Abstract
In the absence of troponin and tropomyosin, skeletal actomyosin MgATPase activity can be altered by 2-3-fold by divalent cations. The 'sign' of this effect (i.e. inhibition or activation) varies with ionic strength. To investigate the mechanism, P(i) liberation was analysed at both low and high ionic strength with three concentrations of MgATP and over a wide range of Mg2+ concentrations. This procedure separated the effects of two dependent variables, Mg2+ and ATP4-/3- (ATPfree), to provide the following observations. (1) ATPfree, not Mg2+ (nor Ca2+), was the modifier. (2) ATPfree was an activator at low ionic strength and an inhibitor at high ionic strength, with half-maximal activation/inhibition occurring between 0.75 and 0.8 mM-ATPfree. (3) The rate constants controlling Vmax. with respect to actin were increased up to 3-fold by ATPfree at low ionic strength, and decreased up to 3-fold by ATPfree at high ionic strength. (4) The effect of ATPfree required near-native levels of the LC2 light chain bound to myosin (i.e. 2 mol of LC2/mol of myosin). (5) Sensitivity of P(i) liberation to a 50% decrease in the LC2 content of myosin required high ATPfree concentrations. It is concluded that LC2 and ATPfree are interdependent, non-additive, modifiers of MgATPase. These results are consistent with thin filament regulation of skeletal muscle contraction, and begin to explain why both positive and negative effects on MgATPase have been attributed to LC2.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARANY M., BARANY K. [Polyelectrolytes as interaction inhibitors and the importance of Ca and Mg for actin-myosin interaction]. Biochim Biophys Acta. 1960 Jul 1;41:204–216. doi: 10.1016/0006-3002(60)90003-2. [DOI] [PubMed] [Google Scholar]
- BARANY M., JAISLE F. [Contraction cycle and interaction between actin and L-myosin under the specific effects of interaction inhibitors]. Biochim Biophys Acta. 1960 Jul 1;41:192–203. doi: 10.1016/0006-3002(60)90002-0. [DOI] [PubMed] [Google Scholar]
- Bechet J. J., d'Albis A. Effect of the filamentous structure of myosin on the actomyosin ATPase activity. Eur J Biochem. 1985 Jan 2;146(1):117–123. doi: 10.1111/j.1432-1033.1985.tb08627.x. [DOI] [PubMed] [Google Scholar]
- Bhan A., Malhotra A., Scheuer J., Conti M. A., Adelstein R. S. Subunit function in cardiac myosin. Effects of binding phosphorylated and unphosphorylated myosin light chain 2 to light chain 2-deficient myosin. J Biol Chem. 1981 Aug 10;256(15):7741–7743. [PubMed] [Google Scholar]
- Bremel R. D., Weber A. Calcium binding to rabbit skeletal myosin under physiological conditions. Biochim Biophys Acta. 1975 Feb 17;376(2):366–374. doi: 10.1016/0005-2728(75)90028-6. [DOI] [PubMed] [Google Scholar]
- Burke M., Reisler E., Himmelfarb S., Harrington W. F. Myosin adenosine triphosphatase. Convergence of activation by actin and by SH1 modification at physiological ionic strength. J Biol Chem. 1974 Oct 10;249(19):6361–6363. [PubMed] [Google Scholar]
- Cheung P., Reisler E. The actomyosin ATPase of synthetic myosin minifilaments, filaments, and heavy meromyosin. J Biol Chem. 1983 Apr 25;258(8):5040–5044. [PubMed] [Google Scholar]
- Chowrashi P. K., Pemrick S. M., Pepe F. A. LC2 involvement in the assembly of skeletal myosin filaments. Biochim Biophys Acta. 1989 Feb 24;990(2):216–223. doi: 10.1016/s0304-4165(89)80037-6. [DOI] [PubMed] [Google Scholar]
- Godt R. E., Maughan D. W. On the composition of the cytosol of relaxed skeletal muscle of the frog. Am J Physiol. 1988 May;254(5 Pt 1):C591–C604. doi: 10.1152/ajpcell.1988.254.5.C591. [DOI] [PubMed] [Google Scholar]
- Gupta R. K., Benovic J. L., Rose Z. B. Magnetic resonance studies of the binding of ATP and cations to human hemoglobin. J Biol Chem. 1978 Sep 10;253(17):6165–6171. [PubMed] [Google Scholar]
- Gupta R. K., Moore R. D. 31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J Biol Chem. 1980 May 10;255(9):3987–3993. [PubMed] [Google Scholar]
- Harrington W. F., Himmelfarb S. Effect of adenosine di- and triphosphates on the stability of synthetic myosin filaments. Biochemistry. 1972 Aug 1;11(16):2945–2952. doi: 10.1021/bi00766a004. [DOI] [PubMed] [Google Scholar]
- Hartshorne D. J. Interactions of desensitized actomyosin with tropomyosin, troponin A, troponin B, and polyanions. J Gen Physiol. 1970 May;55(5):585–601. doi: 10.1085/jgp.55.5.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartshorne D. J., Perry S. V., Schaub M. C. A protein factor inhibiting the magnesium-activated adenosine triphosphatase of desensitized actomyosin. Biochem J. 1967 Sep;104(3):907–913. doi: 10.1042/bj1040907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kakol I., Kasman K., Michnicka M. The phosphorylation-dephosphorylation process as a myosin-linked regulation of superprecipitation of fast skeletal muscle actomyosin. Biochim Biophys Acta. 1982 Jun 24;704(3):437–443. doi: 10.1016/0167-4838(82)90065-6. [DOI] [PubMed] [Google Scholar]
- Kuo T. H., Banerjee S. K. Effects of removal of light chain 2 on the ATPase activities of cardiac myosin from normal and thyrotoxic rabbits. Biochim Biophys Acta. 1982 Oct 5;707(2):199–205. doi: 10.1016/0167-4838(82)90351-x. [DOI] [PubMed] [Google Scholar]
- Lehman W. Calcium ion-dependent myosin from decapod-crustacean muscles. Biochem J. 1977 May 1;163(2):291–296. doi: 10.1042/bj1630291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandelkow E. M., Mandelkow E. Fluorimetric studies on the influence of metal ions and chelators on the interaction between myosin and ATP. FEBS Lett. 1973 Jul 1;33(2):161–166. doi: 10.1016/0014-5793(73)80183-8. [DOI] [PubMed] [Google Scholar]
- Margossian S. S., Bhan A. K., Slayter H. S. Role of the regulatory light chains in skeletal muscle actomyosin ATPase and in minifilament formation. J Biol Chem. 1983 Nov 10;258(21):13359–13369. [PubMed] [Google Scholar]
- Margossian S. S. Reversible dissociation of dog cardiac myosin regulatory light chain 2 and its influence on ATP hydrolysis. J Biol Chem. 1985 Nov 5;260(25):13747–13754. [PubMed] [Google Scholar]
- Moss R. L., Giulian G. G., Greaser M. L. Physiological effects accompanying the removal of myosin LC2 from skinned skeletal muscle fibers. J Biol Chem. 1982 Aug 10;257(15):8588–8591. [PubMed] [Google Scholar]
- O'SULLIVAN W. J., PERRIN D. D. THE STABILITY CONSTANTS OF METAL-ADENINE NUCLEOTIDE COMPLEXES. Biochemistry. 1964 Jan;3:18–26. doi: 10.1021/bi00889a005. [DOI] [PubMed] [Google Scholar]
- Pastra-Landis S. C., Lowey S. Myosin subunit interactions. Properties of the 19,000-dalton light chain-deficient myosin. J Biol Chem. 1986 Nov 5;261(31):14811–14816. [PubMed] [Google Scholar]
- Pemrick S. M. Comparison of the calcium sensitivity of actomyosin from native and L-2-deficient myosin. Biochemistry. 1977 Sep 6;16(18):4047–4054. doi: 10.1021/bi00637a017. [DOI] [PubMed] [Google Scholar]
- Pemrick S. M., Grebenau R. C. Qualitative analysis of skeletal myosin as substrate of Ca2+-activated neutral protease: comparison of filamentous and soluble, native, and L2-deficient myosin. J Cell Biol. 1984 Dec;99(6):2297–2308. doi: 10.1083/jcb.99.6.2297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pemrick S. M. The phosphorylated L2 light chain of skeletal myosin is a modifier of the actomyosin ATPase. J Biol Chem. 1980 Sep 25;255(18):8836–8841. [PubMed] [Google Scholar]
- Pemrick S., Weber A. Mechanism of inhibition of relaxation by N-ethylmaleimide treatment of myosin. Biochemistry. 1976 Nov 16;15(23):5193–5198. doi: 10.1021/bi00668a038. [DOI] [PubMed] [Google Scholar]
- Pope B., Wagner P. D., Weeds A. G. Studies on the actomyosin ATPase and the role of the alkali light chains. Eur J Biochem. 1981 Jun;117(1):201–206. doi: 10.1111/j.1432-1033.1981.tb06322.x. [DOI] [PubMed] [Google Scholar]
- Pulliam D. L., Sawyna V., Levine R. J. Calcium sensitivity of vertebrate skeletal muscle myosin. Biochemistry. 1983 May 10;22(10):2324–2331. doi: 10.1021/bi00279a004. [DOI] [PubMed] [Google Scholar]
- Rizzino A. A., Barouch W. W., Eisenberg E., Moos C. Actin-heavy meromyosin biding. Determination of binding stoichiometry from adenosine triphosphatase kinetic measurements. Biochemistry. 1970 Jun 9;9(12):2402–2408. doi: 10.1021/bi00814a003. [DOI] [PubMed] [Google Scholar]
- Srivastava S., Cooke R., Wikman-Coffelt J. Studies on the role of myosin light chain-LC2 in tension generation. Biochem Biophys Res Commun. 1980 Jan 15;92(1):1–7. doi: 10.1016/0006-291x(80)91510-7. [DOI] [PubMed] [Google Scholar]
- Strzelecka-Gołaszewska H., Klimaszewska U., Dydyńska M. Polyphasic character of ATP hydrolysis in actomyosin system. Eur J Biochem. 1979 Nov;101(2):523–530. doi: 10.1111/j.1432-1033.1979.tb19747.x. [DOI] [PubMed] [Google Scholar]
- Strzelecka-Gołaszewska H., Piwowar U. Interaction of myosin filaments and minifilaments with actin: a comparative study. J Muscle Res Cell Motil. 1984 Feb;5(1):25–44. doi: 10.1007/BF00713150. [DOI] [PubMed] [Google Scholar]
- Strzelecka-Gołaszewska H., Piwowar U., Pliszka B. Changes in the ultrastructure of actomyosin gel during hydrolysis of ATP under various ionic conditions. Eur J Cell Biol. 1981 Apr;24(1):116–123. [PubMed] [Google Scholar]
- TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
- WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
