Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Jul 9;80(Pt 8):845–851. doi: 10.1107/S2056989024006649

Crystal structure determination and Hirshfeld surface analysis of N-acetyl-N-3-meth­oxy­phenyl and N-(2,5-di­meth­oxy­phen­yl)-N-phenyl­sulfonyl derivatives of N-[1-(phenyl­sulfon­yl)-1H-indol-2-yl]methanamine

S Madhan a, M NizamMohideen a,*, Vinayagam Pavunkumar b, Arasambattu K MohanaKrishnan b
Editor: K V Domasevitchc
PMCID: PMC11299751  PMID: 39108778

The crystal structures of two 1H-indole derivatives are described and the inter­molecular contacts in the crystals are assessed and analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.

Keywords: crystal structure, 1H-indole, acetamide, phenyl­sulfonamide, hydrogen bonding, Hirshfeld surface analysis

Abstract

Two new [1-(phenyl­sulfon­yl)-1H-indol-2-yl]methanamine derivatives, namely, N-(3-meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}acetamide, C24H22N2O4S, (I), and N-(2,5-di­meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide, C29H26N2O6S2, (II), reveal a nearly orthogonal orientation of their indole ring systems and sulfonyl-bound phenyl rings. The sulfonyl moieties adopt the anti-periplanar conformation. For both compounds, the crystal packing is dominated by C—H⋯O bonding [C⋯O = 3.312 (4)–3.788 (8) Å], with the structure of II exhibiting a larger number, but weaker bonds of this type. Slipped π–π inter­actions of anti­parallel indole systems are specific for I, whereas the structure of II delivers two kinds of C—H⋯π inter­actions at both axial sides of the indole moiety. These findings agree with the results of Hirshfeld surface analysis. The primary contributions to the surface areas are associated with the contacts involving H atoms. Although II manifests a larger fraction of the O⋯H/H⋯O contacts (25.8 versus 22.4%), most of them are relatively distal and agree with the corresponding van der Waals separations.

1. Chemical context

Derivatives of indole exhibit anti­bacterial (Okabe & Adachi, 1998) and anti­tumour (Schollmeyer et al., 1995) activities. In particular, 1-(phenyl­sulfon­yl)indoles are applicable to the synthesis of biologically active alkaloids, such as the anti­cancer alkaloid ellipticine, carbazoles, furo­indoles, pyrrolo­indoles, indolocarbazoles and their analogues, including pyridocarbazoles. Some of the phenyl­sulfonyl indole compounds have been shown to inhibit the HIV-1 RT enzyme in vitro and HTLVIIIb viral spread in MT-4 human T-lymphoid cells (Williams et al., 1993). In such systems, the phenyl­sulfonyl moiety can act either as a protecting or an activating group (Jasinski et al., 2010). Ring-substituted acetanilides are valuable synthetic inter­mediates (Gowda et al., 2007) that are used as precursors for the preparation of many heterocyclic compounds (Wen et al., 2006). The amide linkage [–NHC(O)–] is known for its importance in maintaining protein architectures and it has been utilized in the development of mol­ecular devices for a spectrum of purposes in organic chemistry (NizamMohideen, SubbiahPandi et al., 2009; NizamMohideen et al., 2009a,b). Benzene­sulfonamide derivatives exhibit anti­tumor (Yang et al., 2002), anti-bacterial (Badr, 2008) and anti-fungal (Hanafy et al., 2007) activities. Recognizing the importance of such compounds for biochemical applications and drug discovery and our ongoing research into the construction of indole derivatives have prompted us to investigate a series of corresponding meth­oxy­phenyl-substituted species. We report herein the crystal structure determination and Hirshfeld surface analysis of two new (1-(phenyl­sulfon­yl)-1H-indol-2-yl)methanamine derivatives: N-(3-meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}acetamide (I) and N-(2,5-di­meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide (II).1.

2. Structural commentary

The mol­ecular structures of the title compounds, which differ in the substituents at the exocyclic nitro­gen atoms N2 [N-acetyl-N-3-meth­oxy­phenyl (I) and N-phenyl­sulfonyl-N-(2,5-di­meth­oxy­phen­yl) (II)], are illustrated in Figs. 1 and 2, respectively. In both compounds, the indole ring system (N1/C1–C8) is essentially planar, with maximum deviations from the corresponding mean planes of 0.027 (3) and 0.017 (5) Å observed for atoms C8 in I and C1 in II. The sulfonyl-bound phenyl rings (C9–C14) are almost orthogonal to the carrier indole ring systems (N1/C1–C8), with respective inter­planar angles of 83.9 (2)° for I and 83.5 (7)° for II. The meth­oxy-bound phenyl rings (C16–C21) in I and II are inclined to the indole frameworks, subtending dihedral angles of 66.31 (15) and 77.70 (9)°, respectively. In I, the planes of these outer phenyl rings (C9–C14 and C16–C21) subtend an angle of 59.8 (2)°, while in II they are nearly orthogonal [86.9 (9)°]. In the latter case, the dihedral angle between two sulfonyl-bound phenyl rings (C9–C14 and C24–C29) is 54.4 (2)°. The torsion angles O2—S1—N1—C1 and O1—S1—N1—C8 [177.3 (3) and −159.7 (3)° for I and −160.5 (5) and 164.0 (5)° for II, respectively] indicate the anti-periplanar conformation of the sulfonyl moiety. The geometric parameters of compounds I and II agree well with those reported for related structures [Madhan et al., 2022, 2023a,b, 2024]. In both compounds, the tetra­hedral configuration around atom S1 is slightly distorted. The increase in the O2—S1—O1 angle [119.83 (17)° in I and 120.1 (3)° in II], with a simultaneous decrease in the N1—S1—C9 angle [104.54 (15)° in I and 105.9 (3)° in II] from the ideal tetra­hedral value (109.5°) are attributed to the Thorpe–Ingold effect (Bassindale, 1984). The widening of the angles may be due to the repulsive inter­action between the two short S=O bonds. In both compounds, as a result of the electron-withdrawing character of the phenyl­sulfonyl group, the N—Csp2 bond lengths [N1—C1 = 1.420 (4) in I and 1.429 (8) Å in II and N1—C8 = 1.427 (4) in I and 1.421 (7) Å in II] are longer than the mean value of 1.355 (14) Å for this bond (Allen et al., 1987; Cambridge Structural Database (CSD), Version 5.37; Groom et al., 2016). In both compounds, the sum of the bond angles around N1 [352.2 (2)° in I and 355.8 (2)° in II] indicate the sp2 hybridization (Beddoes et al., 1986). In both compounds, the expansion of the ipso angles at atoms C1, C3 and C4, and the contraction of the apical angles at atoms C2, C5 and C6 is caused by fusion of the smaller pyrrole ring with the six-membered benzene ring and the strain is taken up by angular distortion rather than by bond-length distortion (Allen, 1981).

Figure 1.

Figure 1

The mol­ecular structure of compound I, with atom labelling and displacement ellipsoids drawn at the 30% probability level. The dashed line indicates the intra­molecular hydrogen bond.

Figure 2.

Figure 2

The mol­ecular structure of compound II, with atom labelling and displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate the intra­molecular hydrogen bonds.

The mol­ecular conformation of compound I is stabilized by the weak intra­molecular hydrogen bond C2—H2⋯O1 [C2⋯O1 = 2.993 (5) Å] formed by the sulfone O atom, which generates an S(6) (N1/S1/O1/C1/C2/H2) ring motif (Fig. 1). A similar inter­action in compound II [C2⋯O1 = 2.886 (9) Å] is accompanied by two additional intra­molecular bonds involving methyl­ene donors and sulfone [C15⋯O2 = 2.948 (8) Å] and meth­oxy­phenyl [C15⋯O4 = 2.862 (8) Å] O atoms, which in total generate three S(6) ring motifs (N1/S1/O1/C1/C2/H2, N1/S1/O2/C8/C15/H15B) and N2/C16/C21/O4/C15/H15A), respectively (Fig. 2).

3. Supra­molecular features

With a lack of conventional hydrogen-bond donor functionality, the supra­molecular structures of both compounds are dominated by C—H⋯O bonding (Tables 1 and 2), whereas π–π inter­actions are specific for I and weaker C—H⋯π bonds are relevant for II only. In the crystal of I, the shortest hydrogen-bond contacts are observed for acetyl O-atom acceptors [C17⋯O4iii = 3.312 (4) Å, symmetry code: (iii) −x + 2, −y + 1, −z + 1]. Such bonds assemble pairs of the mol­ecules into centrosymmetric dimers (Fig. 3) with a cyclic Inline graphic(12) (Bernstein et al., 1995) ring motif. The dimers are further inter­connected into chains propagating along the a-direction through double π–π inter­actions of the indole ring systems (Fig. 3). The components of such stacks are related by inversion and therefore two indole systems are parallel, with inter­planar separation of 3.517 (4) Å. However, the overlap is only partial, as it is indicated by relatively large inter­centroid distances [Cg1⋯Cg2iv = 3.801 (5) Å; Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively; symmetry code: (iv) −x + 1, −y + 1, −z + 1] and slippage angle of 22.3 (3)°. These parameters agree well with those for π–π inter­actions seen in the crystal structures of comparable 1-(phenyl­sulfon­yl)-1H-indole derivatives (Madhan et al., 2024). Three C—H⋯O bonds with sulfone O-atom acceptors [C⋯O = 3.410 (5)–3.537 (4) Å; Table 1] are important for connection of the above chains into layers parallel to the ac plane (Fig. 4) and separated by 9.890 Å, which is half of the b-axis parameter of the unit cell. Only one C—H⋯O bond occurs between the layers, involving the sterically most accessible acetyl O-atom acceptor [C12⋯O4ii = 3.527 (6) Å; symmetry code: (ii) x, −y + Inline graphic, z + Inline graphic]. No significant C—H⋯π inter­actions with C⋯centroid distances below 4 Å are observed in the structure.

Table 1. Hydrogen-bond geometry (Å, °) for I.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.41 2.993 (5) 120
C5—H5⋯O1i 0.93 2.75 3.530 (5) 143
C7—H7⋯O1i 0.93 2.81 3.537 (4) 135
C12—H12⋯O4ii 0.93 2.62 3.527 (6) 164
C13—H13⋯O3iii 0.93 2.69 3.591 (7) 164
C17—H17⋯O4iii 0.93 2.42 3.312 (4) 161
C24—H24B⋯O2i 0.96 2.49 3.410 (5) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for II.

Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.30 2.886 (9) 121
C15—H15A⋯O4 0.97 2.23 2.862 (8) 122
C15—H15B⋯O2 0.97 2.34 2.948 (8) 120
C10—H10⋯O5i 0.93 2.93 3.719 (9) 144
C11—H11⋯O6i 0.93 2.85 3.723 (11) 156
C15—H15A⋯O1ii 0.97 2.68 3.333 (8) 125
C19—H19⋯O2iii 0.93 2.96 3.647 (9) 132
C20—H20⋯O5iii 0.93 2.88 3.788 (8) 165
C28—H28⋯O6ii 0.93 2.79 3.716 (9) 171
C23—H23CCg1ii 0.96 2.96 3.701 (3) 135
C25—H25⋯Cg2iv 0.93 2.67 3.483 (5) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 3.

Figure 3

Fragment of non-covalent chain propagating along the a-axis direction in the structure of I, with the pairs of the inversion-related adjacent mol­ecules linked by double C—H⋯O bonds (dotted blue lines) and double π–π inter­actions (solid blue lines). [Symmetry codes: (iii) −x + 2, −y + 1, −z + 1; (iv) x + 1, −y + 1, −z + 1.]

Figure 4.

Figure 4

Projection of the structure of I on the ac plane, showing the layer assembled with C—H⋯O and π–π bonds. [Symmetry codes: (i) x, y, z − 1; (v) x, y, z + 1.]

Similar non-covalent layers parallel to the ac plane are also seen in compound II (Fig. 5). However, the bonding pattern differs as π–π inter­actions are replaced by C—H⋯π inter­actions (on both axial sides of the indole system) and more extensive C—H⋯O bonding (Table 2). This is in line with increased number of hydrogen-bond donors and acceptors due to the incorporation of the additional phenyl­sulfonyl groups. The layers are sustained by a number of C—H⋯O inter­actions, which are relatively weak and distal [C⋯O = 3.503 (9)–3.788 (8)Å]. Significantly shorter contacts adopted by methyl groups are also present: C23⋯O1v = 3.199 (7) Å; symmetry code: (v) x, y, z + 1. As a result of inappropriate angles at the H atoms, these contacts are not regarded as hydrogen bonds, rather representing a kind of tetrel inter­action CH3⋯O. A salient feature of the layer concerns C—H⋯π inter­actions involving the C1–C6 rings, which are appreciably short and directional [C25⋯Cg2iv = 3.483 (5) Å; C25—H25⋯Cg2iv = 147°; Cg2 is the C1–C6 ring centroid; symmetry code: (iv) x − Inline graphic, −y + Inline graphic, z + Inline graphic]. The shortest inter­layer inter­actions represent C—H⋯O bonds with the most polarized methyl­ene donors [C15⋯O1ii = 3.333 (8) Å; symmetry code: (ii) x, −y + 2, z + Inline graphic], which act in synergy with a set of longer C—H⋯O (phen­yl) bonds and weak C—H⋯π bonds to the indole (N1/C1/C6–C8) acceptors (Fig. 6). In comparison with the structure of I, the much more extensive inter­actions in the present case result in a lower inter­layer spacing of 8.596 Å, which is a half of the b- axis parameter of the unit cell. This contributes to a slightly higher packing index of 68.1% versus 66.9% for I. However, in both the cases, the packing indices approach the lower limit of the 65–75% range expected for organic solids (Dunitz, 1995), suggesting relatively loose packing of these sterically strained mol­ecules.

Figure 5.

Figure 5

The non-covalent layer in the structure of II, viewed in a projection on the ac plane. Dotted blue lines represent CH⋯O bonds and short tetrel bonds C23⋯O1v, while blue areas indicate short C—H⋯π bonds with the sulfonyl-bound phenyl donors situated nearly orthogonal to the plane of the drawing. [Symmetry codes: (i) x + Inline graphic, −y + Inline graphic, z − Inline graphic; (iii) x + Inline graphic, −y + Inline graphic, z + Inline graphic; (iv) x − Inline graphic, −y + Inline graphic, z + Inline graphic; (v) x, y, z + 1.]

Figure 6.

Figure 6

Set of inter­layer bonds in the structure of II, with the C—H⋯O and C—H⋯π bonds marked with dashed blue and red lines, respectively. Blue strips indicate two successive layers, which are nearly orthogonal to the plane of the drawing. [Symmetry codes: (ii) x, −y + 2, z + Inline graphic; (iv) x − Inline graphic, −y + Inline graphic, z + Inline graphic.]

4. Hirshfeld surface analysis

The Hirshfeld surface calculations and associated two-dimensional fingerprint plots for I and II were performed in accord with established procedures (Tan et al., 2019) using Crystal Explorer (Spackman et al., 2021) to determine the influence of weak inter­molecular inter­actions upon the mol­ecular packing in the absence of conventional hydrogen bonds. The Hirshfeld surfaces for two compounds mapped over dnorm using a fixed colour scale of −0.249 (red) to 1.450 a.u. (blue) for I and −0.096 (red) to 1.442 a.u. (blue) for II are shown in Fig. 7. One can note a relatively scarce landscape of short contacts that is particularly the case for II, which shows normal van der Waals separations only (denoted with several white regions on the surface). The few red spots present in the case I indicate inter­molecular contacts involved in weak hydrogen bonding.

Figure 7.

Figure 7

The Hirshfeld surfaces of compounds I and II mapped over dnorm.

The two-dimensional fingerprint plots (Parkin et al., 2007) detailing the various inter­actions for the mol­ecules are shown in Fig. 8. For both compounds, the Hirshfeld surfaces suggest dominance of contacts with hydrogen atoms, accounting for over 85% of the contacts. Beyond the largest fractions of H⋯H contacts (48.8 and 44.6%), these short separations are overwhelmingly O⋯H/H⋯O and C⋯H/H⋯C, which contribute 22.4 and 21.7%, respectively, to the Hirshfeld surface in I and 25.8 and 26.8%, respectively, in II, respectively. The plots also illustrate the finding discussed above that the structure of II exhibits a larger number, but essentially weaker C—H⋯O bonds. Thus, for I the O⋯H/H⋯O plot represents pair of broad spikes pointing to the lower left, with the shortest contact being 2.35 Å, whereas in the case of II the diffuse and faintly discernible spikes are much shorter (O⋯H = 2.70 Å). The larger contribution of C⋯H/H⋯C contacts for II (Fig. 8) reflects the increased significance of C—H⋯π inter­actions for the crystal packing, in line with increased number of aromatic groups. The small fraction of N⋯H/H⋯N contacts (1.3%) is also a consequence of C—H⋯π bonding, namely with the pyrrole ring acceptor. An overlap between the parallel indole ring systems in I, due to the slipped π–π inter­actions, is clearly indicated by the plots for C⋯C, N⋯C/C⋯N and O⋯C/C⋯O (total contribution is 7.1%), in the form of the blue areas centered at ca de = di = 1.90 Å and with shortest contacts of 3.50 Å (Fig. 8). This weak bonding complements the above inter­actions involving H atoms. For both compounds, the H⋯H inter­molecular contacts predominate, followed by the C⋯H/H⋯C and O⋯H/H⋯O contacts. The Hirshfeld surface analysis confirms the importance of distal H-atom contacts (and contacts associated with the π–π inter­action for I) in establishing the packing.

Figure 8.

Figure 8

Two-dimensional fingerprint plots for I and II and those delineated into the principal contributions of H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, N⋯H/H⋯N, C⋯C, O⋯C/C⋯O and N⋯C/C⋯N contacts. Other contributors account for less than 1.0% contacts to the surface areas.

5. Database survey

A search of the Cambridge Structural Database (Version 5.37; Groom et al., 2016) indicated 123 compounds incorporating the phenyl­sulfonyl-1H-indole moiety. Of these, the most closely related examples are provided by structures of bromo-substituted 3-methyl-1-(phenyl­sulfon­yl)-1H-indole derivatives (JOMJII, JOMJAA and JOMJEE; Madhan et al., 2024), ethyl 2-acet­oxy­methyl-1-phenyl­sulfonyl-1H-indole-3-carboxyl­ate (HUCQUS; Gunasekaran et al., 2009), 3-iodo-2-methyl-1-phenyl­sulfonyl-1H-indole (ULESEK; Ramathilagam et al., 2011) and 1-(2-bromo­methyl-1-phenyl­sulfonyl-1H-indol-3-yl)propan-1-one (CIQFEP; Umadevi et al., 2013). In these structures, the sulfonyl-bound phenyl rings are almost orth­ogonal to the indole ring systems [the corresponding dihedral angles are in the range 73.35 (7)–89.91 (11)°], being comparable with those in the present two compounds.

6. Synthesis and crystallization

Compound I: 3-meth­oxy-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}aniline (0.100 g, 0.255 mmol) was dissolved in 5 ml of acetic anhydride and the reaction mixture was stirred for 8 h at 343 K. After completion of the reaction (monitored by TLC, Rf = 0.30, hexa­ne–ethyl acetate 80:20 v/v), the solution was poured into crushed ice (50 g), the solid formed was filtered, washed with 100 ml of water and dried over anhydrous CaCl2. Recrystallization of the crude product from diethyl ether (10 mL) afforded N-(3-meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}acetamide as a colourless solid (84 mg, 76%), m.p. = 413–415 K. 1H NMR (300 MHz, CDCl3), δ, p.p.m.: 8.06 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 7.8 Hz, 2H), 7.50–7.34 (m, 4H), 7.29–7.16 (m, 3H), 6.87–6.79 (m, 3H), 6.61 (s, 1H), 5.35 (s, 2H), 3.76 (s, 3H), 2.04 (s, 3H). 13C{1H} NMR (75 MHz, CDCl3), δ, p.p.m.: 170.7, 160.4, 144.2, 138.3, 137.1, 137.0, 133.7, 130.3, 129.5, 129.2, 126.3, 124.4, 123.7, 120.6, 119.7, 114.5, 113.4, 113.3, 110.4, 55.4, 48.2, 22.6.

Compound II: To a solution of 2-(bromo­meth­yl)-1-(phenyl­sulfon­yl)-1H-indole (0.710 g, 2.040 mmol) in CH3CN (10 ml), K2CO3 (0.422 g, 3.060 mmol) and N-(2,5-di­meth­oxy­phen­yl)benzene­sulfonamide (0.717 g, 2.448 mmol) were added and the mixture was stirred at room temperature for 12 h. After completion of the reaction (monitored by TLC, Rf = 0.60, hexane-ethyl acetate 80:20 v/v), the mixture was poured into crushed ice (50 g) containing 1 mL of concentrated HCl solution. The mixture was extracted with ethyl acetate (2 × 20 ml), the extracts were washed with water (2 × 20 ml) and dried over anhydrous Na2SO4. Removal of the solvent in vacuo followed by trituration of the crude product with 5 ml of methanol afforded N-(2,5-di­meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide (0.802 g, 70%) as colourless solid, m.p. = 409–411 K. 1H NMR (300 MHz, CDCl3), δ, p.p.m.: 7.95 (d, J = 7.8 Hz, 1H), 7.66–7.57 (m, 4H), 7.53–7.46 (m, 1H), 7.43–7.35 (m, 4H), 7.32–7.24 (m, 2H), 7.21–7.08 (m, 2H), 7.00–6.90 (m, 2H), 6.73 (dd, J1 = 9.0 Hz, J2 = 2.7 Hz, 1H), 6.63–6.54 (m, 1H), 5.23 (s, 2H), 3.65 (s, 3H), 3.24 (s, 3H). 13C{1H} NMR (75 MHz, CDCl3), δ, p.p.m.: 153.1, 150.1, 139.6, 138.3, 138.1, 137.3, 133.7, 132.5, 129.7, 129.2, 128.5, 127.7, 127.2, 126.3, 124.4, 123.8, 120.9, 118.9, 114.9, 114.5, 112.1, 111.6, 55.8, 55.3, 49.1.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3. Experimental details.

  I II
Crystal data
Chemical formula C24H22N2O4S C29H26N2O6S2
M r 434.49 562.64
Crystal system, space group Monoclinic, P21/c Monoclinic, Cc
Temperature (K) 305 293
a, b, c (Å) 13.6698 (17), 19.781 (2), 8.1056 (10) 13.463 (9), 17.193 (12), 11.532 (7)
β (°) 99.388 (8) 94.844 (19)
V3) 2162.4 (5) 2660 (3)
Z 4 4
Radiation type Cu Kα Mo Kα
μ (mm−1) 1.61 0.25
Crystal size (mm) 0.16 × 0.13 × 0.04 0.33 × 0.22 × 0.11
 
Data collection
Diffractometer Bruker D8 Venture Diffractometer Bruker D8 Venture Diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.634, 0.753 0.504, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 47234, 3963, 2595 42032, 5193, 4533
R int 0.087 0.086
(sin θ/λ)max−1) 0.604 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.179, 1.07 0.057, 0.154, 1.12
No. of reflections 3963 5193
No. of parameters 283 354
No. of restraints 0 2
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.41 1.17, −0.26
Absolute structure Flack x determined using 1861 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013)
Absolute structure parameter 0.16 (4)

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXS2018/3 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012), pubCIF (Westrip, 2010) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989024006649/nu2006sup1.cif

e-80-00845-sup1.cif (2.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024006649/nu2006Isup2.hkl

e-80-00845-Isup2.hkl (316KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989024006649/nu2006IIsup3.hkl

e-80-00845-IIsup3.hkl (413.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989024006649/nu2006Isup4.cml

e-80-00845-IIsup5.cml (9.9KB, cml)

Supporting information file. DOI: 10.1107/S2056989024006649/nu2006IIsup5.cml

CCDC references: 2368308, 2368307

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the SAIF, IIT, Madras, India, for the data collection.

supplementary crystallographic information

N-(3-Methoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}acetamide (I) . Crystal data

C24H22N2O4S F(000) = 912
Mr = 434.49 Dx = 1.335 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 13.6698 (17) Å Cell parameters from 47234 reflections
b = 19.781 (2) Å θ = 1.4–25.0°
c = 8.1056 (10) Å µ = 1.61 mm1
β = 99.388 (8)° T = 305 K
V = 2162.4 (5) Å3 Prism, colorless
Z = 4 0.16 × 0.13 × 0.04 mm

N-(3-Methoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}acetamide (I) . Data collection

Bruker D8 Venture Diffractometer 2595 reflections with I > 2σ(I)
Radiation source: micro focus sealed tube Rint = 0.087
ω and φ scans θmax = 68.6°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −16→16
Tmin = 0.634, Tmax = 0.753 k = −23→23
47234 measured reflections l = −9→9
3963 independent reflections

N-(3-Methoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}acetamide (I) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058 H-atom parameters constrained
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.0662P)2 + 2.3955P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
3963 reflections Δρmax = 0.27 e Å3
283 parameters Δρmin = −0.41 e Å3
0 restraints Extinction correction: SHELXL2018/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0036 (4)

N-(3-Methoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}acetamide (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N-(3-Methoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}acetamide (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5527 (2) 0.58150 (16) 0.5180 (4) 0.0494 (8)
C2 0.4749 (3) 0.61289 (19) 0.5779 (5) 0.0613 (9)
H2 0.471182 0.613774 0.691426 0.074*
C3 0.4031 (3) 0.6428 (2) 0.4613 (5) 0.0727 (11)
H3 0.350636 0.665179 0.497364 0.087*
C4 0.4072 (3) 0.6402 (2) 0.2915 (5) 0.0781 (12)
H4 0.357245 0.660465 0.216034 0.094*
C5 0.4840 (3) 0.6083 (2) 0.2333 (5) 0.0673 (10)
H5 0.485845 0.606208 0.119252 0.081*
C6 0.5586 (2) 0.57918 (17) 0.3473 (4) 0.0513 (8)
C7 0.6486 (3) 0.54485 (18) 0.3303 (4) 0.0555 (8)
H7 0.670758 0.536369 0.229756 0.067*
C8 0.6960 (2) 0.52676 (16) 0.4825 (4) 0.0502 (8)
C9 0.7198 (3) 0.64340 (19) 0.8178 (4) 0.0599 (9)
C10 0.6621 (4) 0.6939 (2) 0.8699 (6) 0.0867 (13)
H10 0.600910 0.683953 0.899914 0.104*
C11 0.6973 (5) 0.7597 (3) 0.8766 (8) 0.1113 (19)
H11 0.659700 0.794043 0.913607 0.134*
C12 0.7863 (5) 0.7751 (3) 0.8299 (7) 0.1083 (18)
H12 0.808546 0.819604 0.833023 0.130*
C13 0.8418 (4) 0.7248 (3) 0.7790 (7) 0.1038 (17)
H13 0.902906 0.735134 0.748880 0.125*
C14 0.8097 (3) 0.6589 (2) 0.7709 (6) 0.0824 (12)
H14 0.848301 0.625099 0.734269 0.099*
C15 0.7907 (3) 0.48792 (19) 0.5282 (4) 0.0591 (9)
H15A 0.837940 0.514936 0.602804 0.071*
H15B 0.777940 0.446945 0.586890 0.071*
C16 0.8217 (2) 0.40106 (16) 0.3218 (4) 0.0484 (8)
C17 0.8897 (2) 0.35387 (16) 0.3928 (4) 0.0525 (8)
H17 0.943506 0.367152 0.471601 0.063*
C18 0.8780 (3) 0.28657 (17) 0.3468 (4) 0.0544 (8)
C19 0.7983 (3) 0.26690 (19) 0.2299 (5) 0.0618 (9)
H19 0.789780 0.221723 0.199177 0.074*
C20 0.7312 (3) 0.3150 (2) 0.1590 (5) 0.0672 (10)
H20 0.677551 0.301742 0.079824 0.081*
C21 0.7419 (3) 0.38218 (19) 0.2031 (4) 0.0607 (9)
H21 0.696470 0.414191 0.153903 0.073*
C22 0.9413 (4) 0.1736 (2) 0.3867 (6) 0.0915 (14)
H22A 0.879674 0.156372 0.411348 0.137*
H22B 0.995389 0.149874 0.452372 0.137*
H22C 0.943939 0.167330 0.270103 0.137*
C23 0.8979 (3) 0.51411 (18) 0.3257 (5) 0.0578 (9)
C24 0.9462 (3) 0.4928 (2) 0.1812 (5) 0.0687 (10)
H24A 0.992634 0.526852 0.159832 0.103*
H24B 0.896515 0.487187 0.083803 0.103*
H24C 0.980398 0.450824 0.207134 0.103*
N1 0.63700 (19) 0.54697 (14) 0.6039 (3) 0.0495 (7)
N2 0.8335 (2) 0.47013 (13) 0.3784 (3) 0.0516 (7)
O1 0.5933 (2) 0.55538 (14) 0.8893 (3) 0.0732 (8)
O2 0.7592 (2) 0.51507 (13) 0.8517 (3) 0.0735 (8)
O3 0.9487 (2) 0.24362 (12) 0.4258 (4) 0.0755 (8)
O4 0.9139 (2) 0.56971 (13) 0.3939 (4) 0.0815 (9)
S1 0.67746 (7) 0.55995 (5) 0.80653 (10) 0.0577 (3)

N-(3-Methoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}acetamide (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0507 (18) 0.0488 (18) 0.0484 (18) 0.0017 (14) 0.0070 (14) 0.0016 (14)
C2 0.061 (2) 0.071 (2) 0.055 (2) 0.0074 (19) 0.0169 (17) 0.0000 (17)
C3 0.062 (2) 0.088 (3) 0.070 (3) 0.019 (2) 0.0174 (19) 0.004 (2)
C4 0.069 (2) 0.096 (3) 0.069 (3) 0.024 (2) 0.012 (2) 0.016 (2)
C5 0.066 (2) 0.083 (3) 0.053 (2) 0.014 (2) 0.0087 (17) 0.0099 (19)
C6 0.0535 (18) 0.0532 (19) 0.0469 (18) 0.0029 (15) 0.0074 (14) 0.0035 (14)
C7 0.062 (2) 0.062 (2) 0.0441 (18) 0.0094 (17) 0.0107 (15) 0.0019 (15)
C8 0.0541 (18) 0.0479 (18) 0.0489 (18) 0.0059 (15) 0.0094 (14) −0.0045 (14)
C9 0.069 (2) 0.062 (2) 0.0469 (19) 0.0051 (18) 0.0015 (16) −0.0058 (16)
C10 0.091 (3) 0.072 (3) 0.097 (3) 0.007 (2) 0.014 (3) −0.022 (2)
C11 0.141 (5) 0.063 (3) 0.125 (5) 0.005 (3) 0.007 (4) −0.030 (3)
C12 0.147 (5) 0.070 (3) 0.100 (4) −0.029 (4) −0.003 (4) −0.009 (3)
C13 0.105 (4) 0.089 (4) 0.117 (4) −0.033 (3) 0.018 (3) −0.013 (3)
C14 0.078 (3) 0.078 (3) 0.093 (3) −0.009 (2) 0.018 (2) −0.015 (2)
C15 0.062 (2) 0.063 (2) 0.0498 (19) 0.0096 (17) 0.0032 (16) −0.0078 (16)
C16 0.0477 (17) 0.0484 (18) 0.0498 (18) −0.0023 (14) 0.0101 (14) −0.0055 (14)
C17 0.0519 (18) 0.0469 (19) 0.0570 (19) −0.0013 (15) 0.0035 (15) −0.0051 (15)
C18 0.057 (2) 0.0495 (19) 0.057 (2) 0.0028 (16) 0.0110 (16) 0.0052 (15)
C19 0.072 (2) 0.052 (2) 0.063 (2) −0.0132 (18) 0.0132 (18) −0.0067 (17)
C20 0.066 (2) 0.068 (2) 0.063 (2) −0.010 (2) −0.0016 (18) −0.0101 (19)
C21 0.059 (2) 0.062 (2) 0.059 (2) 0.0033 (18) 0.0037 (16) −0.0056 (17)
C22 0.119 (4) 0.047 (2) 0.107 (4) 0.013 (2) 0.014 (3) −0.001 (2)
C23 0.0501 (19) 0.051 (2) 0.070 (2) 0.0038 (16) 0.0001 (16) −0.0033 (17)
C24 0.064 (2) 0.067 (2) 0.078 (3) −0.0058 (19) 0.0183 (19) 0.005 (2)
N1 0.0545 (16) 0.0554 (16) 0.0385 (14) 0.0040 (13) 0.0077 (11) −0.0023 (11)
N2 0.0515 (15) 0.0473 (15) 0.0566 (16) 0.0022 (13) 0.0101 (12) −0.0067 (12)
O1 0.0866 (19) 0.0873 (19) 0.0511 (14) −0.0085 (15) 0.0270 (13) 0.0007 (13)
O2 0.0924 (19) 0.0701 (17) 0.0512 (14) 0.0249 (15) −0.0085 (13) 0.0035 (12)
O3 0.0819 (18) 0.0497 (15) 0.091 (2) 0.0084 (13) 0.0019 (15) 0.0007 (13)
O4 0.0768 (18) 0.0556 (16) 0.108 (2) −0.0049 (14) 0.0034 (16) −0.0171 (15)
S1 0.0714 (6) 0.0588 (6) 0.0420 (5) 0.0043 (4) 0.0062 (4) −0.0007 (4)

N-(3-Methoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}acetamide (I) . Geometric parameters (Å, º)

C1—C2 1.386 (5) C15—N2 1.473 (4)
C1—C6 1.400 (4) C15—H15A 0.9700
C1—N1 1.420 (4) C15—H15B 0.9700
C2—C3 1.379 (5) C16—C17 1.375 (5)
C2—H2 0.9300 C16—C21 1.383 (5)
C3—C4 1.387 (6) C16—N2 1.442 (4)
C3—H3 0.9300 C17—C18 1.385 (5)
C4—C5 1.373 (5) C17—H17 0.9300
C4—H4 0.9300 C18—O3 1.366 (4)
C5—C6 1.385 (5) C18—C19 1.378 (5)
C5—H5 0.9300 C19—C20 1.380 (5)
C6—C7 1.431 (5) C19—H19 0.9300
C7—C8 1.345 (4) C20—C21 1.378 (5)
C7—H7 0.9300 C20—H20 0.9300
C8—N1 1.427 (4) C21—H21 0.9300
C8—C15 1.499 (5) C22—O3 1.420 (5)
C9—C14 1.380 (6) C22—H22A 0.9600
C9—C10 1.381 (5) C22—H22B 0.9600
C9—S1 1.746 (4) C22—H22C 0.9600
C10—C11 1.386 (7) C23—O4 1.234 (4)
C10—H10 0.9300 C23—N2 1.356 (4)
C11—C12 1.365 (8) C23—C24 1.496 (5)
C11—H11 0.9300 C24—H24A 0.9600
C12—C13 1.357 (8) C24—H24B 0.9600
C12—H12 0.9300 C24—H24C 0.9600
C13—C14 1.373 (6) N1—S1 1.665 (3)
C13—H13 0.9300 O1—S1 1.426 (3)
C14—H14 0.9300 O2—S1 1.427 (3)
C2—C1—C6 122.1 (3) H15A—C15—H15B 108.0
C2—C1—N1 130.7 (3) C17—C16—C21 120.7 (3)
C6—C1—N1 107.2 (3) C17—C16—N2 118.5 (3)
C3—C2—C1 116.9 (3) C21—C16—N2 120.8 (3)
C3—C2—H2 121.5 C16—C17—C18 120.0 (3)
C1—C2—H2 121.5 C16—C17—H17 120.0
C2—C3—C4 121.7 (4) C18—C17—H17 120.0
C2—C3—H3 119.2 O3—C18—C19 124.5 (3)
C4—C3—H3 119.2 O3—C18—C17 115.5 (3)
C5—C4—C3 121.0 (4) C19—C18—C17 120.0 (3)
C5—C4—H4 119.5 C18—C19—C20 119.3 (3)
C3—C4—H4 119.5 C18—C19—H19 120.4
C4—C5—C6 118.9 (4) C20—C19—H19 120.4
C4—C5—H5 120.6 C21—C20—C19 121.4 (3)
C6—C5—H5 120.6 C21—C20—H20 119.3
C5—C6—C1 119.4 (3) C19—C20—H20 119.3
C5—C6—C7 133.1 (3) C20—C21—C16 118.6 (3)
C1—C6—C7 107.5 (3) C20—C21—H21 120.7
C8—C7—C6 109.3 (3) C16—C21—H21 120.7
C8—C7—H7 125.3 O3—C22—H22A 109.5
C6—C7—H7 125.3 O3—C22—H22B 109.5
C7—C8—N1 108.4 (3) H22A—C22—H22B 109.5
C7—C8—C15 129.1 (3) O3—C22—H22C 109.5
N1—C8—C15 122.4 (3) H22A—C22—H22C 109.5
C14—C9—C10 120.1 (4) H22B—C22—H22C 109.5
C14—C9—S1 119.9 (3) O4—C23—N2 120.5 (4)
C10—C9—S1 119.9 (3) O4—C23—C24 122.2 (4)
C9—C10—C11 118.7 (5) N2—C23—C24 117.3 (3)
C9—C10—H10 120.7 C23—C24—H24A 109.5
C11—C10—H10 120.7 C23—C24—H24B 109.5
C12—C11—C10 121.1 (5) H24A—C24—H24B 109.5
C12—C11—H11 119.4 C23—C24—H24C 109.5
C10—C11—H11 119.4 H24A—C24—H24C 109.5
C13—C12—C11 119.3 (5) H24B—C24—H24C 109.5
C13—C12—H12 120.4 C1—N1—C8 107.5 (2)
C11—C12—H12 120.4 C1—N1—S1 121.4 (2)
C12—C13—C14 121.4 (5) C8—N1—S1 126.1 (2)
C12—C13—H13 119.3 C23—N2—C16 123.5 (3)
C14—C13—H13 119.3 C23—N2—C15 118.2 (3)
C13—C14—C9 119.4 (5) C16—N2—C15 116.7 (3)
C13—C14—H14 120.3 C18—O3—C22 118.9 (3)
C9—C14—H14 120.3 O1—S1—O2 119.83 (17)
N2—C15—C8 111.2 (3) O1—S1—N1 106.91 (15)
N2—C15—H15A 109.4 O2—S1—N1 106.10 (14)
C8—C15—H15A 109.4 O1—S1—C9 108.73 (18)
N2—C15—H15B 109.4 O2—S1—C9 109.62 (18)
C8—C15—H15B 109.4 N1—S1—C9 104.54 (15)
C6—C1—C2—C3 −0.7 (6) N2—C16—C21—C20 −176.8 (3)
N1—C1—C2—C3 179.7 (4) C2—C1—N1—C8 −177.6 (4)
C1—C2—C3—C4 1.5 (6) C6—C1—N1—C8 2.7 (4)
C2—C3—C4—C5 −0.7 (7) C2—C1—N1—S1 −21.1 (5)
C3—C4—C5—C6 −0.9 (7) C6—C1—N1—S1 159.3 (2)
C4—C5—C6—C1 1.7 (6) C7—C8—N1—C1 −2.7 (4)
C4—C5—C6—C7 −177.7 (4) C15—C8—N1—C1 −179.1 (3)
C2—C1—C6—C5 −0.9 (5) C7—C8—N1—S1 −157.9 (3)
N1—C1—C6—C5 178.8 (3) C15—C8—N1—S1 25.7 (5)
C2—C1—C6—C7 178.6 (3) O4—C23—N2—C16 −170.7 (3)
N1—C1—C6—C7 −1.7 (4) C24—C23—N2—C16 10.4 (5)
C5—C6—C7—C8 179.4 (4) O4—C23—N2—C15 −5.6 (5)
C1—C6—C7—C8 0.0 (4) C24—C23—N2—C15 175.6 (3)
C6—C7—C8—N1 1.7 (4) C17—C16—N2—C23 80.1 (4)
C6—C7—C8—C15 177.7 (3) C21—C16—N2—C23 −102.1 (4)
C14—C9—C10—C11 −1.1 (7) C17—C16—N2—C15 −85.2 (4)
S1—C9—C10—C11 −179.6 (4) C21—C16—N2—C15 92.5 (4)
C9—C10—C11—C12 1.2 (8) C8—C15—N2—C23 90.1 (4)
C10—C11—C12—C13 −1.2 (9) C8—C15—N2—C16 −103.7 (3)
C11—C12—C13—C14 1.0 (9) C19—C18—O3—C22 0.1 (6)
C12—C13—C14—C9 −0.9 (8) C17—C18—O3—C22 179.4 (4)
C10—C9—C14—C13 0.9 (7) C1—N1—S1—O1 48.3 (3)
S1—C9—C14—C13 179.5 (4) C8—N1—S1—O1 −159.7 (3)
C7—C8—C15—N2 1.1 (5) C1—N1—S1—O2 177.3 (3)
N1—C8—C15—N2 176.6 (3) C8—N1—S1—O2 −30.7 (3)
C21—C16—C17—C18 −0.7 (5) C1—N1—S1—C9 −66.9 (3)
N2—C16—C17—C18 177.0 (3) C8—N1—S1—C9 85.1 (3)
C16—C17—C18—O3 −179.3 (3) C14—C9—S1—O1 169.5 (3)
C16—C17—C18—C19 0.1 (5) C10—C9—S1—O1 −11.9 (4)
O3—C18—C19—C20 179.7 (3) C14—C9—S1—O2 36.8 (4)
C17—C18—C19—C20 0.4 (5) C10—C9—S1—O2 −144.7 (3)
C18—C19—C20—C21 −0.3 (6) C14—C9—S1—N1 −76.6 (3)
C19—C20—C21—C16 −0.4 (6) C10—C9—S1—N1 102.0 (3)
C17—C16—C21—C20 0.9 (5)

N-(3-Methoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}acetamide (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1 0.93 2.41 2.993 (5) 120
C5—H5···O1i 0.93 2.75 3.530 (5) 143
C7—H7···O1i 0.93 2.81 3.537 (4) 135
C12—H12···O4ii 0.93 2.62 3.527 (6) 164
C13—H13···O3iii 0.93 2.69 3.591 (7) 164
C17—H17···O4iii 0.93 2.42 3.312 (4) 161
C24—H24B···O2i 0.96 2.49 3.410 (5) 160

Symmetry codes: (i) x, y, z−1; (ii) x, −y+3/2, z+1/2; (iii) −x+2, −y+1, −z+1.

N-(2,5-Dimethoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (II) . Crystal data

C29H26N2O6S2 F(000) = 1176
Mr = 562.64 Dx = 1.405 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
a = 13.463 (9) Å Cell parameters from 42032 reflections
b = 17.193 (12) Å θ = 1.4–25.0°
c = 11.532 (7) Å µ = 0.25 mm1
β = 94.844 (19)° T = 293 K
V = 2660 (3) Å3 Prism, colorless
Z = 4 0.33 × 0.22 × 0.11 mm

N-(2,5-Dimethoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (II) . Data collection

Bruker D8 Venture Diffractometer 4533 reflections with I > 2σ(I)
Radiation source: micro focus sealed tube Rint = 0.086
ω and φ scans θmax = 26.5°, θmin = 3.6°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −16→16
Tmin = 0.504, Tmax = 0.745 k = −21→21
42032 measured reflections l = −14→14
5193 independent reflections

N-(2,5-Dimethoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (II) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0731P)2 + 3.4858P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
5193 reflections Δρmax = 1.17 e Å3
354 parameters Δρmin = −0.26 e Å3
2 restraints Absolute structure: Flack x determined using 1861 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.16 (4)

N-(2,5-Dimethoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N-(2,5-Dimethoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5561 (5) 0.9136 (3) 0.2353 (5) 0.0405 (13)
C2 0.5964 (6) 0.9217 (4) 0.1289 (6) 0.0540 (16)
H2 0.555973 0.922012 0.059422 0.065*
C3 0.6984 (6) 0.9292 (4) 0.1301 (7) 0.0629 (19)
H3 0.727709 0.933603 0.060166 0.076*
C4 0.7585 (6) 0.9304 (5) 0.2352 (8) 0.068 (2)
H4 0.827185 0.935784 0.234498 0.081*
C5 0.7173 (5) 0.9237 (5) 0.3382 (8) 0.0611 (18)
H5 0.758088 0.924447 0.407445 0.073*
C6 0.6143 (5) 0.9157 (3) 0.3416 (6) 0.0457 (14)
C7 0.5506 (5) 0.9086 (4) 0.4325 (6) 0.0474 (15)
H7 0.571262 0.908568 0.511531 0.057*
C8 0.4548 (4) 0.9019 (3) 0.3871 (5) 0.0368 (12)
C9 0.3602 (5) 0.7823 (3) 0.1536 (5) 0.0419 (13)
C10 0.4339 (5) 0.7464 (4) 0.0981 (7) 0.0556 (17)
H10 0.484497 0.775373 0.068826 0.067*
C11 0.4316 (6) 0.6650 (4) 0.0862 (9) 0.070 (2)
H11 0.481400 0.639367 0.050114 0.084*
C12 0.3561 (7) 0.6243 (5) 0.1277 (8) 0.071 (2)
H12 0.354691 0.570506 0.119685 0.085*
C13 0.2819 (7) 0.6605 (5) 0.1812 (8) 0.074 (2)
H13 0.230384 0.631258 0.207941 0.088*
C14 0.2831 (6) 0.7404 (5) 0.1957 (6) 0.0608 (19)
H14 0.233290 0.765304 0.232769 0.073*
C15 0.3647 (5) 0.9029 (3) 0.4548 (5) 0.0400 (12)
H15A 0.381098 0.928997 0.528504 0.048*
H15B 0.312174 0.932270 0.411961 0.048*
C16 0.3950 (4) 0.7701 (3) 0.5439 (5) 0.0371 (12)
C17 0.4070 (5) 0.6956 (4) 0.4999 (5) 0.0443 (13)
H17 0.375102 0.681947 0.428127 0.053*
C18 0.4660 (5) 0.6420 (4) 0.5620 (6) 0.0481 (15)
C19 0.5150 (5) 0.6612 (4) 0.6672 (6) 0.0552 (17)
H19 0.555292 0.624805 0.707987 0.066*
C20 0.5043 (5) 0.7351 (4) 0.7125 (6) 0.0531 (16)
H20 0.537510 0.748217 0.783811 0.064*
C21 0.4437 (4) 0.7899 (4) 0.6516 (5) 0.0422 (13)
C22 0.4410 (7) 0.5443 (5) 0.4146 (8) 0.074 (2)
H22A 0.461365 0.581454 0.359113 0.110*
H22B 0.369542 0.542977 0.411544 0.110*
H22C 0.465569 0.493729 0.396292 0.110*
C23 0.4596 (8) 0.8823 (5) 0.8082 (7) 0.077 (2)
H23A 0.531027 0.880524 0.820273 0.115*
H23B 0.431424 0.845285 0.858364 0.115*
H23C 0.436809 0.933578 0.825521 0.115*
C24 0.1965 (4) 0.8362 (4) 0.6486 (5) 0.0415 (13)
C25 0.1984 (5) 0.7775 (4) 0.7286 (6) 0.0531 (16)
H25 0.206152 0.726136 0.705626 0.064*
C26 0.1887 (6) 0.7953 (5) 0.8457 (7) 0.067 (2)
H26 0.189399 0.755573 0.900444 0.081*
C27 0.1782 (6) 0.8710 (5) 0.8800 (7) 0.065 (2)
H27 0.172197 0.882626 0.957870 0.078*
C28 0.1766 (6) 0.9298 (5) 0.7985 (7) 0.065 (2)
H28 0.170116 0.981104 0.822519 0.077*
C29 0.1843 (5) 0.9143 (4) 0.6818 (7) 0.0540 (16)
H29 0.181569 0.954118 0.627016 0.065*
N1 0.4553 (4) 0.9058 (3) 0.2641 (4) 0.0389 (10)
N2 0.3279 (4) 0.8234 (3) 0.4772 (4) 0.0363 (10)
O1 0.3855 (4) 0.9166 (3) 0.0595 (4) 0.0592 (12)
O2 0.2718 (4) 0.9068 (3) 0.2140 (4) 0.0608 (13)
O3 0.4797 (5) 0.5658 (3) 0.5265 (5) 0.0713 (15)
O4 0.4295 (4) 0.8639 (3) 0.6904 (4) 0.0544 (11)
O5 0.1821 (3) 0.7351 (3) 0.4813 (4) 0.0556 (12)
O6 0.1575 (3) 0.8740 (3) 0.4303 (5) 0.0573 (12)
S1 0.36074 (11) 0.88404 (9) 0.16552 (11) 0.0423 (4)
S2 0.20853 (11) 0.81497 (9) 0.50035 (12) 0.0414 (4)

N-(2,5-Dimethoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.050 (3) 0.031 (3) 0.041 (3) −0.009 (2) 0.010 (3) 0.000 (2)
C2 0.062 (4) 0.051 (4) 0.050 (4) −0.011 (3) 0.011 (3) −0.004 (3)
C3 0.070 (5) 0.057 (4) 0.065 (5) −0.014 (4) 0.030 (4) 0.002 (3)
C4 0.053 (4) 0.063 (5) 0.089 (6) −0.016 (3) 0.017 (4) −0.007 (4)
C5 0.044 (3) 0.068 (5) 0.072 (5) −0.011 (3) 0.004 (3) 0.003 (4)
C6 0.051 (3) 0.035 (3) 0.050 (4) −0.005 (3) −0.003 (3) 0.000 (2)
C7 0.048 (3) 0.052 (4) 0.041 (3) −0.010 (3) −0.004 (3) 0.003 (3)
C8 0.047 (3) 0.032 (3) 0.031 (3) −0.005 (2) 0.002 (2) −0.001 (2)
C9 0.042 (3) 0.041 (3) 0.040 (3) −0.001 (3) −0.010 (2) −0.002 (3)
C10 0.043 (3) 0.050 (4) 0.074 (5) −0.003 (3) 0.002 (3) −0.011 (3)
C11 0.053 (4) 0.051 (4) 0.104 (7) 0.003 (3) −0.008 (4) −0.019 (4)
C12 0.086 (6) 0.050 (4) 0.074 (5) −0.012 (4) −0.011 (5) −0.003 (4)
C13 0.091 (6) 0.067 (5) 0.064 (5) −0.036 (5) 0.011 (4) −0.003 (4)
C14 0.056 (4) 0.074 (5) 0.052 (4) −0.007 (4) 0.003 (3) −0.015 (3)
C15 0.049 (3) 0.035 (3) 0.036 (3) 0.001 (2) 0.003 (2) −0.003 (2)
C16 0.039 (3) 0.041 (3) 0.032 (3) −0.001 (2) 0.003 (2) −0.003 (2)
C17 0.044 (3) 0.047 (3) 0.040 (3) −0.006 (3) −0.004 (2) −0.003 (2)
C18 0.043 (3) 0.038 (3) 0.062 (4) −0.003 (3) 0.002 (3) 0.003 (3)
C19 0.046 (4) 0.063 (4) 0.055 (4) 0.006 (3) −0.007 (3) 0.013 (3)
C20 0.044 (3) 0.066 (4) 0.047 (4) −0.003 (3) −0.011 (3) −0.001 (3)
C21 0.038 (3) 0.050 (3) 0.037 (3) −0.003 (3) 0.000 (2) −0.005 (2)
C22 0.071 (5) 0.056 (5) 0.092 (6) −0.006 (4) −0.005 (4) −0.023 (4)
C23 0.104 (7) 0.079 (6) 0.044 (4) 0.005 (5) −0.013 (4) −0.018 (4)
C24 0.035 (3) 0.049 (3) 0.041 (3) −0.006 (2) 0.006 (2) −0.007 (2)
C25 0.062 (4) 0.049 (4) 0.049 (4) −0.002 (3) 0.006 (3) 0.002 (3)
C26 0.078 (5) 0.080 (5) 0.044 (4) −0.006 (4) 0.007 (4) −0.001 (4)
C27 0.059 (4) 0.089 (6) 0.049 (4) −0.008 (4) 0.010 (3) −0.020 (4)
C28 0.060 (4) 0.064 (5) 0.071 (5) −0.015 (4) 0.017 (4) −0.027 (4)
C29 0.057 (4) 0.047 (3) 0.059 (4) −0.012 (3) 0.015 (3) −0.008 (3)
N1 0.042 (3) 0.042 (3) 0.032 (2) −0.004 (2) 0.0000 (19) −0.0013 (19)
N2 0.037 (2) 0.039 (2) 0.033 (2) −0.0031 (19) 0.0025 (19) 0.0005 (18)
O1 0.083 (3) 0.055 (3) 0.037 (2) 0.001 (2) −0.008 (2) −0.002 (2)
O2 0.052 (3) 0.073 (3) 0.055 (3) 0.014 (2) −0.009 (2) −0.014 (2)
O3 0.084 (4) 0.048 (3) 0.081 (4) 0.010 (3) −0.005 (3) −0.003 (3)
O4 0.067 (3) 0.056 (3) 0.038 (2) −0.003 (2) −0.007 (2) −0.0134 (19)
O5 0.055 (3) 0.065 (3) 0.045 (3) −0.018 (2) −0.001 (2) −0.011 (2)
O6 0.046 (2) 0.069 (3) 0.055 (3) 0.007 (2) −0.005 (2) 0.010 (2)
S1 0.0484 (8) 0.0465 (7) 0.0305 (7) 0.0067 (7) −0.0057 (6) −0.0013 (6)
S2 0.0377 (7) 0.0507 (8) 0.0350 (7) −0.0053 (6) −0.0013 (5) −0.0019 (6)

N-(2,5-Dimethoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (II) . Geometric parameters (Å, º)

C1—C2 1.390 (9) C17—H17 0.9300
C1—C6 1.398 (9) C18—C19 1.371 (10)
C1—N1 1.429 (8) C18—O3 1.389 (8)
C2—C3 1.379 (11) C19—C20 1.385 (10)
C2—H2 0.9300 C19—H19 0.9300
C3—C4 1.399 (13) C20—C21 1.396 (9)
C3—H3 0.9300 C20—H20 0.9300
C4—C5 1.358 (12) C21—O4 1.368 (8)
C4—H4 0.9300 C22—O3 1.400 (10)
C5—C6 1.397 (10) C22—H22A 0.9600
C5—H5 0.9300 C22—H22B 0.9600
C6—C7 1.416 (10) C22—H22C 0.9600
C7—C8 1.355 (9) C23—O4 1.420 (8)
C7—H7 0.9300 C23—H23A 0.9600
C8—N1 1.421 (7) C23—H23B 0.9600
C8—C15 1.497 (8) C23—H23C 0.9600
C9—C10 1.372 (10) C24—C25 1.367 (9)
C9—C14 1.385 (10) C24—C29 1.410 (9)
C9—S1 1.755 (6) C24—S2 1.768 (6)
C10—C11 1.406 (10) C25—C26 1.401 (10)
C10—H10 0.9300 C25—H25 0.9300
C11—C12 1.354 (13) C26—C27 1.371 (12)
C11—H11 0.9300 C26—H26 0.9300
C12—C13 1.367 (13) C27—C28 1.380 (13)
C12—H12 0.9300 C27—H27 0.9300
C13—C14 1.383 (12) C28—C29 1.385 (11)
C13—H13 0.9300 C28—H28 0.9300
C14—H14 0.9300 C29—H29 0.9300
C15—N2 1.484 (7) N1—S1 1.676 (5)
C15—H15A 0.9700 N2—S2 1.658 (5)
C15—H15B 0.9700 O1—S1 1.410 (5)
C16—C17 1.392 (8) O2—S1 1.419 (5)
C16—C21 1.397 (8) O5—S2 1.431 (5)
C16—N2 1.459 (7) O6—S2 1.436 (5)
C17—C18 1.377 (9)
C2—C1—C6 122.6 (6) C18—C19—H19 120.1
C2—C1—N1 131.5 (6) C20—C19—H19 120.1
C6—C1—N1 105.8 (5) C19—C20—C21 120.2 (6)
C3—C2—C1 117.6 (7) C19—C20—H20 119.9
C3—C2—H2 121.2 C21—C20—H20 119.9
C1—C2—H2 121.2 O4—C21—C20 123.7 (5)
C2—C3—C4 120.8 (7) O4—C21—C16 116.7 (5)
C2—C3—H3 119.6 C20—C21—C16 119.6 (6)
C4—C3—H3 119.6 O3—C22—H22A 109.5
C5—C4—C3 120.5 (7) O3—C22—H22B 109.5
C5—C4—H4 119.7 H22A—C22—H22B 109.5
C3—C4—H4 119.7 O3—C22—H22C 109.5
C4—C5—C6 120.8 (8) H22A—C22—H22C 109.5
C4—C5—H5 119.6 H22B—C22—H22C 109.5
C6—C5—H5 119.6 O4—C23—H23A 109.5
C5—C6—C1 117.6 (7) O4—C23—H23B 109.5
C5—C6—C7 134.0 (7) H23A—C23—H23B 109.5
C1—C6—C7 108.5 (6) O4—C23—H23C 109.5
C8—C7—C6 109.7 (6) H23A—C23—H23C 109.5
C8—C7—H7 125.1 H23B—C23—H23C 109.5
C6—C7—H7 125.1 C25—C24—C29 121.1 (6)
C7—C8—N1 107.3 (5) C25—C24—S2 120.2 (5)
C7—C8—C15 125.7 (5) C29—C24—S2 118.8 (5)
N1—C8—C15 126.4 (5) C24—C25—C26 119.4 (7)
C10—C9—C14 121.5 (6) C24—C25—H25 120.3
C10—C9—S1 119.1 (5) C26—C25—H25 120.3
C14—C9—S1 119.3 (6) C27—C26—C25 120.4 (8)
C9—C10—C11 118.8 (7) C27—C26—H26 119.8
C9—C10—H10 120.6 C25—C26—H26 119.8
C11—C10—H10 120.6 C26—C27—C28 119.7 (7)
C12—C11—C10 119.4 (8) C26—C27—H27 120.2
C12—C11—H11 120.3 C28—C27—H27 120.2
C10—C11—H11 120.3 C27—C28—C29 121.5 (7)
C11—C12—C13 121.6 (7) C27—C28—H28 119.3
C11—C12—H12 119.2 C29—C28—H28 119.3
C13—C12—H12 119.2 C28—C29—C24 117.9 (7)
C12—C13—C14 120.3 (8) C28—C29—H29 121.1
C12—C13—H13 119.8 C24—C29—H29 121.1
C14—C13—H13 119.8 C8—N1—C1 108.7 (5)
C13—C14—C9 118.4 (7) C8—N1—S1 126.8 (4)
C13—C14—H14 120.8 C1—N1—S1 123.0 (4)
C9—C14—H14 120.8 C16—N2—C15 118.0 (5)
N2—C15—C8 112.2 (5) C16—N2—S2 115.2 (4)
N2—C15—H15A 109.2 C15—N2—S2 116.8 (4)
C8—C15—H15A 109.2 C18—O3—C22 118.2 (6)
N2—C15—H15B 109.2 C21—O4—C23 119.0 (6)
C8—C15—H15B 109.2 O1—S1—O2 120.1 (3)
H15A—C15—H15B 107.9 O1—S1—N1 106.1 (3)
C17—C16—C21 119.2 (5) O2—S1—N1 106.8 (3)
C17—C16—N2 118.1 (5) O1—S1—C9 109.1 (3)
C21—C16—N2 122.6 (5) O2—S1—C9 107.9 (3)
C18—C17—C16 120.4 (6) N1—S1—C9 105.9 (3)
C18—C17—H17 119.8 O5—S2—O6 119.4 (3)
C16—C17—H17 119.8 O5—S2—N2 106.9 (3)
C19—C18—C17 120.8 (6) O6—S2—N2 105.8 (3)
C19—C18—O3 115.0 (6) O5—S2—C24 107.7 (3)
C17—C18—O3 124.2 (6) O6—S2—C24 108.6 (3)
C18—C19—C20 119.8 (6) N2—S2—C24 107.9 (3)
C6—C1—C2—C3 2.4 (10) C25—C24—C29—C28 1.4 (10)
N1—C1—C2—C3 179.0 (6) S2—C24—C29—C28 −179.0 (6)
C1—C2—C3—C4 −1.4 (11) C7—C8—N1—C1 1.2 (6)
C2—C3—C4—C5 0.3 (12) C15—C8—N1—C1 172.4 (5)
C3—C4—C5—C6 −0.1 (12) C7—C8—N1—S1 167.7 (4)
C4—C5—C6—C1 1.0 (10) C15—C8—N1—S1 −21.2 (8)
C4—C5—C6—C7 −179.1 (8) C2—C1—N1—C8 −178.1 (6)
C2—C1—C6—C5 −2.2 (9) C6—C1—N1—C8 −1.1 (6)
N1—C1—C6—C5 −179.6 (6) C2—C1—N1—S1 14.8 (9)
C2—C1—C6—C7 177.9 (6) C6—C1—N1—S1 −168.1 (4)
N1—C1—C6—C7 0.5 (6) C17—C16—N2—C15 −131.1 (6)
C5—C6—C7—C8 −179.7 (7) C21—C16—N2—C15 51.7 (7)
C1—C6—C7—C8 0.2 (7) C17—C16—N2—S2 84.4 (6)
C6—C7—C8—N1 −0.9 (7) C21—C16—N2—S2 −92.8 (6)
C6—C7—C8—C15 −172.1 (5) C8—C15—N2—C16 60.6 (6)
C14—C9—C10—C11 −1.3 (11) C8—C15—N2—S2 −155.5 (4)
S1—C9—C10—C11 −178.4 (6) C19—C18—O3—C22 −173.2 (7)
C9—C10—C11—C12 1.2 (12) C17—C18—O3—C22 7.9 (10)
C10—C11—C12—C13 0.0 (13) C20—C21—O4—C23 −13.8 (10)
C11—C12—C13—C14 −0.9 (13) C16—C21—O4—C23 167.1 (7)
C12—C13—C14—C9 0.8 (12) C8—N1—S1—O1 164.0 (5)
C10—C9—C14—C13 0.4 (11) C1—N1—S1—O1 −31.3 (5)
S1—C9—C14—C13 177.4 (6) C8—N1—S1—O2 34.8 (5)
C7—C8—C15—N2 −98.6 (7) C1—N1—S1—O2 −160.5 (5)
N1—C8—C15—N2 91.8 (6) C8—N1—S1—C9 −80.1 (5)
C21—C16—C17—C18 0.2 (9) C1—N1—S1—C9 84.6 (5)
N2—C16—C17—C18 −177.1 (5) C10—C9—S1—O1 41.5 (6)
C16—C17—C18—C19 −1.0 (10) C14—C9—S1—O1 −135.6 (5)
C16—C17—C18—O3 177.9 (6) C10—C9—S1—O2 173.5 (5)
C17—C18—C19—C20 0.8 (10) C14—C9—S1—O2 −3.6 (6)
O3—C18—C19—C20 −178.2 (7) C10—C9—S1—N1 −72.4 (6)
C18—C19—C20—C21 0.1 (11) C14—C9—S1—N1 110.5 (5)
C19—C20—C21—O4 −179.9 (6) C16—N2—S2—O5 −53.8 (4)
C19—C20—C21—C16 −0.8 (10) C15—N2—S2—O5 161.2 (4)
C17—C16—C21—O4 179.8 (5) C16—N2—S2—O6 177.9 (4)
N2—C16—C21—O4 −3.0 (8) C15—N2—S2—O6 32.9 (5)
C17—C16—C21—C20 0.6 (9) C16—N2—S2—C24 61.8 (5)
N2—C16—C21—C20 177.8 (5) C15—N2—S2—C24 −83.2 (5)
C29—C24—C25—C26 −0.3 (10) C25—C24—S2—O5 21.3 (6)
S2—C24—C25—C26 −180.0 (6) C29—C24—S2—O5 −158.4 (5)
C24—C25—C26—C27 −0.6 (12) C25—C24—S2—O6 151.9 (5)
C25—C26—C27—C28 0.4 (12) C29—C24—S2—O6 −27.7 (6)
C26—C27—C28—C29 0.7 (12) C25—C24—S2—N2 −93.8 (5)
C27—C28—C29—C24 −1.5 (11) C29—C24—S2—N2 86.5 (5)

N-(2,5-Dimethoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (II) . Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C2—H2···O1 0.93 2.30 2.886 (9) 121
C15—H15A···O4 0.97 2.23 2.862 (8) 122
C15—H15B···O2 0.97 2.34 2.948 (8) 120
C10—H10···O5i 0.93 2.93 3.719 (9) 144
C11—H11···O6i 0.93 2.85 3.723 (11) 156
C15—H15A···O1ii 0.97 2.68 3.333 (8) 125
C19—H19···O2iii 0.93 2.96 3.647 (9) 132
C20—H20···O5iii 0.93 2.88 3.788 (8) 165
C28—H28···O6ii 0.93 2.79 3.716 (9) 171
C23—H23C···Cg1ii 0.96 2.96 3.701 (3) 135
C25—H25···Cg2iv 0.93 2.67 3.483 (5) 147

Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) x, −y+2, z+1/2; (iii) x+1/2, −y+3/2, z+1/2; (iv) x−1/2, −y+3/2, z+1/2.

References

  1. Allen, F. H. (1981). Acta Cryst. B37, 900–906.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Badr, E. E. (2008). J. Dispersion Sci. Technol.29, 1143–1149.
  4. Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.
  5. Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  6. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  7. Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Dunitz, J. D. (1995). X-ray Analysis and the Structure of Organic Solids, 2nd corrected reprint, pp. 106–111. Basel: Verlag Helvetica Chimica Acta.
  9. Farrugia, L. J. (2012). J. Appl. Cryst.45, 849–854.
  10. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3364.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2069. [DOI] [PMC free article] [PubMed]
  13. Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Nippon Ishinkin Gakkai Zasshi, 48, 47–50. [DOI] [PubMed]
  14. Jasinski, J. P., Rinderspacher, A. & Gribble, G. W. (2010). J. Chem. Crystallogr.40, 40–47.
  15. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  16. Madhan, S., NizamMohideen, M., Harikrishnan, K. & MohanaKrishnan, A. K. (2024). Acta Cryst. E80, 682–690. [DOI] [PMC free article] [PubMed]
  17. Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198–1203.
  18. Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023a). Acta Cryst. E79, 521–525. [DOI] [PMC free article] [PubMed]
  19. Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023b). Acta Cryst. E79, 741–746. [DOI] [PMC free article] [PubMed]
  20. NizamMohideen, M., SubbiahPandi, A., Panneer Selvam, N. & Perumal, P. T. (2009). Acta Cryst. E65, o714–o715. [DOI] [PMC free article] [PubMed]
  21. NizamMohideen, M., Thenmozhi, S., SubbiahPandi, A., Selvam, N. P. & Perumal, P. T. (2009a). Acta Cryst. E65, o740. [DOI] [PMC free article] [PubMed]
  22. NizamMohideen, M., Thenmozhi, S., SubbiahPandi, A., Selvam, N. P. & Perumal, P. T. (2009b). Acta Cryst. E65, o829. [DOI] [PMC free article] [PubMed]
  23. Okabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386–387.
  24. Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648–652.
  25. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  26. Ramathilagam, C., Saravanan, V., Mohanakrishnan, A. K., Chakkaravarthi, G., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o632. [DOI] [PMC free article] [PubMed]
  27. Schollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572–2575.
  28. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  29. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  30. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  31. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  32. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  33. Umadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1802–o1803. [DOI] [PMC free article] [PubMed]
  34. Wen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427–o4428.
  35. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  36. Williams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J., Kauffman, L. R., O’Brien, J. A., Sardana, V. V., Schleif, W. A., Theoharides, A. D. & Anderson, P. S. (1993). J. Med. Chem.36, 1291–1294. [DOI] [PubMed]
  37. Yang, L. M., Lin, S. J., Hsu, F. L. & Yang, T. H. (2002). Bioorg. Med. Chem. Lett.12, 1013–1015. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989024006649/nu2006sup1.cif

e-80-00845-sup1.cif (2.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024006649/nu2006Isup2.hkl

e-80-00845-Isup2.hkl (316KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989024006649/nu2006IIsup3.hkl

e-80-00845-IIsup3.hkl (413.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989024006649/nu2006Isup4.cml

e-80-00845-IIsup5.cml (9.9KB, cml)

Supporting information file. DOI: 10.1107/S2056989024006649/nu2006IIsup5.cml

CCDC references: 2368308, 2368307

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES