Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Dec 1;280(Pt 2):341–352. doi: 10.1042/bj2800341

Large-scale purification and characterization of the major phosphoproteins and mucins of human submandibular-sublingual saliva.

N Ramasubbu 1, M S Reddy 1, E J Bergey 1, G G Haraszthy 1, S D Soni 1, M J Levine 1
PMCID: PMC1130552  PMID: 1747107

Abstract

The major components of human submandibular-sublingual saliva (HSMSL) are mucins, amylases, cystatins, proline-rich proteins and statherin. Structure-function studies of these molecules have been hampered by the small amounts of purified materials that can be isolated from human secretions. The present study describes an integrated purification protocol for the large-scale preparation of many of these molecules. To dissociate partially heterotypic complexes among salivary molecules, HSMSL was initially fractionated into four pools by gel filtration with 6 M-guanidine hydrochloride. Subsequent fractionation of these four pools by gel-filtration and ion-exchange chromatography resulted in the purification of high- and low-Mr mucins, neutral and acidic cystatins, acidic and basic proline-rich proteins and statherin. Many variants or isoforms of these salivary molecules have been identified and biochemically characterized. Biochemical studies indicated that the low-Mr mucin exists as two isoforms which vary in their sialic acid to fucose ratios. Three isoforms of acidic cystatin S were characterized which differ in their phosphate content. Two isoforms of a basic proline-rich peptide were identified; the smaller peptide was a truncated form missing the first seven amino acids.

Full text

PDF
341

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguirre A., Mendoza B., Levine M. J., Hatton M. N., Douglas W. H. In vitro characterization of human salivary lubrication. Arch Oral Biol. 1989;34(8):675–677. doi: 10.1016/0003-9969(89)90024-1. [DOI] [PubMed] [Google Scholar]
  2. Aguirre A., Mendoza B., Reddy M. S., Scannapieco F. A., Levine M. J., Hatton M. N. Lubrication of selected salivary molecules and artificial salivas. Dysphagia. 1989;4(2):95–100. doi: 10.1007/BF02407152. [DOI] [PubMed] [Google Scholar]
  3. Al-Hashimi I., Dickinson D. P., Levine M. J. Purification, molecular cloning, and sequencing of salivary cystatin SA-1. J Biol Chem. 1988 Jul 5;263(19):9381–9387. [PubMed] [Google Scholar]
  4. Al-Hashimi I., Levine M. J. Characterization of in vivo salivary-derived enamel pellicle. Arch Oral Biol. 1989;34(4):289–295. doi: 10.1016/0003-9969(89)90070-8. [DOI] [PubMed] [Google Scholar]
  5. Barrett A. J., Kirschke H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 1981;80(Pt 100):535–561. doi: 10.1016/s0076-6879(81)80043-2. [DOI] [PubMed] [Google Scholar]
  6. Bennick A., Chau G., Goodlin R., Abrams S., Tustian D., Madapallimattam G. The role of human salivary acidic proline-rich proteins in the formation of acquired dental pellicle in vivo and their fate after adsorption to the human enamel surface. Arch Oral Biol. 1983;28(1):19–27. doi: 10.1016/0003-9969(83)90022-5. [DOI] [PubMed] [Google Scholar]
  7. Bennick A. Chemical and physical characterization of a phosphoprotein, Protein C, from human saliva and comparison with a related protein A. Biochem J. 1977 May 1;163(2):229–239. doi: 10.1042/bj1630229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  9. Cohen R. E., Aguirre A., Neiders M. E., Levine M. J., Jones P. C., Reddy M. S., Haar J. G. Immunochemistry and immunogenicity of low molecular weight human salivary mucin. Arch Oral Biol. 1991;36(5):347–356. doi: 10.1016/0003-9969(91)90004-E. [DOI] [PubMed] [Google Scholar]
  10. Douglas C. W. The binding of human salivary alpha-amylase by oral strains of streptococcal bacteria. Arch Oral Biol. 1983;28(7):567–573. doi: 10.1016/0003-9969(83)90003-1. [DOI] [PubMed] [Google Scholar]
  11. Fisher S. J., Prakobphol A., Kajisa L., Murray P. A. External radiolabelling of components of pellicle on human enamel and cementum. Arch Oral Biol. 1987;32(7):509–517. doi: 10.1016/s0003-9969(87)80013-4. [DOI] [PubMed] [Google Scholar]
  12. Gans R. F., Watson G. E., Tabak L. A. A new assessment in vitro of human salivary lubrication using a compliant substrate. Arch Oral Biol. 1990;35(7):487–492. doi: 10.1016/0003-9969(90)90077-n. [DOI] [PubMed] [Google Scholar]
  13. Gibbons R. J., Etherden I., Moreno E. C. Association of neuraminidase-sensitive receptors and putative hydrophobic interactions with high-affinity binding sites for Streptococcus sanguis C5 in salivary pellicles. Infect Immun. 1983 Dec;42(3):1006–1012. doi: 10.1128/iai.42.3.1006-1012.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gibbons R. J., Hay D. I. Human salivary acidic proline-rich proteins and statherin promote the attachment of Actinomyces viscosus LY7 to apatitic surfaces. Infect Immun. 1988 Feb;56(2):439–445. doi: 10.1128/iai.56.2.439-445.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hamazume Y., Mega T., Ikenaka T. Characterization of hen egg white- and yolk-riboflavin binding proteins and amino acid sequence of egg white-riboflavin binding protein. J Biochem. 1984 Jun;95(6):1633–1644. doi: 10.1093/oxfordjournals.jbchem.a134776. [DOI] [PubMed] [Google Scholar]
  16. Hatton M. N., Loomis R. E., Levine M. J., Tabak L. A. Masticatory lubrication. The role of carbohydrate in the lubricating property of a salivary glycoprotein-albumin complex. Biochem J. 1985 Sep 15;230(3):817–820. doi: 10.1042/bj2300817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hawke D. H., Yuan P. M., Wilson K. J., Hunkapiller M. W. Identification of a long form of cystatin from human saliva by rapid microbore HPLC mapping. Biochem Biophys Res Commun. 1987 Jun 30;145(3):1248–1253. doi: 10.1016/0006-291x(87)91571-3. [DOI] [PubMed] [Google Scholar]
  18. Hay D. I., Bennick A., Schlesinger D. H., Minaguchi K., Madapallimattam G., Schluckebier S. K. The primary structures of six human salivary acidic proline-rich proteins (PRP-1, PRP-2, PRP-3, PRP-4, PIF-s and PIF-f). Biochem J. 1988 Oct 1;255(1):15–21. doi: 10.1042/bj2550015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Henderson J. Y., Moir A. J., Fothergill L. A., Fothergill J. E. Sequences of sixteen phosphoserine peptides from ovalbumins of eight species. Eur J Biochem. 1981 Feb;114(2):439–450. doi: 10.1111/j.1432-1033.1981.tb05165.x. [DOI] [PubMed] [Google Scholar]
  20. Isemura S., Saitoh E., Ito S., Isemura M., Sanada K. Cystatin S: a cysteine proteinase inhibitor of human saliva. J Biochem. 1984 Oct;96(4):1311–1314. doi: 10.1093/oxfordjournals.jbchem.a134952. [DOI] [PubMed] [Google Scholar]
  21. Isemura S., Saitoh E., Sanada K. Characterization and amino acid sequence of a new acidic cysteine proteinase inhibitor (cystatin SA) structurally closely related to cystatin S, from human whole saliva. J Biochem. 1987 Oct;102(4):693–704. doi: 10.1093/oxfordjournals.jbchem.a122107. [DOI] [PubMed] [Google Scholar]
  22. Isemura S., Saitoh E., Sanada K. Isolation and amino acid sequence of SAP-1, an acidic protein of human whole saliva, and sequence homology with human gamma-trace. J Biochem. 1984 Aug;96(2):489–498. doi: 10.1093/oxfordjournals.jbchem.a134861. [DOI] [PubMed] [Google Scholar]
  23. Isemura S., Saitoh E., Sanada K. Isolation and amino acid sequences of proline-rich peptides of human whole saliva. J Biochem. 1979 Jul;86(1):79–86. [PubMed] [Google Scholar]
  24. Isemura S., Saitoh E., Sanada K. The amino acid sequence of a salivary proline-rich peptide, P-C, and its relation to a salivary proline-rich phosphoprotein, protein C. J Biochem. 1980 Apr;87(4):1071–1077. [PubMed] [Google Scholar]
  25. Jensen J. L., Lamkin M. S., Troxler R. F., Oppenheim F. G. Multiple forms of statherin in human salivary secretions. Arch Oral Biol. 1991;36(7):529–534. doi: 10.1016/0003-9969(91)90147-m. [DOI] [PubMed] [Google Scholar]
  26. Jentoft N., Dearborn D. G. Labeling of proteins by reductive methylation using sodium cyanoborohydride. J Biol Chem. 1979 Jun 10;254(11):4359–4365. [PubMed] [Google Scholar]
  27. Kousvelari E. E., Baratz R. S., Burke B., Oppenheim F. G. Immunochemical identification and determination of proline-rich proteins in salivary secretions, enamel pellicle, and glandular tissue specimens. J Dent Res. 1980 Aug;59(8):1430–1438. doi: 10.1177/00220345800590081201. [DOI] [PubMed] [Google Scholar]
  28. Laber B., Krieglstein K., Henschen A., Kos J., Turk V., Huber R., Bode W. The cysteine proteinase inhibitor chicken cystatin is a phosphoprotein. FEBS Lett. 1989 May 8;248(1-2):162–168. doi: 10.1016/0014-5793(89)80453-3. [DOI] [PubMed] [Google Scholar]
  29. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  30. Levine M. J., Aguirre A., Hatton M. N., Tabak L. A. Artificial salivas: present and future. J Dent Res. 1987 Feb;66(Spec No):693–698. doi: 10.1177/00220345870660S215. [DOI] [PubMed] [Google Scholar]
  31. Levine M. J., Herzberg M. C., Levine M. S., Ellison S. A., Stinson M. W., Li H. C., van Dyke T. Specificity of salivary-bacterial interactions: role of terminal sialic acid residues in the interaction of salivary glycoproteins with Streptococcus sanguis and Streptococcus mutans. Infect Immun. 1978 Jan;19(1):107–115. doi: 10.1128/iai.19.1.107-115.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Loomis R. E., Prakobphol A., Levine M. J., Reddy M. S., Jones P. C. Biochemical and biophysical comparison of two mucins from human submandibular-sublingual saliva. Arch Biochem Biophys. 1987 Nov 1;258(2):452–464. doi: 10.1016/0003-9861(87)90366-3. [DOI] [PubMed] [Google Scholar]
  33. Mellersh A., Clark A., Hafiz S. Inhibition of Neisseria gonorrhoeae by normal human saliva. Br J Vener Dis. 1979 Feb;55(1):20–23. doi: 10.1136/sti.55.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Meyer H. E., Swiderek K., Hoffmann-Posorske E., Korte H., Heilmeyer L. M., Jr Quantitative determination of phosphoserine by high-performance liquid chromatography as the phenylthiocarbamyl-S-ethylcysteine. Application to picomolar amounts of peptides and proteins. J Chromatogr. 1987 Jun 26;397:113–121. doi: 10.1016/s0021-9673(01)84994-3. [DOI] [PubMed] [Google Scholar]
  35. Minaguchi K., Bennick A. Genetics of human salivary proteins. J Dent Res. 1989 Jan;68(1):2–15. doi: 10.1177/00220345890680010201. [DOI] [PubMed] [Google Scholar]
  36. Moreno E. C., Kresak M., Hay D. I. Adsorption thermodynamics of acidic proline-rich human salivary proteins onto calcium apatites. J Biol Chem. 1982 Mar 25;257(6):2981–2989. [PubMed] [Google Scholar]
  37. Morris E. J., McBride B. C. Adherence of Streptococcus sanguis to saliva-coated hydroxyapatite: evidence for two binding sites. Infect Immun. 1984 Feb;43(2):656–663. doi: 10.1128/iai.43.2.656-663.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Murray P. A., Levine M. J., Reddy M. S., Tabak L. A., Bergey E. J. Preparation of a sialic acid-binding protein from Streptococcus mitis KS32AR. Infect Immun. 1986 Aug;53(2):359–365. doi: 10.1128/iai.53.2.359-365.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Murray P. A., Levine M. J., Tabak L. A., Reddy M. S. Specificity of salivary-bacterial interactions: II. Evidence for a lectin on Streptococcus sanguis with specificity for a NeuAc alpha 2, 3Ga1 beta 1, 3Ga1NAc sequence. Biochem Biophys Res Commun. 1982 May 31;106(2):390–396. doi: 10.1016/0006-291x(82)91122-6. [DOI] [PubMed] [Google Scholar]
  40. Nisbet A. D., Saundry R. H., Moir A. J., Fothergill L. A., Fothergill J. E. The complete amino-acid sequence of hen ovalbumin. Eur J Biochem. 1981 Apr;115(2):335–345. doi: 10.1111/j.1432-1033.1981.tb05243.x. [DOI] [PubMed] [Google Scholar]
  41. ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]
  42. Obenauf S. D., Cowman R. A., Fitzgerald R. J. Immunological cross-reactivity of anionic proteins from caries-free and caries-active salivas which differ in biological properties toward oral streptococci. Infect Immun. 1986 Feb;51(2):440–444. doi: 10.1128/iai.51.2.440-444.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Prakobphol A., Levine M. J., Tabak L. A., Reddy M. S. Purification of a low-molecular-weight, mucin-type glycoprotein from human submandibular-sublingual saliva. Carbohydr Res. 1982 Oct 1;108(1):111–122. doi: 10.1016/s0008-6215(00)81896-0. [DOI] [PubMed] [Google Scholar]
  44. Robinson R., Kauffman D. L., Waye M. M., Blum M., Bennick A., Keller P. J. Primary structure and possible origin of the non-glycosylated basic proline-rich protein of human submandibular/sublingual saliva. Biochem J. 1989 Oct 15;263(2):497–503. doi: 10.1042/bj2630497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Saitoh E., Isemura S., Sanada K., Kim H. S., Smithies O., Maeda N. Cystatin superfamily. Evidence that family II cystatin genes are evolutionarily related to family III cystatin genes. Biol Chem Hoppe Seyler. 1988 May;369 (Suppl):191–197. [PubMed] [Google Scholar]
  46. Saitoh E., Kim H. S., Smithies O., Maeda N. Human cysteine-proteinase inhibitors: nucleotide sequence analysis of three members of the cystatin gene family. Gene. 1987;61(3):329–338. doi: 10.1016/0378-1119(87)90196-x. [DOI] [PubMed] [Google Scholar]
  47. Scannapieco F. A., Bergey E. J., Reddy M. S., Levine M. J. Characterization of salivary alpha-amylase binding to Streptococcus sanguis. Infect Immun. 1989 Sep;57(9):2853–2863. doi: 10.1128/iai.57.9.2853-2863.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Scannapieco F. A., Bhandary K., Ramasubbu N., Levine M. J. Structural relationship between the enzymatic and streptococcal binding sites of human salivary alpha-amylase. Biochem Biophys Res Commun. 1990 Dec 31;173(3):1109–1115. doi: 10.1016/s0006-291x(05)80900-3. [DOI] [PubMed] [Google Scholar]
  49. Schlesinger D. H., Hay D. I. Complete covalent structure of a proline-rich phosphoprotein, PRP-2, an inhibitor of calcium phosphate crystal growth from human parotid saliva. Int J Pept Protein Res. 1986 Apr;27(4):373–379. doi: 10.1111/j.1399-3011.1986.tb01030.x. [DOI] [PubMed] [Google Scholar]
  50. Schlesinger D. H., Hay D. I. Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva. J Biol Chem. 1977 Mar 10;252(5):1689–1695. [PubMed] [Google Scholar]
  51. Shomers J. P., Tabak L. A., Levine M. J., Mandel I. D., Ellison S. A. Characterization of cysteine-containing phosphoproteins from human submandibular-sublingual saliva. J Dent Res. 1982 Jun;61(6):764–767. doi: 10.1177/00220345820610062201. [DOI] [PubMed] [Google Scholar]
  52. Shomers J. P., Tabak L. A., Levine M. J., Mandel I. D., Ellison S. A. The isolation of a family of cysteine-containing phosphoproteins from human submandibular-sublingual saliva. J Dent Res. 1982 Aug;61(8):973–977. doi: 10.1177/00220345820610081101. [DOI] [PubMed] [Google Scholar]
  53. Shomers J. P., Tabak L. A., Levine M. J., Mandel I. D., Hay D. I. Properties of cysteine-containing phosphoproteins from human submandibular-sublingual saliva. J Dent Res. 1982 Feb;61(2):397–399. doi: 10.1177/00220345820610020601. [DOI] [PubMed] [Google Scholar]
  54. Simpson R. J., Neuberger M. R., Liu T. Y. Complete amino acid analysis of proteins from a single hydrolysate. J Biol Chem. 1976 Apr 10;251(7):1936–1940. [PubMed] [Google Scholar]
  55. Stinson M. W., Levine M. J., Cavese J. M., Prakobphol A., Murray P. A., Tabak L. A., Reddy M. S. Adherence of Streptococcus sanguis to salivary mucin bound to glass. J Dent Res. 1982 Dec;61(12):1390–1393. doi: 10.1177/00220345820610120101. [DOI] [PubMed] [Google Scholar]
  56. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Vogel H. J., Bridger W. A. Phosphorus-31 nuclear magnetic resonance studies of the two phosphoserine residues of hen egg white ovalbumin. Biochemistry. 1982 Nov 9;21(23):5825–5831. doi: 10.1021/bi00266a016. [DOI] [PubMed] [Google Scholar]
  58. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  59. Wong R. S., Bennick A. The primary structure of a salivary calcium-binding proline-rich phosphoprotein (protein C), a possible precursor of a related salivary protein A. J Biol Chem. 1980 Jun 25;255(12):5943–5948. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES