Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Jul 27;80(Pt 8):890–893. doi: 10.1107/S2056989024007151

Pyrazine-bridged polymetallic copper–iridium clusters

Ben J Tickner a, Richard Gammons b, Adrian C Whitwood b, Simon B Duckett a,*
Editor: M Weilc
PMCID: PMC11299752  PMID: 39108787

The title mol­ecule is centrosymmetric, with a pyrazine ligand bridging two {Cu10Ir3} cluster units that are arranged in an unusual shape containing 13 vertices, 22 faces, and 32 sides.

Keywords: crystal structure, clusters, polymetallic, heterometallic, Cu, Ir, pyrazine

Abstract

Single crystals of the mol­ecular compound, {Cu20Ir6Cl8(C21H24N2)6(C4H4N2)3]·3.18CH3OH or [({Cu10Ir3}Cl4(IMes)3(pyrazine))2(pyrazine)]·3.18CH3OH [where IMes is 1,3-bis­(2,4,6-trimethylphen­yl)imidazol-2-yl­idene], with a unique heterometallic cluster have been prepared and the structure revealed using single-crystal X-ray diffraction. The mol­ecule is centrosymmetric with two {Cu10Ir3} cores bridged by a pyrazine ligand. The polymetallic cluster contains three stabilizing N-heterocyclic carbenes, four Cl ligands, and a non-bridging pyrazine ligand. Notably, the Cu—Ir core is arranged in an unusual shape containing 13 vertices, 22 faces, and 32 sides. The atoms within the trideca­metallic cluster are arranged in four planes, with 2, 4, 4, 3 metals in each plane. Ir atoms are present in alternate planes with an Ir atom featuring in the peripheral bimetallic plane, and two Ir atoms featuring on opposite sides of the non-adjacent tetra­metallic plane. The crystal contains two disordered methanol solvent mol­ecules with an additional region of non-modelled electron density corrected for using the SQUEEZE routine in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unmodelled methanol solvent mol­ecule(s).

1. Chemical context

Polynuclear metallic clusters, particularly those featuring organic ligands, are highly important as they can appear as inter­mediates or decomposition products in many transition-metal-catalysed reactions. Metallic clusters can also exhibit properties between monometallic transition-metal complexes and higher order aggregates and nanoparticles (Tang & Zhao, 2020). Therefore, their synthesis, preparation, and analysis is highly important to advance current understanding on how such species can play a role in catalysis. Metal clusters based on Cu are particularly exciting as a wide range of CuxXyLz clusters have been reported, where X is typically a halide or hydride, and L is a thio­ester, phosphine, or N-heterocycle (Harvey & Knorr, 2016; Dhayal et al., 2016; Graham et al., 2000; Liu & Astruc, 2018; Troyano et al., 2021). There are also examples of heterometallic clusters containing Cu atoms mixed with a range of other transition metals such as Re, Fe, Ir, Os, Co, Mo, W, Ag, and Au (Sculfort & Braunstein, 2011; Croizat et al., 2016; Hau et al., 2016; Yip et al., 2007; Gao et al., 2024; Zhang et al., 2023a). These mixed metal clusters provide a unique example to explore metalophilic inter­actions (Sculfort & Braunstein, 2011) and often have novel spectroscopic properties (Yip et al., 2007; Zhang et al., 2023a) or catalytic activity (Gao et al., 2024; Zhang et al., 2023a), particularly as Cu complexes find many uses in carbon–carbon and carbon–heteroatom bond formation. To this end, we were able to grow single crystals of a novel heterometallic cluster compound containing two {Cu10Ir3} units bridged by a pyrazine ligand, which was examined using X-ray diffraction studies.1.

2. Structural commentary

The solvated mol­ecular title compound [({Cu10Ir3}Cl4(IMes)3(pyrazine))2(pyrazine)]·3.18CH3OH (where IMes is 1,3-bis­(2,4,6-trimethyl-phen­yl)imidazol-2-yl­idene) is centrosymmetric and contains two trideca­metallic {Cu10Ir3} clusters, stabilised by four Cl ligands, three N-heterocyclic carbene (IMes) ligands, and a pyrazine ligand, with a bridging pyrazine mol­ecule linking two of these [{Cu10Ir3}Cl4(IMes)3(pyrazine)] units (Fig. 1). The {Cu10Ir3} cores are arranged in a geometry containing 13 vertices, 22 faces, and 32 sides with the atoms arranged in four planes with 2, 4, 4 and 3 metals in each plane (Fig. 2). The majority of the core consists of Cu atoms, with two existing as naked atoms with only inter­actions to adjacent Cu and Ir atoms. Of the remaining eight Cu sites, four are bonded to Cl ligands that bridge two Cu atoms across different atomic planes within the metallic core. Two of the three Cu atoms in a peripheral plane are bonded to terminal Cl ligands, with the third ligated to a terminal pyrazine mol­ecule. Inter­estingly, a bridging pyrazine ligand is bonded to a Cu atom in a tetra­metallic plane and provides a link to another [{Cu10Ir3}Cl4(NHC)3(pyrazine)] unit, with the whole mol­ecule having a centre of inversion in the middle of the bridging pyrazine ring. Ir atoms are located in alternate planes with an Ir atom featuring in the peripheral bimetallic plane, and two Ir atoms featuring on opposite sides of the non-adjacent tetra­metallic plane. This arrangement is likely a consequence of the bulky carbene ligand attached to Ir. All 18 Cu—Cu distances range from 2.4916 (18) to 3.0417 (18) Å. All but three of these distances are shorter than the sum of the van der Waals radii of Cu (2.80 Å), and most are close to the sum of the Cu atomic radii (2.556 Å), which suggests strong metalophilic inter­actions within the cluster (Sculfort & Braunstein, 2011). There appear to be no significant differences between the Cu—Cu and Ir—Cu bond lengths in the structure (2.66 ± 0.13 Å, n = 18 and 2.62 ± 0.07 Å, n = 16).

Figure 1.

Figure 1

Mol­ecular structure of [(Cu10Ir3Cl4(IMes)3(pyrazine))2(pyrazine)]·3.18CH3OH, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms were omitted for clarity.

Figure 2.

Figure 2

The trideca­metallic core of [(Cu10Ir3Cl4(IMes)3(pyrazine))2(pyrazine)]·3.18CH3OH, with displacement ellipsoids drawn at the 50% probability level. Note that only the donor atoms of the ligands attached to the polyatomic core are shown. The core is shown in two different orientations, rotated by 90° around the Ir1, Cu3, Cu4, Ir2, Ir3, Cu8, Cu9, Cu8, Cu9 plane. Atom labels marked in grey correspond to atoms hidden from view. The centrosymmetric compound contains two of these cores linked by a bridging pyrazine and therefore the two trideca­metallic units are equivalent by symmetry.

3. Supra­molecular features

The methanol solvent mol­ecules clearly fill voids left by the packing of [({Cu10Ir3}Cl4(IMes)3(pyrazine))2(pyrazine)] as the shortest inter­actions are between methanol and the three terminal CH3 groups of the IMes ligand. Long-range inter­actions between the mol­ecules of [({Cu10Ir3}Cl4(IMes)3(pyrazine))2(pyrazine)] involve the non-bridging pyrazine ligands on adjacent mol­ecules, with the shortest 2.327 Å inter­action between the two H65 atoms, and a 2.483 Å inter­action between the free pyrazine N4 and the H65 atom of a non-bridging pyrazine ligand on a neighbouring mol­ecule. This suggests that the pyrazine ligand is important in both linking the two trideca­metallic cores, and also packing the crystals together, which is unsurprising given its role in the formation of higher order polymers and metal–organic frameworks (Silva et al., 2023; Zhang et al., 2023b; Kawamura et al., 2017). Long-range inter­actions between IMes ligands of different mol­ecules are also important with distances of 2.377 Å and 2.383 Å between pairs of ortho CH3 and para CH3 groups on the mesityl rings of adjacent mol­ecules (H19B/H41C and H20B and H42B). The crystal packing is shown in Fig. 3. The hydroxyl hydrogen atom (H2A) of the partially occupied methanol solvent mol­ecule is hydrogen-bonded to the oxygen atom of the other disordered methanol mol­ecule (Table 1). It should be noted, however, that the hydrogen atom is placed using a riding model as allowing free refinement of its coordinates gave an unfeasible result. The hydroxyl H atoms of the other methanol mol­ecules are likely to be hydrogen-bonded to other highly disordered solvent mol­ecules that were not modelled using the solvent mask (see Refinement).

Figure 3.

Figure 3

Crystal packing of [(Cu10Ir3Cl4(IMes)3(pyrazine))2(pyrazine)]·3.18CH3OH shown in a view along the c axis. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms were omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.84 1.87 2.62 (2) 148

4. Database survey

A search of the Cambridge Structure Database (CSD, Version 5.45, update November 2023; Groom et al., 2016) did not reveal any comparable compounds with trideca­metallic polymetallic clusters. A few crystal structures for penta­tomic Cu–Ir clusters have been reported, but these contain cores with a trigonal–bipyramidal shape with either Cu3Ir2Lx (Rhodes et al., 1985) or Ir4CuLx (Adams et al., 2013) arrangements. Reported Cu—Ir distances are between 2.663 and 2.79 Å, which are generally longer than those in the cluster presented here [2.5227 (15) to 2.7478 (13) Å]. The short Cu—Ir distances suggest strong metal–metal inter­actions, and could indicate Cu=Ir bonds (Rhodes et al., 1985). There are many more examples of homometallic Cu clusters in the database, an analysis of 35 of these Cu—Cu bond lengths revealed an average inter­metallic distance of 2.95 ± 0.25 Å (mean ± 1 standard deviation), which is consistent with the inter Cu distances in the structure reported here (2.66 ± 0.13 Å), albeit slightly longer (Johnsson et al., 2000; Rao et al., 1983; Baumgartner et al., 1990). Similar to short Cu—Ir distances, this suggests that the Cu—Cu inter­actions are also strong and metalophillic.

5. Synthesis and crystallization

The pyrazine-bridged polymetallic Cu–Ir cluster compound was prepared by reaction of [Ir(Cl)(COD)(IMes)] (2.20 mg) [COD is cis,cis-1,5-cyclo­octa­diene and IMes is 1,3-bis­(2,4,6-trimethyl-phen­yl)imidazol-2-yl­idene] with pyrazine (2.52 mg) and H2 (3 bar) in methanol-d4 (0.6 ml) for 3–4 h at 298 K in a 5 mm NMR tube with a J. Youngs tap. At this point the pressure was released by opening the lid and Cu(OAc)2 (3.76 mg) in methanol-d4 (0.1 ml) was added to the solution. After being left for 1 h at room temperature the solution was cooled to 278 K in a refrigerator for several weeks to form single crystals, which were found by X-ray diffraction to be the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were placed using a riding model. The crystal contains disordered methanol solvent mol­ecules. One methanol mol­ecule was modelled over two sets of sites (C70, C72) with a common oxygen site (O1) in a refined ratio of 0.60:0.40 (3). Another methanol mol­ecule (C71, O2) was modelled as partially occupied with a refined occupancy of 0.59 (2). There was additional solvent present, but its associated electron density was difficult to model by using discrete atoms. Therefore the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) was used to remove the contribution of the electron density in the corresponding solvent region from the intensity data. A void with a volume of 430 Å3 was predicted containing 66 electrons per unit cell. This would be equivalent to 3.67 methanol mol­ecules. The given chemical formula and other crystal data do not take into account the unmodelled methanol solvent mol­ecule(s). The final structure model contains high residual electron density due to unresolved effects of the crystal having a minor twin present. Attempts to model this as two non-merohedral components were unsuccessful.

Table 2. Experimental details.

Crystal data
Chemical formula {Cu20Ir6Cl8(C21H24N2)6(C4H4N2)3]·3.18CH4O
M r 4876.63
Crystal system, space group Triclinic, PInline graphic
Temperature (K) 111
a, b, c (Å) 12.5708 (3), 14.8757 (5), 23.1383 (7)
α, β, γ (°) 84.392 (3), 82.291 (2), 85.686 (2)
V3) 4258.8 (2)
Z 1
Radiation type Cu Kα
μ (mm−1) 12.93
Crystal size (mm) 0.15 × 0.12 × 0.07
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, HyPix
Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2024) using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax 0.222, 0.519
No. of measured, independent and observed [I > 2σ(I)] reflections 45533, 15184, 13473
R int 0.046
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.134, 1.08
No. of reflections 15184
No. of parameters 919
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 3.01, −2.57

Computer programs: CrysAlis PRO (Rigaku OD, 2024), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024007151/wm5728sup1.cif

e-80-00890-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024007151/wm5728Isup2.hkl

e-80-00890-Isup2.hkl (1.2MB, hkl)
e-80-00890-sup3.mol (19.2KB, mol)

Chemical Connectivity (.mol) files. DOI: 10.1107/S2056989024007151/wm5728sup3.mol

CCDC reference: 2364376

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are extremely grateful to Dr Victoria Annis (University of York, UK) for the synthesis of the [IrCl(COD)(IMes)] precatalyst. We thank Professor Anne-Kathrin Duhme-Klair (University of York, UK) for helpful discussions.

supplementary crystallographic information

Ben Tickner BJT004. Crystal data

{Cu20Ir6Cl8(C21H24N2)6(C4H4N2)3]·3.18CH4O Z = 1
Mr = 4876.63 F(000) = 2345
Triclinic, P1 Dx = 1.901 Mg m3
a = 12.5708 (3) Å Cu Kα radiation, λ = 1.54184 Å
b = 14.8757 (5) Å Cell parameters from 20996 reflections
c = 23.1383 (7) Å θ = 3.6–75.9°
α = 84.392 (3)° µ = 12.93 mm1
β = 82.291 (2)° T = 111 K
γ = 85.686 (2)° Block, clear orange
V = 4258.8 (2) Å3 0.15 × 0.12 × 0.07 mm

Ben Tickner BJT004. Data collection

SuperNova, Dual, Cu at home/near, HyPix diffractometer 15184 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source 13473 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.046
Detector resolution: 10.0000 pixels mm-1 θmax = 67.1°, θmin = 3.6°
ω scans h = −13→15
Absorption correction: analytical [CrysAlisPro (Rigaku OD, 2024) using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)] k = −17→17
Tmin = 0.222, Tmax = 0.519 l = −27→25
45533 measured reflections

Ben Tickner BJT004. Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0427P)2 + 57.022P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
15184 reflections Δρmax = 3.01 e Å3
919 parameters Δρmin = −2.56 e Å3
0 restraints

Ben Tickner BJT004. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The high residual density is due to unresolved effects of the crystal having a minor twin present. Attempts to model this as two non-merohedral components were unsuccessful.The solvent was disordered and modelled as follows: One methanol was modelled in two positions with a common oxygen site in a refined ratio of 0.60:0.40 (3). Another methanol was partially occupied with a refined occupancy of 0.59 (2). There was additional solvent which was too disordered to model using discrete atoms. Therefore a solvent mask was used which predicted a void with a volume of 430 cubic angstroms containing 66 electrons per unit cell. This would be equivalent to 3.67 methanols.

Ben Tickner BJT004. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 1.0318 (7) 0.3061 (6) 0.6817 (4) 0.035 (2)
C2 1.1554 (9) 0.4028 (7) 0.6378 (5) 0.048 (3)
H2 1.197662 0.438919 0.608630 0.058*
C3 1.1621 (8) 0.3952 (8) 0.6941 (5) 0.050 (3)
H3 1.209564 0.425577 0.713107 0.060*
C4 1.0741 (8) 0.3107 (7) 0.7834 (5) 0.044 (2)
C5 0.9968 (8) 0.3610 (8) 0.8182 (5) 0.047 (3)
C6 0.9884 (10) 0.3365 (10) 0.8779 (6) 0.064 (3)
H6 0.939332 0.370857 0.903401 0.077*
C7 1.0488 (12) 0.2642 (10) 0.9020 (5) 0.067 (4)
C8 1.1257 (10) 0.2196 (10) 0.8657 (5) 0.059 (3)
H8 1.170636 0.172291 0.881957 0.071*
C9 1.1393 (9) 0.2419 (8) 0.8060 (5) 0.049 (3)
C10 1.2261 (9) 0.1914 (8) 0.7665 (5) 0.051 (3)
H10A 1.255207 0.137970 0.788869 0.076*
H10B 1.284078 0.231426 0.751748 0.076*
H10C 1.194777 0.172379 0.733399 0.076*
C11 1.0327 (18) 0.2366 (15) 0.9680 (7) 0.111 (7)
H11A 1.052659 0.285620 0.988977 0.167*
H11B 1.078120 0.181718 0.976591 0.167*
H11C 0.957085 0.224777 0.980575 0.167*
C12 0.9306 (10) 0.4388 (9) 0.7939 (6) 0.061 (3)
H12A 0.861173 0.418332 0.787373 0.091*
H12B 0.968202 0.463813 0.756583 0.091*
H12C 0.918737 0.485468 0.821509 0.091*
C13 1.0378 (7) 0.3438 (6) 0.5732 (4) 0.036 (2)
C14 0.9542 (8) 0.4051 (6) 0.5584 (4) 0.036 (2)
C15 0.9159 (8) 0.3985 (7) 0.5062 (5) 0.045 (3)
H15 0.858738 0.439625 0.495576 0.054*
C16 0.9574 (8) 0.3347 (7) 0.4685 (5) 0.042 (2)
C17 1.0410 (8) 0.2763 (6) 0.4834 (4) 0.038 (2)
H17 1.070598 0.232705 0.457394 0.045*
C18 1.0844 (7) 0.2791 (6) 0.5365 (4) 0.033 (2)
C19 1.1739 (8) 0.2120 (7) 0.5515 (4) 0.041 (2)
H19A 1.193399 0.222273 0.589841 0.061*
H19B 1.236496 0.219280 0.521718 0.061*
H19C 1.150074 0.150453 0.552869 0.061*
C20 0.9080 (11) 0.3269 (9) 0.4127 (6) 0.060 (3)
H20A 0.915440 0.383296 0.387246 0.090*
H20B 0.831607 0.315697 0.422700 0.090*
H20C 0.945217 0.276554 0.392219 0.090*
C21 0.9017 (9) 0.4742 (6) 0.5987 (5) 0.046 (3)
H21A 0.945474 0.477558 0.630305 0.070*
H21B 0.829769 0.456311 0.615340 0.070*
H21C 0.895905 0.533535 0.576465 0.070*
C22 0.5071 (7) 0.5250 (6) 0.7576 (4) 0.033 (2)
C23 0.4786 (9) 0.6775 (7) 0.7541 (6) 0.053 (3)
H23 0.475773 0.739295 0.739084 0.063*
C24 0.4520 (10) 0.6458 (8) 0.8099 (6) 0.055 (3)
H24 0.425422 0.680157 0.841955 0.066*
C25 0.4475 (11) 0.4919 (8) 0.8646 (5) 0.056 (3)
C26 0.3482 (10) 0.4575 (8) 0.8779 (6) 0.056 (3)
C27 0.3347 (16) 0.3967 (10) 0.9276 (8) 0.093 (6)
H27 0.267293 0.370551 0.937888 0.111*
C28 0.4164 (18) 0.3720 (11) 0.9634 (7) 0.088 (5)
C29 0.5119 (15) 0.4109 (10) 0.9491 (6) 0.078 (4)
H29 0.566822 0.395811 0.973570 0.094*
C30 0.5324 (11) 0.4720 (9) 0.9001 (5) 0.058 (3)
C31 0.6401 (11) 0.5102 (10) 0.8842 (7) 0.071 (4)
H31A 0.671998 0.516138 0.919895 0.107*
H31B 0.631953 0.569782 0.862576 0.107*
H31C 0.687115 0.469535 0.859602 0.107*
C32 0.397 (2) 0.3010 (14) 1.0156 (9) 0.150 (12)
H32A 0.459982 0.293309 1.036595 0.226*
H32B 0.383977 0.243251 1.001480 0.226*
H32C 0.333790 0.321082 1.042001 0.226*
C33 0.2617 (12) 0.4824 (11) 0.8403 (8) 0.082 (5)
H33A 0.289867 0.474198 0.799465 0.123*
H33B 0.236542 0.545832 0.843845 0.123*
H33C 0.201697 0.443617 0.852873 0.123*
C34 0.5373 (8) 0.6118 (6) 0.6598 (5) 0.042 (2)
C35 0.4557 (8) 0.6070 (7) 0.6251 (5) 0.045 (3)
C36 0.4837 (9) 0.6099 (7) 0.5651 (6) 0.049 (3)
H36 0.429176 0.606813 0.540731 0.059*
C37 0.5893 (10) 0.6173 (7) 0.5396 (5) 0.050 (3)
C38 0.6675 (9) 0.6261 (6) 0.5761 (5) 0.046 (3)
H38 0.739490 0.633667 0.558659 0.056*
C39 0.6451 (8) 0.6244 (6) 0.6357 (5) 0.041 (2)
C40 0.7302 (9) 0.6340 (8) 0.6749 (5) 0.051 (3)
H40A 0.737606 0.578455 0.700968 0.076*
H40B 0.708924 0.685306 0.698412 0.076*
H40C 0.799155 0.644472 0.650800 0.076*
C41 0.6179 (11) 0.6145 (8) 0.4747 (6) 0.060 (3)
H41A 0.557918 0.642068 0.454760 0.090*
H41B 0.632283 0.551431 0.465523 0.090*
H41C 0.682175 0.648037 0.461501 0.090*
C42 0.3415 (9) 0.5954 (8) 0.6536 (6) 0.057 (3)
H42A 0.340175 0.542898 0.682740 0.085*
H42B 0.296246 0.585810 0.623645 0.085*
H42C 0.314001 0.649819 0.672788 0.085*
C43 0.5943 (7) 0.0014 (6) 0.7238 (4) 0.0305 (19)
C44 0.4553 (7) −0.0818 (6) 0.7667 (5) 0.035 (2)
H44 0.408741 −0.114083 0.795879 0.042*
C45 0.4444 (7) −0.0675 (5) 0.7096 (4) 0.0320 (19)
H45 0.389201 −0.087726 0.690686 0.038*
C46 0.5480 (7) 0.0158 (6) 0.6220 (4) 0.0295 (18)
C47 0.4926 (7) 0.0967 (6) 0.6037 (4) 0.0298 (18)
C48 0.5177 (7) 0.1302 (6) 0.5460 (4) 0.0322 (19)
H48 0.481170 0.184933 0.532557 0.039*
C49 0.5936 (8) 0.0878 (6) 0.5071 (4) 0.036 (2)
C50 0.6413 (7) 0.0053 (7) 0.5266 (4) 0.036 (2)
H50 0.691616 −0.025935 0.499970 0.043*
C51 0.6184 (8) −0.0330 (7) 0.5833 (4) 0.038 (2)
C52 0.6711 (9) −0.1237 (7) 0.6023 (5) 0.043 (2)
H52A 0.651164 −0.137681 0.644496 0.064*
H52B 0.749424 −0.121611 0.593771 0.064*
H52C 0.646965 −0.170613 0.581079 0.064*
C53 0.6235 (8) 0.1308 (7) 0.4459 (4) 0.042 (2)
H53A 0.666502 0.182602 0.447360 0.064*
H53B 0.557915 0.151384 0.428601 0.064*
H53C 0.665387 0.086350 0.422088 0.064*
C54 0.4130 (7) 0.1455 (6) 0.6456 (4) 0.0327 (19)
H54A 0.400305 0.208239 0.629448 0.039*
H54B 0.441272 0.144947 0.683067 0.039*
H54C 0.345150 0.115406 0.651616 0.039*
C55 0.5841 (8) −0.0404 (7) 0.8314 (4) 0.038 (2)
C56 0.6601 (8) −0.1098 (8) 0.8483 (5) 0.051 (3)
C57 0.6933 (10) −0.1070 (11) 0.9018 (6) 0.069 (4)
H57 0.742674 −0.153961 0.914412 0.082*
C58 0.6599 (11) −0.0406 (13) 0.9385 (6) 0.077 (5)
C59 0.5836 (10) 0.0241 (10) 0.9211 (5) 0.062 (3)
H59 0.556086 0.068366 0.947083 0.074*
C60 0.5452 (8) 0.0276 (8) 0.8679 (4) 0.043 (2)
C61 0.4611 (9) 0.0975 (7) 0.8507 (5) 0.047 (3)
H61A 0.390286 0.072385 0.859379 0.070*
H61B 0.475601 0.115596 0.808619 0.070*
H61C 0.462246 0.150389 0.872649 0.070*
C62 0.7038 (13) −0.0410 (17) 0.9968 (6) 0.110 (8)
H62A 0.753787 −0.094116 1.001953 0.165*
H62B 0.644139 −0.043313 1.028752 0.165*
H62C 0.741609 0.014128 0.997153 0.165*
C63 0.6958 (9) −0.1866 (8) 0.8097 (6) 0.062 (3)
H63A 0.746911 −0.164800 0.776410 0.093*
H63B 0.633048 −0.207639 0.795326 0.093*
H63C 0.730553 −0.236625 0.832544 0.093*
C64 0.9285 (10) 0.0325 (10) 0.8800 (5) 0.061 (3)
H64 0.860623 0.065569 0.883887 0.073*
C65 0.9789 (11) 0.0104 (10) 0.9287 (5) 0.066 (4)
H65 0.944111 0.027837 0.965277 0.080*
C66 1.1209 (14) −0.0494 (14) 0.8739 (7) 0.094 (6)
H66 1.191030 −0.078550 0.870261 0.112*
C67 1.0749 (11) −0.0257 (11) 0.8246 (6) 0.073 (4)
H67 1.115069 −0.033749 0.787502 0.087*
C68 0.9250 (7) 0.0683 (6) 0.5015 (4) 0.0310 (19)
H68 0.871317 0.116840 0.501075 0.037*
C69 0.9720 (7) 0.0375 (6) 0.4489 (4) 0.034 (2)
H69 0.950812 0.065952 0.413353 0.041*
Cl1 0.9288 (2) −0.18962 (18) 0.68466 (16) 0.0611 (8)
Cl2 1.18296 (19) −0.01264 (18) 0.66583 (12) 0.0474 (6)
Cl3 0.7183 (2) 0.23791 (17) 0.87864 (10) 0.0435 (5)
Cl4 0.6845 (2) 0.29938 (16) 0.55228 (10) 0.0400 (5)
Cu1 0.60976 (12) 0.36171 (9) 0.63001 (6) 0.0385 (3)
Cu2 0.61523 (12) 0.31363 (9) 0.81964 (6) 0.0388 (3)
Cu3 0.60371 (10) 0.22542 (8) 0.72350 (6) 0.0309 (3)
Cu4 0.74725 (10) 0.33490 (8) 0.71204 (6) 0.0314 (3)
Cu5 0.76541 (10) 0.19426 (9) 0.78596 (6) 0.0306 (3)
Cu6 0.74921 (10) 0.22104 (8) 0.63161 (5) 0.0295 (3)
Cu7 0.90003 (10) 0.06243 (9) 0.75911 (6) 0.0314 (3)
Cu8 0.84697 (11) −0.06169 (9) 0.69873 (6) 0.0360 (3)
Cu9 1.05763 (10) 0.09077 (9) 0.67851 (6) 0.0354 (3)
Cu10 0.88794 (10) 0.08323 (8) 0.62802 (5) 0.0291 (3)
Ir1 0.53490 (3) 0.39559 (3) 0.73285 (2) 0.03402 (11)
Ir2 0.72239 (3) 0.07873 (2) 0.71117 (2) 0.02503 (10)
Ir3 0.91336 (3) 0.21791 (2) 0.69321 (2) 0.02633 (10)
N1 1.0875 (6) 0.3350 (6) 0.7213 (4) 0.0393 (19)
N2 1.0739 (6) 0.3475 (5) 0.6283 (4) 0.0358 (17)
N3 0.9707 (7) 0.0097 (6) 0.8279 (4) 0.044 (2)
N4 1.0731 (10) −0.0340 (11) 0.9270 (5) 0.084 (4)
N5 0.4716 (7) 0.5509 (6) 0.8115 (4) 0.045 (2)
N6 0.5108 (7) 0.6043 (5) 0.7225 (4) 0.0420 (19)
N7 0.5481 (6) −0.0404 (5) 0.7756 (3) 0.0339 (17)
N8 0.5311 (5) −0.0165 (5) 0.6833 (3) 0.0283 (15)
N9 0.9528 (6) 0.0319 (5) 0.5529 (3) 0.0306 (16)
O1 0.6658 (10) 0.2014 (8) 1.1082 (5) 0.093 (4)
H1A 0.631550 0.174657 1.137841 0.140* 0.60 (3)
H1B 0.713511 0.172916 1.126141 0.140* 0.40 (3)
C71 0.789 (2) 0.3806 (18) 1.0273 (10) 0.079 (9) 0.59 (2)
H71A 0.841724 0.365036 0.994000 0.119* 0.59 (2)
H71B 0.795794 0.443441 1.034988 0.119* 0.59 (2)
H71C 0.716331 0.373815 1.018157 0.119* 0.59 (2)
O2 0.8081 (17) 0.3229 (12) 1.0769 (7) 0.079 (6) 0.59 (2)
H2A 0.777651 0.274561 1.076662 0.119* 0.59 (2)
C70 0.637 (4) 0.169 (3) 1.0558 (15) 0.142 (14) 0.60 (3)
H70A 0.687774 0.189291 1.022099 0.213* 0.60 (3)
H70B 0.563992 0.193702 1.049769 0.213* 0.60 (3)
H70C 0.638408 0.102980 1.060148 0.213* 0.60 (3)
C72 0.711 (6) 0.227 (5) 1.047 (2) 0.142 (14) 0.40 (3)
H72A 0.661064 0.213192 1.020360 0.213* 0.40 (3)
H72B 0.780038 0.192371 1.037713 0.213* 0.40 (3)
H72C 0.722683 0.291715 1.041743 0.213* 0.40 (3)

Ben Tickner BJT004. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.029 (5) 0.034 (5) 0.042 (5) 0.001 (4) −0.006 (4) −0.007 (4)
C2 0.036 (6) 0.045 (6) 0.064 (7) −0.024 (5) 0.004 (5) −0.005 (5)
C3 0.024 (5) 0.071 (8) 0.057 (7) −0.014 (5) 0.001 (4) −0.016 (6)
C4 0.038 (6) 0.050 (6) 0.048 (6) −0.014 (5) 0.000 (4) −0.022 (5)
C5 0.029 (5) 0.063 (7) 0.052 (6) −0.009 (5) −0.002 (4) −0.021 (5)
C6 0.045 (7) 0.087 (10) 0.061 (8) −0.002 (7) 0.002 (6) −0.031 (7)
C7 0.078 (9) 0.083 (9) 0.043 (6) −0.019 (8) −0.002 (6) −0.019 (6)
C8 0.052 (7) 0.076 (8) 0.050 (7) 0.006 (6) −0.017 (5) −0.005 (6)
C9 0.033 (5) 0.064 (7) 0.054 (6) −0.005 (5) −0.013 (5) −0.013 (5)
C10 0.042 (6) 0.059 (7) 0.055 (6) 0.005 (5) −0.012 (5) −0.019 (5)
C11 0.131 (17) 0.143 (18) 0.049 (8) 0.026 (14) 0.006 (9) −0.009 (10)
C12 0.054 (7) 0.060 (7) 0.075 (8) 0.006 (6) −0.019 (6) −0.032 (6)
C13 0.029 (5) 0.031 (5) 0.045 (5) −0.007 (4) 0.001 (4) 0.001 (4)
C14 0.031 (5) 0.022 (4) 0.051 (6) −0.009 (4) 0.007 (4) 0.008 (4)
C15 0.031 (5) 0.039 (5) 0.058 (6) 0.003 (4) 0.001 (5) 0.014 (5)
C16 0.039 (6) 0.033 (5) 0.054 (6) −0.013 (4) −0.009 (5) 0.009 (4)
C17 0.037 (5) 0.032 (5) 0.044 (5) −0.008 (4) −0.001 (4) −0.002 (4)
C18 0.029 (5) 0.023 (4) 0.045 (5) −0.009 (4) 0.004 (4) 0.006 (4)
C19 0.035 (5) 0.042 (5) 0.043 (5) 0.001 (4) −0.002 (4) −0.001 (4)
C20 0.064 (8) 0.056 (7) 0.062 (7) 0.001 (6) −0.021 (6) 0.000 (6)
C21 0.043 (6) 0.026 (5) 0.067 (7) −0.005 (4) 0.002 (5) 0.002 (5)
C22 0.026 (4) 0.020 (4) 0.052 (5) 0.000 (3) −0.001 (4) −0.007 (4)
C23 0.050 (7) 0.032 (5) 0.077 (8) −0.002 (5) −0.002 (6) −0.011 (5)
C24 0.053 (7) 0.039 (6) 0.069 (8) 0.013 (5) 0.000 (6) −0.012 (5)
C25 0.066 (8) 0.046 (6) 0.054 (7) −0.001 (6) 0.009 (6) −0.017 (5)
C26 0.056 (7) 0.043 (6) 0.064 (7) −0.010 (5) 0.017 (6) −0.014 (5)
C27 0.106 (14) 0.057 (9) 0.098 (12) −0.014 (9) 0.057 (11) −0.016 (8)
C28 0.117 (15) 0.070 (10) 0.067 (10) 0.006 (10) 0.019 (10) −0.011 (8)
C29 0.108 (13) 0.066 (9) 0.059 (8) 0.012 (9) −0.007 (8) −0.020 (7)
C30 0.070 (8) 0.053 (7) 0.053 (7) 0.005 (6) −0.011 (6) −0.012 (6)
C31 0.063 (9) 0.068 (9) 0.085 (10) −0.002 (7) −0.019 (7) −0.013 (7)
C32 0.25 (3) 0.088 (14) 0.083 (13) 0.019 (17) 0.048 (17) 0.022 (11)
C33 0.053 (8) 0.087 (11) 0.105 (12) −0.025 (8) 0.014 (8) −0.022 (9)
C34 0.031 (5) 0.027 (5) 0.064 (7) −0.003 (4) 0.003 (5) 0.005 (4)
C35 0.032 (5) 0.029 (5) 0.070 (7) −0.001 (4) −0.005 (5) 0.011 (5)
C36 0.040 (6) 0.034 (5) 0.076 (8) −0.007 (4) −0.023 (5) 0.009 (5)
C37 0.054 (7) 0.027 (5) 0.065 (7) 0.004 (5) 0.000 (6) 0.005 (5)
C38 0.039 (6) 0.027 (5) 0.067 (7) 0.000 (4) 0.004 (5) 0.006 (5)
C39 0.037 (5) 0.019 (4) 0.065 (7) −0.004 (4) −0.002 (5) 0.002 (4)
C40 0.041 (6) 0.042 (6) 0.068 (7) −0.005 (5) 0.001 (5) −0.007 (5)
C41 0.061 (8) 0.047 (7) 0.071 (8) −0.007 (6) −0.009 (6) 0.001 (6)
C42 0.033 (6) 0.053 (7) 0.085 (9) −0.006 (5) −0.021 (6) 0.016 (6)
C43 0.029 (5) 0.023 (4) 0.036 (5) 0.010 (3) −0.001 (4) 0.003 (3)
C44 0.023 (4) 0.024 (4) 0.057 (6) −0.011 (3) −0.006 (4) 0.004 (4)
C45 0.028 (5) 0.018 (4) 0.049 (5) −0.011 (3) −0.004 (4) 0.004 (4)
C46 0.025 (4) 0.024 (4) 0.041 (5) −0.001 (3) −0.009 (4) −0.003 (4)
C47 0.016 (4) 0.033 (5) 0.043 (5) −0.005 (3) −0.010 (4) −0.007 (4)
C48 0.025 (4) 0.033 (5) 0.040 (5) 0.000 (4) −0.010 (4) −0.006 (4)
C49 0.034 (5) 0.036 (5) 0.040 (5) −0.009 (4) −0.011 (4) −0.008 (4)
C50 0.024 (4) 0.043 (5) 0.043 (5) −0.006 (4) −0.010 (4) −0.011 (4)
C51 0.030 (5) 0.037 (5) 0.050 (6) 0.000 (4) −0.012 (4) −0.018 (4)
C52 0.043 (6) 0.034 (5) 0.056 (6) 0.011 (4) −0.020 (5) −0.014 (4)
C53 0.036 (5) 0.050 (6) 0.043 (5) −0.007 (5) −0.008 (4) −0.006 (5)
C54 0.021 (4) 0.026 (4) 0.049 (5) −0.002 (3) 0.001 (4) −0.003 (4)
C55 0.032 (5) 0.037 (5) 0.044 (5) −0.011 (4) −0.006 (4) 0.013 (4)
C56 0.032 (5) 0.059 (7) 0.061 (7) −0.021 (5) −0.016 (5) 0.035 (6)
C57 0.046 (7) 0.090 (10) 0.063 (8) −0.013 (7) −0.010 (6) 0.041 (8)
C58 0.052 (8) 0.138 (15) 0.040 (7) −0.034 (9) −0.020 (6) 0.039 (8)
C59 0.050 (7) 0.098 (10) 0.035 (6) −0.027 (7) 0.008 (5) 0.005 (6)
C60 0.040 (6) 0.053 (6) 0.034 (5) −0.017 (5) 0.002 (4) 0.009 (4)
C61 0.043 (6) 0.044 (6) 0.050 (6) −0.011 (5) 0.012 (5) −0.005 (5)
C62 0.059 (9) 0.22 (2) 0.055 (8) −0.038 (12) −0.027 (7) 0.021 (11)
C63 0.036 (6) 0.047 (7) 0.099 (10) −0.002 (5) −0.013 (6) 0.020 (7)
C64 0.053 (7) 0.084 (9) 0.042 (6) 0.020 (6) −0.013 (5) 0.009 (6)
C65 0.060 (8) 0.097 (10) 0.039 (6) 0.021 (7) −0.009 (5) −0.009 (6)
C66 0.074 (10) 0.139 (16) 0.061 (9) 0.037 (10) −0.015 (8) 0.004 (9)
C67 0.054 (8) 0.103 (11) 0.054 (7) 0.040 (8) −0.012 (6) −0.001 (7)
C68 0.023 (4) 0.027 (4) 0.045 (5) −0.001 (3) −0.006 (4) −0.011 (4)
C69 0.027 (5) 0.036 (5) 0.038 (5) 0.001 (4) −0.003 (4) −0.001 (4)
Cl1 0.0457 (15) 0.0331 (13) 0.103 (2) 0.0093 (11) −0.0084 (15) −0.0083 (14)
Cl2 0.0299 (12) 0.0510 (14) 0.0631 (15) 0.0118 (10) −0.0121 (11) −0.0165 (12)
Cl3 0.0448 (13) 0.0498 (13) 0.0340 (11) 0.0043 (11) −0.0024 (10) −0.0036 (10)
Cl4 0.0428 (13) 0.0393 (12) 0.0382 (11) −0.0069 (10) −0.0108 (10) 0.0057 (9)
Cu1 0.0374 (8) 0.0315 (7) 0.0466 (8) −0.0005 (6) −0.0099 (6) 0.0023 (6)
Cu2 0.0360 (8) 0.0357 (7) 0.0435 (8) 0.0001 (6) −0.0019 (6) −0.0035 (6)
Cu3 0.0242 (6) 0.0239 (6) 0.0438 (7) −0.0021 (5) −0.0041 (5) 0.0003 (5)
Cu4 0.0266 (7) 0.0257 (6) 0.0412 (7) −0.0034 (5) −0.0022 (5) −0.0006 (5)
Cu5 0.0272 (7) 0.0308 (6) 0.0331 (6) −0.0008 (5) −0.0034 (5) −0.0013 (5)
Cu6 0.0266 (6) 0.0272 (6) 0.0342 (7) −0.0027 (5) −0.0050 (5) 0.0023 (5)
Cu7 0.0252 (6) 0.0321 (7) 0.0373 (7) −0.0009 (5) −0.0091 (5) 0.0016 (5)
Cu8 0.0305 (7) 0.0272 (6) 0.0496 (8) 0.0024 (5) −0.0066 (6) −0.0012 (6)
Cu9 0.0239 (7) 0.0364 (7) 0.0456 (8) 0.0035 (5) −0.0055 (6) −0.0057 (6)
Cu10 0.0238 (6) 0.0284 (6) 0.0344 (7) −0.0016 (5) −0.0009 (5) −0.0035 (5)
Ir1 0.0281 (2) 0.02377 (19) 0.0499 (2) −0.00047 (15) −0.00544 (17) −0.00182 (16)
Ir2 0.02062 (18) 0.02220 (17) 0.03170 (19) −0.00222 (13) −0.00376 (14) 0.00161 (13)
Ir3 0.02007 (18) 0.02605 (18) 0.03278 (19) −0.00277 (14) −0.00277 (14) −0.00204 (14)
N1 0.030 (4) 0.038 (4) 0.050 (5) −0.012 (3) 0.003 (4) −0.007 (4)
N2 0.025 (4) 0.035 (4) 0.047 (5) −0.007 (3) 0.002 (3) −0.005 (3)
N3 0.036 (5) 0.056 (5) 0.039 (5) 0.004 (4) −0.013 (4) 0.002 (4)
N4 0.064 (7) 0.137 (12) 0.046 (6) 0.028 (8) −0.015 (5) −0.001 (7)
N5 0.043 (5) 0.035 (4) 0.057 (5) −0.002 (4) −0.003 (4) −0.008 (4)
N6 0.040 (5) 0.027 (4) 0.057 (5) −0.001 (3) −0.001 (4) −0.004 (4)
N7 0.033 (4) 0.030 (4) 0.037 (4) −0.005 (3) −0.002 (3) 0.003 (3)
N8 0.015 (3) 0.023 (3) 0.047 (4) −0.004 (3) −0.007 (3) 0.003 (3)
N9 0.025 (4) 0.026 (4) 0.041 (4) −0.003 (3) 0.000 (3) −0.007 (3)
O1 0.110 (9) 0.093 (8) 0.066 (6) 0.013 (7) 0.012 (6) −0.001 (6)
C71 0.086 (18) 0.075 (16) 0.061 (14) 0.032 (14) 0.015 (13) 0.008 (12)
O2 0.109 (16) 0.070 (11) 0.063 (10) −0.002 (10) −0.026 (10) −0.008 (8)
C70 0.19 (4) 0.18 (4) 0.075 (17) −0.07 (3) −0.04 (2) 0.01 (2)
C72 0.19 (4) 0.18 (4) 0.075 (17) −0.07 (3) −0.04 (2) 0.01 (2)

Ben Tickner BJT004. Geometric parameters (Å, º)

C1—Ir3 2.032 (9) C47—C48 1.382 (13)
C1—N1 1.345 (13) C47—C54 1.495 (12)
C1—N2 1.381 (12) C48—H48 0.9500
C2—H2 0.9500 C48—C49 1.382 (13)
C2—C3 1.311 (16) C49—C50 1.387 (14)
C2—N2 1.414 (13) C49—C53 1.506 (14)
C3—H3 0.9500 C50—H50 0.9500
C3—N1 1.391 (13) C50—C51 1.382 (14)
C4—C5 1.396 (15) C51—C52 1.509 (13)
C4—C9 1.371 (17) C52—H52A 0.9800
C4—N1 1.439 (14) C52—H52B 0.9800
C5—C6 1.386 (18) C52—H52C 0.9800
C5—C12 1.484 (17) C53—H53A 0.9800
C6—H6 0.9500 C53—H53B 0.9800
C6—C7 1.39 (2) C53—H53C 0.9800
C7—C8 1.369 (19) C54—H54A 0.9800
C7—C11 1.531 (19) C54—H54B 0.9800
C8—H8 0.9500 C54—H54C 0.9800
C8—C9 1.379 (17) C55—C56 1.416 (15)
C9—C10 1.529 (15) C55—C60 1.399 (16)
C10—H10A 0.9800 C55—N7 1.424 (13)
C10—H10B 0.9800 C56—C57 1.363 (19)
C10—H10C 0.9800 C56—C63 1.523 (19)
C11—H11A 0.9800 C57—H57 0.9500
C11—H11B 0.9800 C57—C58 1.37 (2)
C11—H11C 0.9800 C58—C59 1.38 (2)
C12—H12A 0.9800 C58—C62 1.523 (18)
C12—H12B 0.9800 C59—H59 0.9500
C12—H12C 0.9800 C59—C60 1.377 (16)
C13—C14 1.395 (14) C60—C61 1.491 (16)
C13—C18 1.389 (14) C61—H61A 0.9800
C13—N2 1.418 (13) C61—H61B 0.9800
C14—C15 1.374 (16) C61—H61C 0.9800
C14—C21 1.509 (14) C62—H62A 0.9800
C15—H15 0.9500 C62—H62B 0.9800
C15—C16 1.377 (16) C62—H62C 0.9800
C16—C17 1.371 (14) C63—H63A 0.9800
C16—C20 1.524 (16) C63—H63B 0.9800
C17—H17 0.9500 C63—H63C 0.9800
C17—C18 1.414 (14) C64—H64 0.9500
C18—C19 1.500 (13) C64—C65 1.366 (16)
C19—H19A 0.9800 C64—N3 1.316 (15)
C19—H19B 0.9800 C65—H65 0.9500
C19—H19C 0.9800 C65—N4 1.309 (17)
C20—H20A 0.9800 C66—H66 0.9500
C20—H20B 0.9800 C66—C67 1.350 (19)
C20—H20C 0.9800 C66—N4 1.328 (19)
C21—H21A 0.9800 C67—H67 0.9500
C21—H21B 0.9800 C67—N3 1.370 (15)
C21—H21C 0.9800 C68—H68 0.9500
C22—Ir1 2.054 (8) C68—C69 1.384 (13)
C22—N5 1.350 (13) C68—N9 1.337 (12)
C22—N6 1.366 (12) C69—H69 0.9500
C23—H23 0.9500 C69—N9i 1.345 (12)
C23—C24 1.338 (18) Cl1—Cu8 2.127 (3)
C23—N6 1.377 (14) Cl2—Cu9 2.129 (3)
C24—H24 0.9500 Cl3—Cu2 2.183 (3)
C24—N5 1.413 (14) Cl3—Cu5 2.290 (3)
C25—C26 1.370 (18) Cl4—Cu1 2.172 (3)
C25—C30 1.429 (19) Cl4—Cu6 2.287 (3)
C25—N5 1.449 (15) Cu1—Cu3 2.8138 (19)
C26—C27 1.39 (2) Cu1—Cu4 2.716 (2)
C26—C33 1.49 (2) Cu1—Cu6 2.6274 (18)
C27—H27 0.9500 Cu1—Ir1 2.5227 (15)
C27—C28 1.41 (3) Cu2—Cu3 2.716 (2)
C28—C29 1.36 (3) Cu2—Cu4 2.8052 (19)
C28—C32 1.53 (2) Cu2—Cu5 2.5877 (18)
C29—H29 0.9500 Cu2—Ir1 2.5338 (15)
C29—C30 1.39 (2) Cu3—Cu4 2.4916 (18)
C30—C31 1.49 (2) Cu3—Cu5 2.6364 (18)
C31—H31A 0.9800 Cu3—Cu6 2.6145 (18)
C31—H31B 0.9800 Cu3—Ir1 2.6325 (13)
C31—H31C 0.9800 Cu3—Ir2 2.5665 (13)
C32—H32A 0.9800 Cu4—Cu5 2.5860 (18)
C32—H32B 0.9800 Cu4—Cu6 2.6325 (18)
C32—H32C 0.9800 Cu4—Ir1 2.7478 (13)
C33—H33A 0.9800 Cu4—Ir3 2.6337 (13)
C33—H33B 0.9800 Cu5—Cu7 2.5597 (18)
C33—H33C 0.9800 Cu5—Ir2 2.6856 (13)
C34—C35 1.393 (16) Cu5—Ir3 2.6585 (13)
C34—C39 1.413 (14) Cu6—Cu10 2.5899 (17)
C34—N6 1.440 (14) Cu6—Ir2 2.6763 (12)
C35—C36 1.384 (17) Cu6—Ir3 2.6559 (13)
C35—C42 1.513 (15) Cu7—Cu8 2.5971 (19)
C36—H36 0.9500 Cu7—Cu9 2.5615 (19)
C36—C37 1.387 (16) Cu7—Cu10 3.0417 (18)
C37—C38 1.400 (17) Cu7—Ir2 2.6089 (13)
C37—C41 1.499 (18) Cu7—Ir3 2.6462 (13)
C38—H38 0.9500 Cu7—N3 1.992 (8)
C38—C39 1.368 (16) Cu8—Cu10 2.6155 (18)
C39—C40 1.517 (16) Cu8—Ir2 2.5304 (13)
C40—H40A 0.9800 Cu9—Cu10 2.5802 (18)
C40—H40B 0.9800 Cu9—Ir3 2.5350 (13)
C40—H40C 0.9800 Cu10—Ir2 2.6378 (13)
C41—H41A 0.9800 Cu10—Ir3 2.6847 (13)
C41—H41B 0.9800 Cu10—N9 2.014 (7)
C41—H41C 0.9800 O1—H1A 0.8400
C42—H42A 0.9800 O1—H1B 0.8400
C42—H42B 0.9800 O1—C70 1.45 (3)
C42—H42C 0.9800 O1—C72 1.48 (5)
C43—Ir2 2.022 (9) C71—H71A 0.9800
C43—N7 1.372 (11) C71—H71B 0.9800
C43—N8 1.363 (12) C71—H71C 0.9800
C44—H44 0.9500 C71—O2 1.40 (3)
C44—C45 1.340 (14) O2—H2A 0.8400
C44—N7 1.408 (12) C70—H70A 0.9800
C45—H45 0.9500 C70—H70B 0.9800
C45—N8 1.412 (11) C70—H70C 0.9800
C46—C47 1.401 (12) C72—H72A 0.9800
C46—C51 1.389 (13) C72—H72B 0.9800
C46—N8 1.446 (12) C72—H72C 0.9800
N1—C1—Ir3 129.6 (7) N9i—C69—H69 119.3
N1—C1—N2 105.5 (8) Cu2—Cl3—Cu5 70.64 (8)
N2—C1—Ir3 124.9 (7) Cu1—Cl4—Cu6 72.15 (8)
C3—C2—H2 126.2 Cl4—Cu1—Cu3 106.82 (8)
C3—C2—N2 107.6 (9) Cl4—Cu1—Cu4 108.26 (9)
N2—C2—H2 126.2 Cl4—Cu1—Cu6 55.94 (7)
C2—C3—H3 126.0 Cl4—Cu1—Ir1 165.57 (9)
C2—C3—N1 108.1 (10) Cu4—Cu1—Cu3 53.52 (5)
N1—C3—H3 126.0 Cu6—Cu1—Cu3 57.31 (5)
C5—C4—N1 117.9 (10) Cu6—Cu1—Cu4 59.00 (5)
C9—C4—C5 123.0 (11) Ir1—Cu1—Cu3 58.81 (4)
C9—C4—N1 119.1 (9) Ir1—Cu1—Cu4 63.14 (4)
C4—C5—C12 122.8 (11) Ir1—Cu1—Cu6 110.59 (6)
C6—C5—C4 115.9 (11) Cl3—Cu2—Cu3 111.84 (9)
C6—C5—C12 121.3 (11) Cl3—Cu2—Cu4 104.44 (9)
C5—C6—H6 118.6 Cl3—Cu2—Cu5 56.62 (7)
C7—C6—C5 122.7 (11) Cl3—Cu2—Ir1 166.10 (9)
C7—C6—H6 118.6 Cu3—Cu2—Cu4 53.62 (5)
C6—C7—C11 120.9 (13) Cu5—Cu2—Cu3 59.56 (5)
C8—C7—C6 118.3 (12) Cu5—Cu2—Cu4 57.14 (5)
C8—C7—C11 120.7 (15) Ir1—Cu2—Cu3 60.07 (4)
C7—C8—H8 119.2 Ir1—Cu2—Cu4 61.70 (4)
C7—C8—C9 121.5 (12) Ir1—Cu2—Cu5 110.96 (6)
C9—C8—H8 119.2 Cu2—Cu3—Cu1 104.92 (6)
C4—C9—C8 118.4 (11) Cu4—Cu3—Cu1 61.23 (5)
C4—C9—C10 121.2 (10) Cu4—Cu3—Cu2 65.02 (5)
C8—C9—C10 120.4 (11) Cu4—Cu3—Cu5 60.49 (5)
C9—C10—H10A 109.5 Cu4—Cu3—Cu6 62.01 (5)
C9—C10—H10B 109.5 Cu4—Cu3—Ir1 64.79 (4)
C9—C10—H10C 109.5 Cu4—Cu3—Ir2 99.09 (5)
H10A—C10—H10B 109.5 Cu5—Cu3—Cu1 120.76 (6)
H10A—C10—H10C 109.5 Cu5—Cu3—Cu2 57.80 (5)
H10B—C10—H10C 109.5 Cu6—Cu3—Cu1 57.76 (5)
C7—C11—H11A 109.5 Cu6—Cu3—Cu2 125.79 (6)
C7—C11—H11B 109.5 Cu6—Cu3—Cu5 86.14 (5)
C7—C11—H11C 109.5 Cu6—Cu3—Ir1 107.61 (5)
H11A—C11—H11B 109.5 Ir1—Cu3—Cu1 55.07 (4)
H11A—C11—H11C 109.5 Ir1—Cu3—Cu2 56.53 (4)
H11B—C11—H11C 109.5 Ir1—Cu3—Cu5 106.43 (5)
C5—C12—H12A 109.5 Ir2—Cu3—Cu1 119.07 (6)
C5—C12—H12B 109.5 Ir2—Cu3—Cu2 117.60 (6)
C5—C12—H12C 109.5 Ir2—Cu3—Cu5 62.14 (4)
H12A—C12—H12B 109.5 Ir2—Cu3—Cu6 62.20 (4)
H12A—C12—H12C 109.5 Ir2—Cu3—Ir1 163.87 (6)
H12B—C12—H12C 109.5 Cu1—Cu4—Cu2 105.15 (6)
C14—C13—N2 117.8 (9) Cu1—Cu4—Ir1 54.99 (4)
C18—C13—C14 122.4 (10) Cu3—Cu4—Cu1 65.24 (5)
C18—C13—N2 119.7 (9) Cu3—Cu4—Cu2 61.36 (5)
C13—C14—C21 122.6 (10) Cu3—Cu4—Cu5 62.53 (5)
C15—C14—C13 117.7 (9) Cu3—Cu4—Cu6 61.29 (5)
C15—C14—C21 119.6 (9) Cu3—Cu4—Ir1 60.09 (4)
C14—C15—H15 118.7 Cu3—Cu4—Ir3 97.57 (5)
C14—C15—C16 122.5 (9) Cu5—Cu4—Cu1 126.68 (6)
C16—C15—H15 118.7 Cu5—Cu4—Cu2 57.19 (5)
C15—C16—C20 120.5 (10) Cu5—Cu4—Cu6 86.80 (5)
C17—C16—C15 118.7 (10) Cu5—Cu4—Ir1 104.55 (5)
C17—C16—C20 120.8 (10) Cu5—Cu4—Ir3 61.23 (4)
C16—C17—H17 119.0 Cu6—Cu4—Cu1 58.82 (5)
C16—C17—C18 121.9 (9) Cu6—Cu4—Cu2 121.51 (6)
C18—C17—H17 119.0 Cu6—Cu4—Ir1 103.79 (5)
C13—C18—C17 116.7 (9) Cu6—Cu4—Ir3 60.57 (4)
C13—C18—C19 123.4 (9) Ir1—Cu4—Cu2 54.28 (4)
C17—C18—C19 119.8 (9) Ir3—Cu4—Cu1 117.58 (6)
C18—C19—H19A 109.5 Ir3—Cu4—Cu2 117.81 (5)
C18—C19—H19B 109.5 Ir3—Cu4—Ir1 157.65 (5)
C18—C19—H19C 109.5 Cl3—Cu5—Cu2 52.74 (7)
H19A—C19—H19B 109.5 Cl3—Cu5—Cu3 111.15 (8)
H19A—C19—H19C 109.5 Cl3—Cu5—Cu4 108.49 (8)
H19B—C19—H19C 109.5 Cl3—Cu5—Cu7 124.87 (9)
C16—C20—H20A 109.5 Cl3—Cu5—Ir2 143.50 (9)
C16—C20—H20B 109.5 Cl3—Cu5—Ir3 141.38 (9)
C16—C20—H20C 109.5 Cu2—Cu5—Cu3 62.64 (5)
H20A—C20—H20B 109.5 Cu2—Cu5—Ir2 117.95 (6)
H20A—C20—H20C 109.5 Cu2—Cu5—Ir3 125.23 (6)
H20B—C20—H20C 109.5 Cu3—Cu5—Ir2 57.65 (4)
C14—C21—H21A 109.5 Cu3—Cu5—Ir3 93.50 (5)
C14—C21—H21B 109.5 Cu4—Cu5—Cu2 65.67 (5)
C14—C21—H21C 109.5 Cu4—Cu5—Cu3 56.98 (5)
H21A—C21—H21B 109.5 Cu4—Cu5—Ir2 93.78 (5)
H21A—C21—H21C 109.5 Cu4—Cu5—Ir3 60.27 (4)
H21B—C21—H21C 109.5 Cu7—Cu5—Cu2 173.38 (7)
N5—C22—Ir1 127.8 (7) Cu7—Cu5—Cu3 116.42 (6)
N5—C22—N6 104.1 (8) Cu7—Cu5—Cu4 119.86 (6)
N6—C22—Ir1 127.8 (7) Cu7—Cu5—Ir2 59.59 (4)
C24—C23—H23 126.2 Cu7—Cu5—Ir3 60.91 (4)
C24—C23—N6 107.5 (10) Ir3—Cu5—Ir2 74.79 (3)
N6—C23—H23 126.2 Cl4—Cu6—Cu1 51.90 (7)
C23—C24—H24 127.0 Cl4—Cu6—Cu3 110.10 (8)
C23—C24—N5 105.9 (10) Cl4—Cu6—Cu4 107.57 (8)
N5—C24—H24 127.0 Cl4—Cu6—Cu10 125.49 (9)
C26—C25—C30 123.6 (12) Cl4—Cu6—Ir2 144.79 (8)
C26—C25—N5 120.1 (12) Cl4—Cu6—Ir3 140.09 (8)
C30—C25—N5 116.3 (11) Cu1—Cu6—Cu4 62.18 (5)
C25—C26—C27 116.1 (15) Cu1—Cu6—Ir2 122.02 (6)
C25—C26—C33 121.4 (12) Cu1—Cu6—Ir3 120.01 (6)
C27—C26—C33 122.5 (14) Cu3—Cu6—Cu1 64.93 (5)
C26—C27—H27 118.5 Cu3—Cu6—Cu4 56.70 (5)
C26—C27—C28 123.0 (16) Cu3—Cu6—Ir2 58.02 (4)
C28—C27—H27 118.5 Cu3—Cu6—Ir3 94.07 (5)
C27—C28—C32 120 (2) Cu4—Cu6—Ir2 92.94 (5)
C29—C28—C27 118.2 (16) Cu4—Cu6—Ir3 59.74 (4)
C29—C28—C32 122 (2) Cu10—Cu6—Cu1 177.38 (7)
C28—C29—H29 118.8 Cu10—Cu6—Cu3 117.42 (6)
C28—C29—C30 122.4 (17) Cu10—Cu6—Cu4 119.86 (6)
C30—C29—H29 118.8 Cu10—Cu6—Ir2 60.09 (4)
C25—C30—C31 122.4 (12) Cu10—Cu6—Ir3 61.55 (4)
C29—C30—C25 116.5 (14) Ir3—Cu6—Ir2 74.99 (3)
C29—C30—C31 121.0 (14) Cu5—Cu7—Cu8 120.17 (6)
C30—C31—H31A 109.5 Cu5—Cu7—Cu9 119.11 (6)
C30—C31—H31B 109.5 Cu5—Cu7—Cu10 97.15 (5)
C30—C31—H31C 109.5 Cu5—Cu7—Ir2 62.60 (4)
H31A—C31—H31B 109.5 Cu5—Cu7—Ir3 61.39 (4)
H31A—C31—H31C 109.5 Cu8—Cu7—Cu10 54.58 (5)
H31B—C31—H31C 109.5 Cu8—Cu7—Ir2 58.16 (4)
C28—C32—H32A 109.5 Cu8—Cu7—Ir3 109.79 (6)
C28—C32—H32B 109.5 Cu9—Cu7—Cu8 87.55 (6)
C28—C32—H32C 109.5 Cu9—Cu7—Cu10 54.01 (5)
H32A—C32—H32B 109.5 Cu9—Cu7—Ir2 108.44 (6)
H32A—C32—H32C 109.5 Cu9—Cu7—Ir3 58.23 (4)
H32B—C32—H32C 109.5 Ir2—Cu7—Cu10 55.01 (3)
C26—C33—H33A 109.5 Ir2—Cu7—Ir3 76.28 (3)
C26—C33—H33B 109.5 Ir3—Cu7—Cu10 55.81 (3)
C26—C33—H33C 109.5 N3—Cu7—Cu5 111.3 (3)
H33A—C33—H33B 109.5 N3—Cu7—Cu8 112.0 (3)
H33A—C33—H33C 109.5 N3—Cu7—Cu9 103.8 (3)
H33B—C33—H33C 109.5 N3—Cu7—Cu10 150.8 (3)
C35—C34—C39 122.5 (10) N3—Cu7—Ir2 145.4 (3)
C35—C34—N6 118.9 (9) N3—Cu7—Ir3 133.3 (3)
C39—C34—N6 118.7 (10) Cl1—Cu8—Cu7 127.85 (11)
C34—C35—C42 119.9 (11) Cl1—Cu8—Cu10 122.14 (11)
C36—C35—C34 118.0 (10) Cl1—Cu8—Ir2 170.41 (11)
C36—C35—C42 122.1 (11) Cu7—Cu8—Cu10 71.40 (5)
C35—C36—H36 119.2 Ir2—Cu8—Cu7 61.15 (4)
C35—C36—C37 121.6 (11) Ir2—Cu8—Cu10 61.65 (4)
C37—C36—H36 119.2 Cl2—Cu9—Cu7 118.91 (10)
C36—C37—C38 118.1 (11) Cl2—Cu9—Cu10 118.20 (10)
C36—C37—C41 120.2 (12) Cl2—Cu9—Ir3 177.99 (10)
C38—C37—C41 121.6 (11) Cu7—Cu9—Cu10 72.54 (5)
C37—C38—H38 118.5 Ir3—Cu9—Cu7 62.56 (4)
C39—C38—C37 123.1 (10) Ir3—Cu9—Cu10 63.31 (4)
C39—C38—H38 118.5 Cu6—Cu10—Cu7 94.99 (5)
C34—C39—C40 120.7 (10) Cu6—Cu10—Cu8 118.77 (6)
C38—C39—C34 116.5 (10) Cu6—Cu10—Ir2 61.58 (4)
C38—C39—C40 122.8 (10) Cu6—Cu10—Ir3 60.43 (4)
C39—C40—H40A 109.5 Cu8—Cu10—Cu7 54.02 (5)
C39—C40—H40B 109.5 Cu8—Cu10—Ir2 57.59 (4)
C39—C40—H40C 109.5 Cu8—Cu10—Ir3 108.06 (5)
H40A—C40—H40B 109.5 Cu9—Cu10—Cu6 117.58 (6)
H40A—C40—H40C 109.5 Cu9—Cu10—Cu7 53.45 (5)
H40B—C40—H40C 109.5 Cu9—Cu10—Cu8 86.77 (6)
C37—C41—H41A 109.5 Cu9—Cu10—Ir2 107.00 (5)
C37—C41—H41B 109.5 Cu9—Cu10—Ir3 57.52 (4)
C37—C41—H41C 109.5 Ir2—Cu10—Cu7 54.13 (3)
H41A—C41—H41B 109.5 Ir2—Cu10—Ir3 75.14 (3)
H41A—C41—H41C 109.5 Ir3—Cu10—Cu7 54.62 (3)
H41B—C41—H41C 109.5 N9—Cu10—Cu6 123.1 (2)
C35—C42—H42A 109.5 N9—Cu10—Cu7 141.8 (2)
C35—C42—H42B 109.5 N9—Cu10—Cu8 102.9 (2)
C35—C42—H42C 109.5 N9—Cu10—Cu9 100.7 (2)
H42A—C42—H42B 109.5 N9—Cu10—Ir2 144.2 (2)
H42A—C42—H42C 109.5 N9—Cu10—Ir3 140.1 (2)
H42B—C42—H42C 109.5 C22—Ir1—Cu1 122.8 (3)
N7—C43—Ir2 127.5 (7) C22—Ir1—Cu2 101.9 (3)
N8—C43—Ir2 127.6 (6) C22—Ir1—Cu3 164.6 (3)
N8—C43—N7 104.8 (8) C22—Ir1—Cu4 115.7 (3)
C45—C44—H44 126.1 Cu1—Ir1—Cu2 120.28 (5)
C45—C44—N7 107.8 (8) Cu1—Ir1—Cu3 66.12 (4)
N7—C44—H44 126.1 Cu1—Ir1—Cu4 61.87 (4)
C44—C45—H45 126.8 Cu2—Ir1—Cu3 63.40 (4)
C44—C45—N8 106.4 (8) Cu2—Ir1—Cu4 64.01 (4)
N8—C45—H45 126.8 Cu3—Ir1—Cu4 55.12 (4)
C47—C46—N8 118.2 (8) C43—Ir2—Cu3 92.8 (2)
C51—C46—C47 122.2 (9) C43—Ir2—Cu5 124.8 (3)
C51—C46—N8 119.6 (8) C43—Ir2—Cu6 125.2 (2)
C46—C47—C54 121.2 (8) C43—Ir2—Cu7 130.7 (2)
C48—C47—C46 116.9 (8) C43—Ir2—Cu8 89.9 (2)
C48—C47—C54 121.9 (8) C43—Ir2—Cu10 130.5 (3)
C47—C48—H48 118.5 Cu3—Ir2—Cu5 60.21 (4)
C49—C48—C47 122.9 (9) Cu3—Ir2—Cu6 59.78 (4)
C49—C48—H48 118.5 Cu3—Ir2—Cu7 117.17 (4)
C48—C49—C50 117.7 (9) Cu3—Ir2—Cu10 117.42 (4)
C48—C49—C53 120.7 (9) Cu6—Ir2—Cu5 83.94 (4)
C50—C49—C53 121.7 (9) Cu7—Ir2—Cu5 57.80 (4)
C49—C50—H50 118.8 Cu7—Ir2—Cu6 103.93 (4)
C51—C50—C49 122.4 (9) Cu7—Ir2—Cu10 70.86 (4)
C51—C50—H50 118.8 Cu8—Ir2—Cu3 177.35 (4)
C46—C51—C52 121.9 (9) Cu8—Ir2—Cu5 117.92 (4)
C50—C51—C46 117.6 (9) Cu8—Ir2—Cu6 118.69 (4)
C50—C51—C52 120.5 (9) Cu8—Ir2—Cu7 60.68 (4)
C51—C52—H52A 109.5 Cu8—Ir2—Cu10 60.76 (4)
C51—C52—H52B 109.5 Cu10—Ir2—Cu5 104.60 (4)
C51—C52—H52C 109.5 Cu10—Ir2—Cu6 58.33 (4)
H52A—C52—H52B 109.5 C1—Ir3—Cu4 98.4 (3)
H52A—C52—H52C 109.5 C1—Ir3—Cu5 126.9 (3)
H52B—C52—H52C 109.5 C1—Ir3—Cu6 126.7 (3)
C49—C53—H53A 109.5 C1—Ir3—Cu7 129.2 (3)
C49—C53—H53B 109.5 C1—Ir3—Cu9 88.4 (3)
C49—C53—H53C 109.5 C1—Ir3—Cu10 128.4 (3)
H53A—C53—H53B 109.5 Cu4—Ir3—Cu5 58.50 (4)
H53A—C53—H53C 109.5 Cu4—Ir3—Cu6 59.69 (4)
H53B—C53—H53C 109.5 Cu4—Ir3—Cu7 115.00 (4)
C47—C54—H54A 109.5 Cu4—Ir3—Cu10 116.38 (4)
C47—C54—H54B 109.5 Cu5—Ir3—Cu10 104.05 (4)
C47—C54—H54C 109.5 Cu6—Ir3—Cu5 84.87 (4)
H54A—C54—H54B 109.5 Cu6—Ir3—Cu10 58.02 (4)
H54A—C54—H54C 109.5 Cu7—Ir3—Cu5 57.70 (4)
H54B—C54—H54C 109.5 Cu7—Ir3—Cu6 103.47 (4)
C56—C55—N7 118.5 (10) Cu7—Ir3—Cu10 69.58 (4)
C60—C55—C56 121.5 (10) Cu9—Ir3—Cu4 173.20 (4)
C60—C55—N7 120.0 (9) Cu9—Ir3—Cu5 116.43 (4)
C55—C56—C63 120.5 (10) Cu9—Ir3—Cu6 116.80 (4)
C57—C56—C55 116.8 (13) Cu9—Ir3—Cu7 59.21 (4)
C57—C56—C63 122.6 (12) Cu9—Ir3—Cu10 59.17 (4)
C56—C57—H57 117.9 C1—N1—C3 110.4 (9)
C56—C57—C58 124.1 (13) C1—N1—C4 127.0 (8)
C58—C57—H57 117.9 C3—N1—C4 122.6 (9)
C57—C58—C59 117.2 (12) C1—N2—C2 108.4 (8)
C57—C58—C62 120.7 (16) C1—N2—C13 127.5 (8)
C59—C58—C62 122.0 (18) C2—N2—C13 123.8 (8)
C58—C59—H59 118.4 C64—N3—C67 114.9 (10)
C60—C59—C58 123.2 (14) C64—N3—Cu7 117.9 (7)
C60—C59—H59 118.4 C67—N3—Cu7 124.4 (8)
C55—C60—C61 120.7 (9) C65—N4—C66 115.2 (11)
C59—C60—C55 117.2 (11) C22—N5—C24 111.0 (9)
C59—C60—C61 122.0 (11) C22—N5—C25 126.6 (8)
C60—C61—H61A 109.5 C24—N5—C25 122.2 (9)
C60—C61—H61B 109.5 C22—N6—C23 111.3 (9)
C60—C61—H61C 109.5 C22—N6—C34 125.3 (8)
H61A—C61—H61B 109.5 C23—N6—C34 123.2 (9)
H61A—C61—H61C 109.5 C43—N7—C44 110.1 (8)
H61B—C61—H61C 109.5 C43—N7—C55 126.4 (8)
C58—C62—H62A 109.5 C44—N7—C55 123.5 (8)
C58—C62—H62B 109.5 C43—N8—C45 111.0 (8)
C58—C62—H62C 109.5 C43—N8—C46 124.5 (7)
H62A—C62—H62B 109.5 C45—N8—C46 124.4 (7)
H62A—C62—H62C 109.5 C68—N9—C69i 116.6 (8)
H62B—C62—H62C 109.5 C68—N9—Cu10 120.5 (6)
C56—C63—H63A 109.5 C69i—N9—Cu10 122.8 (6)
C56—C63—H63B 109.5 C70—O1—H1A 109.5
C56—C63—H63C 109.5 C72—O1—H1B 109.5
H63A—C63—H63B 109.5 H71A—C71—H71B 109.5
H63A—C63—H63C 109.5 H71A—C71—H71C 109.5
H63B—C63—H63C 109.5 H71B—C71—H71C 109.5
C65—C64—H64 118.9 O2—C71—H71A 109.5
N3—C64—H64 118.9 O2—C71—H71B 109.5
N3—C64—C65 122.3 (11) O2—C71—H71C 109.5
C64—C65—H65 118.6 C71—O2—H2A 109.5
N4—C65—C64 122.8 (12) O1—C70—H70A 109.5
N4—C65—H65 118.6 O1—C70—H70B 109.5
C67—C66—H66 118.3 O1—C70—H70C 109.5
N4—C66—H66 118.3 H70A—C70—H70B 109.5
N4—C66—C67 123.4 (14) H70A—C70—H70C 109.5
C66—C67—H67 119.8 H70B—C70—H70C 109.5
C66—C67—N3 120.5 (13) O1—C72—H72A 109.5
N3—C67—H67 119.8 O1—C72—H72B 109.5
C69—C68—H68 119.1 O1—C72—H72C 109.5
N9—C68—H68 119.1 H72A—C72—H72B 109.5
N9—C68—C69 121.9 (8) H72A—C72—H72C 109.5
C68—C69—H69 119.3 H72B—C72—H72C 109.5
N9i—C69—C68 121.5 (9)
C2—C3—N1—C1 −1.4 (13) C49—C50—C51—C52 179.1 (9)
C2—C3—N1—C4 179.6 (10) C51—C46—C47—C48 −5.3 (13)
C3—C2—N2—C1 0.0 (12) C51—C46—C47—C54 176.8 (8)
C3—C2—N2—C13 174.9 (9) C51—C46—N8—C43 85.6 (11)
C4—C5—C6—C7 −3.0 (18) C51—C46—N8—C45 −97.1 (10)
C5—C4—C9—C8 2.0 (17) C53—C49—C50—C51 177.0 (9)
C5—C4—C9—C10 −177.3 (10) C54—C47—C48—C49 177.8 (8)
C5—C4—N1—C1 −86.3 (13) C55—C56—C57—C58 −1.8 (17)
C5—C4—N1—C3 92.5 (12) C56—C55—C60—C59 −0.3 (14)
C5—C6—C7—C8 5 (2) C56—C55—C60—C61 −176.9 (9)
C5—C6—C7—C11 −176.8 (15) C56—C55—N7—C43 −89.4 (11)
C6—C7—C8—C9 −4 (2) C56—C55—N7—C44 93.1 (11)
C7—C8—C9—C4 0.4 (19) C56—C57—C58—C59 4 (2)
C7—C8—C9—C10 179.7 (12) C56—C57—C58—C62 −178.1 (12)
C9—C4—C5—C6 −0.7 (16) C57—C58—C59—C60 −3.9 (19)
C9—C4—C5—C12 176.5 (11) C58—C59—C60—C55 2.3 (17)
C9—C4—N1—C1 95.7 (13) C58—C59—C60—C61 178.9 (11)
C9—C4—N1—C3 −85.5 (13) C60—C55—C56—C57 0.0 (14)
C11—C7—C8—C9 178.2 (15) C60—C55—C56—C63 176.0 (9)
C12—C5—C6—C7 179.8 (12) C60—C55—N7—C43 90.0 (12)
C13—C14—C15—C16 −0.3 (14) C60—C55—N7—C44 −87.5 (11)
C14—C13—C18—C17 −1.7 (13) C62—C58—C59—C60 177.8 (12)
C14—C13—C18—C19 −179.5 (8) C63—C56—C57—C58 −177.7 (12)
C14—C13—N2—C1 85.1 (12) C64—C65—N4—C66 5 (3)
C14—C13—N2—C2 −88.8 (11) C65—C64—N3—C67 −9 (2)
C14—C15—C16—C17 −0.9 (15) C65—C64—N3—Cu7 −170.7 (12)
C14—C15—C16—C20 176.6 (10) C66—C67—N3—C64 11 (2)
C15—C16—C17—C18 0.9 (14) C66—C67—N3—Cu7 171.4 (14)
C16—C17—C18—C13 0.4 (13) C67—C66—N4—C65 −3 (3)
C16—C17—C18—C19 178.3 (9) C69—C68—N9—C69i −1.0 (14)
C18—C13—C14—C15 1.7 (13) C69—C68—N9—Cu10 176.7 (7)
C18—C13—C14—C21 178.7 (8) Ir1—C22—N5—C24 −173.9 (8)
C18—C13—N2—C1 −93.6 (11) Ir1—C22—N5—C25 1.6 (16)
C18—C13—N2—C2 92.5 (11) Ir1—C22—N6—C23 174.8 (8)
C20—C16—C17—C18 −176.6 (9) Ir1—C22—N6—C34 −1.1 (14)
C21—C14—C15—C16 −177.4 (9) Ir2—C43—N7—C44 175.2 (6)
C23—C24—N5—C22 −1.3 (14) Ir2—C43—N7—C55 −2.5 (13)
C23—C24—N5—C25 −177.1 (11) Ir2—C43—N8—C45 −175.4 (6)
C24—C23—N6—C22 −1.1 (13) Ir2—C43—N8—C46 2.2 (12)
C24—C23—N6—C34 174.9 (10) Ir3—C1—N1—C3 179.5 (7)
C25—C26—C27—C28 1 (2) Ir3—C1—N1—C4 −1.6 (15)
C26—C25—C30—C29 3.0 (18) Ir3—C1—N2—C2 −179.1 (7)
C26—C25—C30—C31 179.6 (12) Ir3—C1—N2—C13 6.2 (13)
C26—C25—N5—C22 −85.4 (14) N1—C1—N2—C2 −0.8 (10)
C26—C25—N5—C24 89.7 (14) N1—C1—N2—C13 −175.5 (9)
C26—C27—C28—C29 1 (2) N1—C4—C5—C6 −178.6 (10)
C26—C27—C28—C32 −177.0 (14) N1—C4—C5—C12 −1.4 (15)
C27—C28—C29—C30 −2 (2) N1—C4—C9—C8 179.8 (10)
C28—C29—C30—C25 0 (2) N1—C4—C9—C10 0.5 (15)
C28—C29—C30—C31 −177.1 (14) N2—C1—N1—C3 1.4 (11)
C30—C25—C26—C27 −3.3 (18) N2—C1—N1—C4 −179.7 (9)
C30—C25—C26—C33 178.2 (12) N2—C2—C3—N1 0.9 (13)
C30—C25—N5—C22 93.7 (13) N2—C13—C14—C15 −177.0 (8)
C30—C25—N5—C24 −91.2 (13) N2—C13—C14—C21 0.0 (13)
C32—C28—C29—C30 176.6 (15) N2—C13—C18—C17 176.9 (8)
C33—C26—C27—C28 179.6 (14) N2—C13—C18—C19 −0.9 (13)
C34—C35—C36—C37 0.1 (15) N3—C64—C65—N4 1 (3)
C35—C34—C39—C38 −3.9 (14) N4—C66—C67—N3 −5 (3)
C35—C34—C39—C40 176.9 (9) N5—C22—N6—C23 0.3 (11)
C35—C34—N6—C22 86.5 (12) N5—C22—N6—C34 −175.6 (9)
C35—C34—N6—C23 −88.9 (13) N5—C25—C26—C27 175.8 (11)
C35—C36—C37—C38 −3.0 (15) N5—C25—C26—C33 −2.7 (17)
C35—C36—C37—C41 176.2 (10) N5—C25—C30—C29 −176.1 (10)
C36—C37—C38—C39 2.5 (15) N5—C25—C30—C31 0.5 (17)
C37—C38—C39—C34 0.8 (14) N6—C22—N5—C24 0.6 (11)
C37—C38—C39—C40 −180.0 (9) N6—C22—N5—C25 176.2 (10)
C39—C34—C35—C36 3.4 (15) N6—C23—C24—N5 1.4 (14)
C39—C34—C35—C42 −178.8 (9) N6—C34—C35—C36 −176.9 (9)
C39—C34—N6—C22 −93.8 (12) N6—C34—C35—C42 0.9 (14)
C39—C34—N6—C23 90.8 (12) N6—C34—C39—C38 176.5 (8)
C41—C37—C38—C39 −176.6 (10) N6—C34—C39—C40 −2.8 (13)
C42—C35—C36—C37 −177.6 (10) N7—C43—N8—C45 1.2 (9)
C44—C45—N8—C43 −0.6 (10) N7—C43—N8—C46 178.8 (7)
C44—C45—N8—C46 −178.2 (8) N7—C44—C45—N8 −0.3 (10)
C45—C44—N7—C43 1.1 (10) N7—C55—C56—C57 179.4 (9)
C45—C44—N7—C55 178.9 (9) N7—C55—C56—C63 −4.6 (13)
C46—C47—C48—C49 −0.1 (13) N7—C55—C60—C59 −179.7 (9)
C47—C46—C51—C50 6.6 (13) N7—C55—C60—C61 3.7 (14)
C47—C46—C51—C52 −175.1 (8) N8—C43—N7—C44 −1.4 (9)
C47—C46—N8—C43 −93.9 (10) N8—C43—N7—C55 −179.2 (8)
C47—C46—N8—C45 83.4 (10) N8—C46—C47—C48 174.2 (7)
C47—C48—C49—C50 3.8 (14) N8—C46—C47—C54 −3.7 (12)
C47—C48—C49—C53 −175.6 (9) N8—C46—C51—C50 −172.9 (8)
C48—C49—C50—C51 −2.4 (14) N8—C46—C51—C52 5.4 (13)
C49—C50—C51—C46 −2.6 (14) N9—C68—C69—N9i 1.0 (15)

Symmetry code: (i) −x+2, −y, −z+1.

Ben Tickner BJT004. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O1 0.84 1.87 2.62 (2) 148

Funding Statement

This work was funded by UK Research and Innovation (UKRI) grant EP/X023672/1.

References

  1. Adams, R. D., Chen, M., Elpitiya, G., Yang, X. & Zhang, Q. (2013). Organometallics, 32, 2416–2426.
  2. Baumgartner, M., Schmalle, H. & Dubler, E. (1990). Polyhedron, 9, 1155–1164.
  3. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  4. Croizat, P., Sculfort, S., Welter, R. & Braunstein, P. (2016). Organometallics, 35, 3949–3958.
  5. Dhayal, R. S., van Zyl, W. E. & Liu, C. W. (2016). Acc. Chem. Res.49, 86–95. [DOI] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  7. Gao, J., Zhang, F. & Zhang, X. (2024). Adv. Sci.11, 2400377.
  8. Graham, P. M., Pike, R. D., Sabat, M., Bailey, R. D. & Pennington, W. T. (2000). Inorg. Chem.39, 5121–5132. [DOI] [PubMed]
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Harvey, P. D. & Knorr, M. (2016). J. Inorg. Organomet. Polym.26, 1174–1197.
  11. Hau, S. C. K., Yeung, M. C.-L., Yam, V. W.-W. & Mak, T. C. W. (2016). J. Am. Chem. Soc.138, 13732–13739. [DOI] [PubMed]
  12. Johnsson, M., Törnroos, K. W., Mila, F. & Millet, P. (2000). Chem. Mater.12, 2853–2857.
  13. Kawamura, A., Greenwood, A. R., Filatov, A. S., Gallagher, A. T., Galli, G. & Anderson, J. S. (2017). Inorg. Chem.56, 3349–3356. [DOI] [PubMed]
  14. Liu, X. & Astruc, D. (2018). Coord. Chem. Rev.359, 112–126.
  15. Rao, V. M., Sathyanarayana, D. N. & Manohar, H. (1983). J. Chem. Soc. Dalton Trans. pp. 2167–2173.
  16. Rhodes, L. F., Huffman, J. C. & Caulton, K. G. (1985). J. Am. Chem. Soc.107, 1759–1760.
  17. Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  18. Sculfort, S. & Braunstein, P. (2011). Chem. Soc. Rev.40, 2741–2760. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Silva, A. F., Calhau, I. B., Gomes, A. C., Valente, A. A., Gonçalves, I. S. & Pillinger, M. (2023). ACS Biomater. Sci. Eng.9, 1909–1918. [DOI] [PMC free article] [PubMed]
  22. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  23. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  24. Tang, J. & Zhao, L. (2020). Chem. Commun.56, 1915–1925. [DOI] [PubMed]
  25. Troyano, J., Zamora, F. & Delgado, S. (2021). Chem. Soc. Rev.50, 4606–4628. [DOI] [PubMed]
  26. Yip, S.-K., Chan, C.-L., Lam, W. H., Cheung, K.-K. & Yam, V. W.-W. (2007). Photochem. & Photobiol. Sci.6, 365–371. [DOI] [PubMed]
  27. Zhang, Y., Zhang, J., Li, Z., Qin, Z., Sharma, S. & Li, G. (2023a). Commun. Chem.6, 24. [DOI] [PMC free article] [PubMed]
  28. Zhang, Y.-Z., Kong, X.-J., Zhou, W.-F., Li, C.-H., Hu, H., Hou, H., Liu, Z., Geng, L., Huang, H., Zhang, X., Zhang, D. & Li, J. (2023b). Appl. Mater. Interfaces, 15, 4208–4215. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024007151/wm5728sup1.cif

e-80-00890-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024007151/wm5728Isup2.hkl

e-80-00890-Isup2.hkl (1.2MB, hkl)
e-80-00890-sup3.mol (19.2KB, mol)

Chemical Connectivity (.mol) files. DOI: 10.1107/S2056989024007151/wm5728sup3.mol

CCDC reference: 2364376

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES