10) 0.061 (3)
H17 0.148723 0.266325 0.503160 0.073*
C18 0.1535 (9) 0.1657 (6) 0.4389 (11) 0.083 (3)
H18 0.064439 0.162442 0.410954 0.100*
C19 0.2347 (9) 0.1088 (5) 0.4264 (10) 0.062 (3)
C20 0.3628 (9) 0.1128 (5) 0.4658 (9) 0.069 (3)
H20 0.416800 0.073219 0.458349 0.083*
C21 0.4150 (8) 0.1764 (5) 0.5179 (9) 0.063 (3)
H21 0.504769 0.178980 0.542875 0.075*
C22 0.2407 (10) −0.0145 (6) 0.3697 (13) 0.112 (4)
H22A 0.304857 −0.010854 0.310764 0.168*
H22B 0.181398 −0.053147 0.345099 0.168*
H22C 0.284092 −0.023545 0.452904 0.168*
C23 0.1237 (6) 0.5452 (4) 0.6844 (7) 0.0441 (19)
H23 0.085283 0.588047 0.706001 0.053*
C24 0.0845 (7) 0.5131 (4) 0.8931 (6) 0.0453 (17)
H24 −0.009558 0.521867 0.871482 0.054*
C25 0.0971 (6) 0.4514 (3) 0.9839 (5) 0.0641 (15)
H25A 0.052401 0.410297 0.945365 0.096*
H25B 0.058729 0.464220 1.059108 0.096*
H25C 0.188238 0.440139 1.005443 0.096*
C26 0.1610 (7) 0.5390 (5) 0.5541 (7) 0.051 (2)
C27 0.1426 (7) 0.4738 (5) 0.4885 (7) 0.0625 (19)
H27 0.111914 0.433438 0.527477 0.075*
C28 0.1712 (8) 0.4708 (5) 0.3644 (7) 0.085 (2)
H28 0.158934 0.428004 0.319704 0.102*
C29 0.2166 (8) 0.5289 (7) 0.3072 (8) 0.104 (3)
H29 0.237239 0.525665 0.224424 0.125*
C30 0.2324 (9) 0.5939 (6) 0.3724 (8) 0.084 (3)
H30 0.262654 0.634092 0.332495 0.100*
C31 0.2036 (9) 0.5990 (6) 0.4957 (9) 0.058 (2)
C32 0.2216 (8) 0.6702 (5) 0.5639 (8) 0.056 (2)
C33 0.1627 (9) 0.7300 (6) 0.5079 (9) 0.079 (3)
H33 0.113274 0.725890 0.429438 0.095*
C34 0.1758 (9) 0.7962 (6) 0.5664 (11) 0.097 (3)
H34 0.138444 0.837068 0.527241 0.116*
C35 0.2465 (9) 0.7998 (6) 0.6853 (12) 0.093 (3)
H35 0.251564 0.843407 0.728319 0.111*
C36 0.3078 (9) 0.7422 (6) 0.7400 (9) 0.082 (3)
H36 0.358637 0.746573 0.817702 0.099*
C37 0.2948 (8) 0.6752 (6) 0.6792 (9) 0.063 (2)
H37 0.335477 0.634764 0.716872 0.075*
C38 0.1443 (7) 0.5827 (4) 0.9508 (7) 0.0448 (19)
C39 0.0664 (8) 0.6388 (5) 0.9723 (8) 0.054 (2)
H39 −0.023526 0.635579 0.948671 0.065*
C40 0.1192 (8) 0.7021 (5) 1.0298 (9) 0.062 (2)
H40 0.064808 0.740340 1.045416 0.074*
C41 0.2539 (9) 0.7064 (5) 1.0629 (9) 0.060 (3)
C42 0.3310 (8) 0.6474 (5) 1.0453 (9) 0.056 (2)
H42 0.420553 0.648662 1.071609 0.068*
C43 0.2757 (8) 0.5872 (5) 0.9893 (9) 0.054 (2)
H43 0.328990 0.548042 0.976853 0.065*
C44 0.2485 (10) 0.8307 (6) 1.1136 (10) 0.091 (3)
H44A 0.210510 0.840209 1.028576 0.136*
H44B 0.307576 0.868873 1.141785 0.136*
H44C 0.180116 0.827590 1.168128 0.136*

(I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.03554 (14) 0.04656 (15) 0.03469 (15) −0.00173 (13) 0.00435 (10) −0.00068 (14)
Cl1 0.0433 (11) 0.0668 (16) 0.0728 (15) −0.0116 (11) 0.0139 (10) −0.0130 (13)
Cl2 0.0404 (10) 0.0581 (14) 0.0670 (14) −0.0082 (10) 0.0081 (9) −0.0118 (12)
O1 0.065 (4) 0.081 (5) 0.155 (7) 0.000 (4) 0.013 (4) −0.050 (5)
O2 0.071 (4) 0.063 (5) 0.112 (5) −0.008 (4) 0.015 (4) −0.034 (4)
N1 0.030 (3) 0.048 (4) 0.036 (4) −0.004 (3) 0.000 (2) 0.003 (3)
N2 0.041 (3) 0.046 (4) 0.032 (3) 0.001 (3) 0.007 (3) −0.002 (3)
C1 0.048 (4) 0.065 (6) 0.045 (5) 0.002 (4) 0.017 (4) −0.009 (4)
C2 0.055 (4) 0.052 (4) 0.040 (4) −0.003 (3) 0.016 (3) −0.001 (3)
C3 0.078 (4) 0.085 (4) 0.081 (4) −0.029 (3) 0.044 (4) −0.023 (4)
C4 0.049 (4) 0.088 (5) 0.045 (5) 0.022 (4) 0.013 (3) 0.017 (4)
C5 0.074 (5) 0.123 (6) 0.044 (4) 0.031 (4) −0.002 (4) −0.002 (4)
C6 0.093 (6) 0.194 (9) 0.056 (5) 0.043 (7) 0.000 (5) −0.003 (5)
C7 0.104 (8) 0.278 (14) 0.040 (5) 0.022 (9) 0.002 (5) 0.021 (6)
C8 0.080 (6) 0.230 (12) 0.062 (6) 0.002 (7) 0.011 (5) 0.071 (6)
C9 0.047 (5) 0.142 (7) 0.059 (6) 0.016 (5) 0.013 (4) 0.046 (5)
C10 0.053 (6) 0.102 (7) 0.116 (8) 0.006 (6) 0.031 (5) 0.062 (6)
C11 0.075 (7) 0.127 (8) 0.199 (12) 0.008 (7) 0.018 (7) 0.112 (9)
C12 0.136 (12) 0.100 (7) 0.273 (17) 0.021 (8) 0.032 (10) 0.113 (10)
C13 0.123 (9) 0.089 (6) 0.249 (14) −0.010 (6) 0.043 (9) 0.057 (8)
C14 0.098 (7) 0.076 (6) 0.138 (8) −0.005 (5) 0.030 (5) 0.027 (5)
C15 0.066 (5) 0.081 (6) 0.096 (7) −0.003 (5) 0.028 (5) 0.026 (5)
C16 0.042 (4) 0.048 (4) 0.041 (4) 0.003 (3) 0.013 (3) −0.002 (3)
C17 0.040 (4) 0.062 (6) 0.081 (6) 0.010 (4) 0.007 (4) −0.021 (5)
C18 0.053 (5) 0.081 (7) 0.115 (9) 0.003 (5) 0.008 (5) −0.039 (6)
C19 0.054 (5) 0.053 (6) 0.080 (7) −0.006 (4) 0.014 (4) −0.015 (5)
C20 0.060 (5) 0.061 (6) 0.087 (7) 0.023 (4) 0.011 (5) −0.012 (5)
C21 0.041 (4) 0.072 (7) 0.075 (6) 0.006 (4) 0.005 (4) −0.006 (5)
C22 0.091 (7) 0.059 (7) 0.187 (12) 0.018 (6) 0.016 (7) −0.034 (7)
C23 0.034 (4) 0.045 (5) 0.051 (5) 0.001 (3) 0.000 (3) 0.014 (4)
C24 0.043 (3) 0.059 (4) 0.035 (3) −0.006 (3) 0.011 (3) −0.003 (3)
C25 0.087 (4) 0.063 (4) 0.046 (3) −0.014 (3) 0.021 (3) −0.004 (3)
C26 0.043 (4) 0.080 (5) 0.030 (4) −0.006 (3) −0.002 (3) 0.008 (4)
C27 0.075 (5) 0.072 (5) 0.038 (4) −0.003 (4) −0.002 (3) 0.002 (3)
C28 0.115 (6) 0.103 (6) 0.037 (4) −0.007 (6) 0.004 (4) −0.017 (4)
C29 0.121 (8) 0.161 (9) 0.032 (4) −0.024 (7) 0.015 (4) −0.007 (5)
C30 0.093 (6) 0.116 (6) 0.042 (4) −0.029 (5) 0.006 (4) 0.004 (4)
C31 0.053 (5) 0.076 (5) 0.044 (5) −0.003 (4) 0.000 (4) 0.009 (4)
C32 0.043 (5) 0.075 (6) 0.052 (5) −0.005 (4) 0.008 (4) 0.023 (4)
C33 0.064 (5) 0.085 (6) 0.088 (6) −0.021 (5) 0.005 (5) 0.031 (5)
C34 0.076 (5) 0.080 (7) 0.132 (8) −0.001 (5) 0.005 (5) 0.050 (6)
C35 0.101 (7) 0.059 (5) 0.124 (8) −0.014 (5) 0.037 (6) −0.002 (5)
C36 0.086 (5) 0.085 (7) 0.077 (6) −0.015 (5) 0.021 (4) 0.001 (5)
C37 0.063 (5) 0.069 (6) 0.057 (5) −0.001 (4) 0.008 (4) 0.017 (4)
C38 0.044 (4) 0.056 (5) 0.036 (4) 0.002 (3) 0.012 (3) −0.001 (3)
C39 0.047 (4) 0.055 (5) 0.062 (5) −0.003 (4) 0.015 (4) −0.010 (4)
C40 0.056 (5) 0.051 (5) 0.083 (6) 0.002 (4) 0.023 (4) −0.017 (5)
C41 0.060 (6) 0.064 (6) 0.061 (6) −0.009 (5) 0.023 (4) −0.018 (5)
C42 0.041 (4) 0.070 (6) 0.060 (5) −0.009 (4) 0.009 (3) −0.022 (4)
C43 0.054 (5) 0.060 (6) 0.049 (4) 0.004 (4) 0.013 (4) −0.010 (4)
C44 0.095 (7) 0.061 (7) 0.122 (8) −0.007 (6) 0.035 (6) −0.018 (6)

(I). Geometric parameters (Å, º)

Pd1—Cl1 2.310 (2) C20—H20 0.9300
Pd1—Cl2 2.315 (2) C20—C21 1.388 (12)
Pd1—N1 2.015 (6) C21—H21 0.9300
Pd1—N2 2.022 (6) C22—H22A 0.9600
O1—C19 1.394 (11) C22—H22B 0.9600
O1—C22 1.370 (11) C22—H22C 0.9600
O2—C41 1.364 (11) C23—H23 0.9300
O2—C44 1.419 (11) C23—C26 1.482 (10)
N1—C1 1.238 (10) C24—H24 0.9800
N1—C2 1.500 (8) C24—C25 1.497 (9)
N2—C23 1.299 (9) C24—C38 1.533 (11)
N2—C24 1.512 (8) C25—H25A 0.9600
C1—H1 0.9300 C25—H25B 0.9600
C1—C4 1.472 (11) C25—H25C 0.9600
C2—H2 0.9800 C26—C27 1.402 (11)
C2—C3 1.511 (8) C26—C31 1.373 (12)
C2—C16 1.482 (11) C27—H27 0.9300
C3—H3A 0.9600 C27—C28 1.384 (10)
C3—H3B 0.9600 C28—H28 0.9300
C3—H3C 0.9600 C28—C29 1.349 (12)
C4—C5 1.382 (12) C29—H29 0.9300
C4—C9 1.449 (15) C29—C30 1.395 (13)
C5—H5 0.9300 C30—H30 0.9300
C5—C6 1.383 (12) C30—C31 1.379 (12)
C6—H6 0.9300 C31—C32 1.512 (14)
C6—C7 1.393 (18) C32—C33 1.370 (12)
C7—H7 0.9300 C32—C37 1.368 (12)
C7—C8 1.327 (19) C33—H33 0.9300
C8—H8 0.9300 C33—C34 1.380 (14)
C8—C9 1.412 (16) C34—H34 0.9300
C9—C10 1.427 (18) C34—C35 1.387 (13)
C10—C11 1.429 (16) C35—H35 0.9300
C10—C15 1.422 (15) C35—C36 1.343 (13)
C11—H11 0.9300 C36—H36 0.9300
C11—C12 1.35 (2) C36—C37 1.403 (12)
C12—H12 0.9300 C37—H37 0.9300
C12—C13 1.353 (19) C38—C39 1.349 (11)
C13—H13 0.9300 C38—C43 1.366 (10)
C13—C14 1.380 (15) C39—H39 0.9300
C14—H14 0.9300 C39—C40 1.408 (11)
C14—C15 1.340 (14) C40—H40 0.9300
C15—H15 0.9300 C40—C41 1.389 (12)
C16—C17 1.385 (11) C41—C42 1.378 (12)
C16—C21 1.394 (11) C42—H42 0.9300
C17—H17 0.9300 C42—C43 1.362 (12)
C17—C18 1.377 (13) C43—H43 0.9300
C18—H18 0.9300 C44—H44A 0.9600
C18—C19 1.362 (12) C44—H44B 0.9600
C19—C20 1.336 (12) C44—H44C 0.9600
Cl1—Pd1—Cl2 177.44 (11) C20—C21—H21 118.9
N1—Pd1—Cl1 91.85 (19) O1—C22—H22A 109.5
N1—Pd1—Cl2 88.10 (17) O1—C22—H22B 109.5
N1—Pd1—N2 176.4 (3) O1—C22—H22C 109.5
N2—Pd1—Cl1 89.96 (18) H22A—C22—H22B 109.5
N2—Pd1—Cl2 90.0 (2) H22A—C22—H22C 109.5
C22—O1—C19 118.5 (8) H22B—C22—H22C 109.5
C41—O2—C44 117.3 (8) N2—C23—H23 117.3
C1—N1—Pd1 124.5 (5) N2—C23—C26 125.4 (8)
C1—N1—C2 119.6 (7) C26—C23—H23 117.3
C2—N1—Pd1 115.9 (5) N2—C24—H24 106.9
C23—N2—Pd1 122.7 (5) N2—C24—C38 110.6 (6)
C23—N2—C24 115.1 (6) C25—C24—N2 112.2 (6)
C24—N2—Pd1 121.9 (5) C25—C24—H24 106.9
N1—C1—H1 116.7 C25—C24—C38 112.9 (6)
N1—C1—C4 126.6 (8) C38—C24—H24 106.9
C4—C1—H1 116.7 C24—C25—H25A 109.5
N1—C2—H2 106.4 C24—C25—H25B 109.5
N1—C2—C3 109.9 (5) C24—C25—H25C 109.5
C3—C2—H2 106.4 H25A—C25—H25B 109.5
C16—C2—N1 112.3 (6) H25A—C25—H25C 109.5
C16—C2—H2 106.4 H25B—C25—H25C 109.5
C16—C2—C3 115.0 (6) C27—C26—C23 119.9 (8)
C2—C3—H3A 109.5 C31—C26—C23 119.2 (8)
C2—C3—H3B 109.5 C31—C26—C27 120.7 (7)
C2—C3—H3C 109.5 C26—C27—H27 120.7
H3A—C3—H3B 109.5 C28—C27—C26 118.5 (8)
H3A—C3—H3C 109.5 C28—C27—H27 120.7
H3B—C3—H3C 109.5 C27—C28—H28 119.4
C5—C4—C1 119.5 (9) C29—C28—C27 121.2 (8)
C5—C4—C9 120.5 (9) C29—C28—H28 119.4
C9—C4—C1 119.7 (10) C28—C29—H29 120.1
C4—C5—H5 119.0 C28—C29—C30 119.9 (8)
C4—C5—C6 121.9 (11) C30—C29—H29 120.1
C6—C5—H5 119.0 C29—C30—H30 119.8
C5—C6—H6 121.4 C31—C30—C29 120.5 (9)
C5—C6—C7 117.2 (12) C31—C30—H30 119.8
C7—C6—H6 121.4 C26—C31—C30 119.1 (10)
C6—C7—H7 118.7 C26—C31—C32 121.6 (9)
C8—C7—C6 122.5 (11) C30—C31—C32 119.3 (10)
C8—C7—H7 118.7 C33—C32—C31 118.6 (9)
C7—C8—H8 118.4 C37—C32—C31 121.0 (9)
C7—C8—C9 123.2 (13) C37—C32—C33 120.3 (10)
C9—C8—H8 118.4 C32—C33—H33 119.6
C8—C9—C4 114.6 (13) C32—C33—C34 120.9 (9)
C8—C9—C10 122.1 (13) C34—C33—H33 119.6
C10—C9—C4 123.3 (11) C33—C34—H34 121.0
C9—C10—C11 121.9 (14) C33—C34—C35 118.0 (10)
C15—C10—C9 123.1 (12) C35—C34—H34 121.0
C15—C10—C11 115.0 (14) C34—C35—H35 119.1
C10—C11—H11 119.8 C36—C35—C34 121.8 (10)
C12—C11—C10 120.3 (14) C36—C35—H35 119.1
C12—C11—H11 119.8 C35—C36—H36 120.2
C11—C12—H12 118.7 C35—C36—C37 119.6 (10)
C11—C12—C13 122.6 (15) C37—C36—H36 120.2
C13—C12—H12 118.7 C32—C37—C36 119.3 (9)
C12—C13—H13 120.4 C32—C37—H37 120.4
C12—C13—C14 119.2 (15) C36—C37—H37 120.4
C14—C13—H13 120.4 C39—C38—C24 120.3 (7)
C13—C14—H14 120.0 C39—C38—C43 118.9 (8)
C15—C14—C13 120.0 (13) C43—C38—C24 120.6 (8)
C15—C14—H14 120.0 C38—C39—H39 119.5
C10—C15—H15 118.6 C38—C39—C40 121.0 (8)
C14—C15—C10 122.7 (12) C40—C39—H39 119.5
C14—C15—H15 118.6 C39—C40—H40 120.6
C17—C16—C2 119.0 (8) C41—C40—C39 118.8 (8)
C17—C16—C21 115.1 (8) C41—C40—H40 120.6
C21—C16—C2 125.9 (7) O2—C41—C40 125.0 (9)
C16—C17—H17 118.6 O2—C41—C42 115.7 (8)
C18—C17—C16 122.8 (9) C42—C41—C40 119.2 (9)
C18—C17—H17 118.6 C41—C42—H42 120.1
C17—C18—H18 120.4 C43—C42—C41 119.9 (8)
C19—C18—C17 119.1 (9) C43—C42—H42 120.1
C19—C18—H18 120.4 C38—C43—H43 119.0
C18—C19—O1 114.1 (8) C42—C43—C38 122.0 (9)
C20—C19—O1 124.8 (9) C42—C43—H43 119.0
C20—C19—C18 121.1 (9) O2—C44—H44A 109.5
C19—C20—H20 120.2 O2—C44—H44B 109.5
C19—C20—C21 119.6 (9) O2—C44—H44C 109.5
C21—C20—H20 120.2 H44A—C44—H44B 109.5
C16—C21—H21 118.9 H44A—C44—H44C 109.5
C20—C21—C16 122.2 (8) H44B—C44—H44C 109.5
Pd1—N1—C1—C4 −7.7 (12) C17—C16—C21—C20 −0.6 (14)
Pd1—N1—C2—C3 105.9 (6) C17—C18—C19—O1 179.9 (10)
Pd1—N1—C2—C16 −124.8 (6) C17—C18—C19—C20 −0.2 (17)
Pd1—N2—C23—C26 10.4 (11) C18—C19—C20—C21 −1.4 (16)
Pd1—N2—C24—C25 −10.7 (8) C19—C20—C21—C16 1.8 (15)
Pd1—N2—C24—C38 116.2 (6) C21—C16—C17—C18 −1.0 (15)
O1—C19—C20—C21 178.5 (10) C22—O1—C19—C18 −170.9 (10)
O2—C41—C42—C43 −178.4 (9) C22—O1—C19—C20 9.2 (16)
N1—C1—C4—C5 −46.8 (12) C23—N2—C24—C25 175.1 (6)
N1—C1—C4—C9 139.0 (9) C23—N2—C24—C38 −57.9 (8)
N1—C2—C16—C17 75.6 (10) C23—C26—C27—C28 176.3 (7)
N1—C2—C16—C21 −105.0 (9) C23—C26—C31—C30 −177.0 (8)
N2—C23—C26—C27 38.9 (11) C23—C26—C31—C32 3.9 (13)
N2—C23—C26—C31 −146.2 (8) C24—N2—C23—C26 −175.5 (7)
N2—C24—C38—C39 121.4 (8) C24—C38—C39—C40 177.5 (8)
N2—C24—C38—C43 −63.2 (10) C24—C38—C43—C42 −177.5 (8)
C1—N1—C2—C3 −76.9 (9) C25—C24—C38—C39 −112.0 (8)
C1—N1—C2—C16 52.4 (9) C25—C24—C38—C43 63.4 (9)
C1—C4—C5—C6 −176.8 (8) C26—C27—C28—C29 0.4 (13)
C1—C4—C9—C8 177.2 (8) C26—C31—C32—C33 −128.0 (9)
C1—C4—C9—C10 −4.5 (15) C26—C31—C32—C37 52.0 (12)
C2—N1—C1—C4 175.4 (7) C27—C26—C31—C30 −2.1 (14)
C2—C16—C17—C18 178.5 (10) C27—C26—C31—C32 178.8 (8)
C2—C16—C21—C20 −180.0 (9) C27—C28—C29—C30 −1.5 (14)
C3—C2—C16—C17 −157.7 (8) C28—C29—C30—C31 0.8 (15)
C3—C2—C16—C21 21.7 (12) C29—C30—C31—C26 1.0 (15)
C4—C5—C6—C7 1.7 (13) C29—C30—C31—C32 −179.9 (9)
C4—C9—C10—C11 132.7 (11) C30—C31—C32—C33 53.0 (12)
C4—C9—C10—C15 −47.4 (16) C30—C31—C32—C37 −127.1 (10)
C5—C4—C9—C8 3.1 (14) C31—C26—C27—C28 1.4 (12)
C5—C4—C9—C10 −178.6 (9) C31—C32—C33—C34 179.8 (9)
C5—C6—C7—C8 −1.5 (17) C31—C32—C37—C36 −179.3 (8)
C6—C7—C8—C9 2 (2) C32—C33—C34—C35 −2.2 (14)
C7—C8—C9—C4 −2.9 (18) C33—C32—C37—C36 0.6 (13)
C7—C8—C9—C10 178.8 (13) C33—C34—C35—C36 4.1 (15)
C8—C9—C10—C11 −49.1 (16) C34—C35—C36—C37 −3.6 (14)
C8—C9—C10—C15 130.8 (12) C35—C36—C37—C32 1.2 (13)
C9—C4—C5—C6 −2.7 (13) C37—C32—C33—C34 −0.1 (13)
C9—C10—C11—C12 179.9 (13) C38—C39—C40—C41 0.9 (14)
C9—C10—C15—C14 −178.9 (10) C39—C38—C43—C42 −2.0 (14)
C10—C11—C12—C13 −3 (2) C39—C40—C41—O2 178.7 (9)
C11—C10—C15—C14 1.0 (15) C39—C40—C41—C42 −3.7 (14)
C11—C12—C13—C14 5 (3) C40—C41—C42—C43 3.7 (15)
C12—C13—C14—C15 −4 (2) C41—C42—C43—C38 −0.9 (15)
C13—C14—C15—C10 0.9 (16) C43—C38—C39—C40 1.9 (13)
C15—C10—C11—C12 0.0 (17) C44—O2—C41—C40 −14.6 (14)
C16—C17—C18—C19 1.4 (18) C44—O2—C41—C42 167.7 (8)

(I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3A···Cl1 0.96 2.90 3.662 (6) 138
C22—H22A···Cl1i 0.96 2.87 3.765 (10) 155
C25—H25A···Cl2 0.96 2.71 3.460 (6) 135
C44—H44C···Cl2ii 0.96 2.82 3.757 (9) 165

Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) −x, y+1/2, −z+2.

References

  1. Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Anzaldo, B., Moreno Morales, G. E., Villamizar, C. C. P., Mendoza, Á. & Hernández Téllez, G. (2024). Acta Cryst. E80, 213–217. [DOI] [PMC free article] [PubMed]
  3. Boulechfar, C., Ferkous, H., Delimi, A., Djedouani, A., Kahlouche, A., Boublia, A., Darwish, A. S., Lemaoui, T., Verma, R. & Benguerba, Y. (2023). Inorg. Chem. Commun.150, 110451.
  4. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  5. Bowes, E. G., Lee, G. M., Vogels, C. M., Decken, A. & Westcott, S. A. (2011). Inorg. Chim. Acta, 377, 84–90.
  6. Brayton, D. F., Larkin, T. M., Vicic, D. A. & Navarro, O. (2009). J. Organomet. Chem.694, 3008–3011.
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  8. Duong, A., Wuest, J. D. & Maris, T. (2011). Acta Cryst. E67, m518. [DOI] [PMC free article] [PubMed]
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Gupta, K. C. & Sutar, A. K. (2008). Chem. Rev.252, 1420–1450.
  11. Kinzhalov, M. A., Baykov, S. V., Novikov, A. S., Haukka, M. & Boyarskiy, V. P. (2019). Z. Kristallogr. Cryst. Mater.234, 155–164.
  12. Motswainyana, W. M., Onani, M. O. & Lalancette, R. A. (2012a). Acta Cryst. E68, m387. [DOI] [PMC free article] [PubMed]
  13. Motswainyana, W. M., Onani, M. O. & Madiehe, A. M. (2012b). Polyhedron, 41, 44–51.
  14. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  15. Rochon, F. D., Melanson, R. & Farrell, N. (1993). Acta Cryst. C49, 1703–1706.
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624005558/bx4025sup1.cif

x-09-x240555-sup1.cif (341KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624005558/bx4025Isup2.hkl

x-09-x240555-Isup2.hkl (558KB, hkl)

CCDC references: 2333807, 2371278

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES