Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Jan 1;281(Pt 1):81–86. doi: 10.1042/bj2810081

Thyroid hormone concentrative uptake in rat erythrocytes. Involvement of the tryptophan transport system T in countertransport of tri-iodothyronine and aromatic amino acids.

Y Zhou 1, M Samson 1, J Francon 1, J P Blondeau 1
PMCID: PMC1130643  PMID: 1731770

Abstract

The kinetic properties of transport system T, which is specific for uptake of aromatic amino acids, were studied in rat erythrocytes in the presence of leucine in order to block the neutral amino acid transport system L. Since the triiodothyronine (T3) transport system and system T are closely related, the trans effect of T3 and tryptophan on [3H]tryptophan transport and the trans effects of aromatic amino acids on [125I]T3 transport were studied. Equilibrium-exchange, zero-trans and infinite-trans studies of [3H]tryptophan transport indicated that system T in rat erythrocytes is a simple carrier with exchanging properties resulting in trans-acceleration of influx and trans-inhibition of efflux when tryptophan was present at the trans side of the membrane. In erythrocytes preloaded with unlabelled tryptophan, countertransport resulted in a 7-fold accumulation of labelled substrate inside the cells. T3 on the trans side of the membrane inhibited both influx and efflux of tryptophan, with Ki values similar to the Km values of the T3 transport system. Extracellular tryptophan trans-inhibited [125I]T3 efflux in a manner similar to [3H]tryptophan efflux. Preloading erythrocytes with tryptophan resulted in trans-acceleration of T3 uptake and a transient 5-fold accumulation of free T3 into erythrocytes. Phenylalanine and tyrosine (but not the D-isomer of tryptophan or non-aromatic amino acids) also produced trans-acceleration for T3 uptake and T3 countertransport. These results are compatible with a kinetic model assuming a common simple carrier of T3 and tryptophan transport and point to a countertransport pathway driving the uphill uptake of T3 by hetero-exchange with intracellular aromatic amino acids.

Full text

PDF
81

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blondeau J. P., Osty J., Francon J. Characterization of the thyroid hormone transport system of isolated hepatocytes. J Biol Chem. 1988 Feb 25;263(6):2685–2692. [PubMed] [Google Scholar]
  2. Centanni M., Robbins J. Role of sodium in thyroid hormone uptake by rat skeletal muscle. J Clin Invest. 1987 Oct;80(4):1068–1072. doi: 10.1172/JCI113162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheng S. Y. Characterization of binding and uptake of 3,3',5-triido-L-thyronine in cultured mouse fibroblasts. Endocrinology. 1983 May;112(5):1754–1762. doi: 10.1210/endo-112-5-1754. [DOI] [PubMed] [Google Scholar]
  4. Christensen H. N. Organic ion transport during seven decades. The amino acids. Biochim Biophys Acta. 1984 Sep 3;779(3):255–269. doi: 10.1016/0304-4157(84)90012-1. [DOI] [PubMed] [Google Scholar]
  5. Devés R., Krupka R. M. A general kinetic analysis of transport. Tests of the carrier model based on predicted relations among experimental parameters. Biochim Biophys Acta. 1979 Oct 5;556(3):533–547. doi: 10.1016/0005-2736(79)90139-1. [DOI] [PubMed] [Google Scholar]
  6. Docter R., Krenning E. P., Bernard H. F., Hennemann G. Active transport of iodothyronines into human cultured fibroblasts. J Clin Endocrinol Metab. 1987 Oct;65(4):624–628. doi: 10.1210/jcem-65-4-624. [DOI] [PubMed] [Google Scholar]
  7. Docter R., Krenning E. P., Bos G., Fekkes D. F., Hennemann G. Evidence that the uptake of tri-iodo-L-thyronine by human erythrocytes is carrier-mediated but not energy-dependent. Biochem J. 1982 Oct 15;208(1):27–34. doi: 10.1042/bj2080027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ellory J. C., Jones S. E., Young J. D. Glycine transport in human erythrocytes. J Physiol. 1981 Nov;320:403–422. doi: 10.1113/jphysiol.1981.sp013958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Francon J., Chantoux F., Blondeau J. P. Carrier-mediated transport of thyroid hormones into rat glial cells in primary culture. J Neurochem. 1989 Nov;53(5):1456–1463. doi: 10.1111/j.1471-4159.1989.tb08538.x. [DOI] [PubMed] [Google Scholar]
  10. Guidotti G. G., Borghetti A. F., Gazzola G. C. The regulation of amino acid transport in animal cells. Biochim Biophys Acta. 1978 Dec 15;515(4):329–366. doi: 10.1016/0304-4157(78)90009-6. [DOI] [PubMed] [Google Scholar]
  11. Holm A. C., Wong K. Y., Pliam N. B., Jorgensen E. C., Goldfine I. D. Uptake of L-triiodothyronine into human cultured lymphocytes. Acta Endocrinol (Copenh) 1980 Nov;95(3):350–358. doi: 10.1530/acta.0.0950350. [DOI] [PubMed] [Google Scholar]
  12. Ingbar D. H., Galton V. A. The effect of food deprivation of the peripheral metabolism of thyroxine in rats. Endocrinology. 1975 Jun;96(6):1525–1532. doi: 10.1210/endo-96-6-1525. [DOI] [PubMed] [Google Scholar]
  13. Krenning E. P., Docter R., Bernard B., Visser T., Hennemann G. Decreased transport of thyroxine (T4), 3,3',5-triiodothyronine (T3) and 3,3',5'-triiodothyronine (rT3) into rat hepatocytes in primary culture due to a decrease of cellular ATP content and various drugs. FEBS Lett. 1982 Apr 19;140(2):229–233. doi: 10.1016/0014-5793(82)80900-9. [DOI] [PubMed] [Google Scholar]
  14. Krenning E. P., Docter R., Bernard H. F., Visser T. J., Hennemann G. Active transport of triiodothyronine (T3) into isolated rat liver cells. FEBS Lett. 1978 Jul 1;91(1):113–116. doi: 10.1016/0014-5793(78)80029-5. [DOI] [PubMed] [Google Scholar]
  15. Krenning E., Docter R., Bernard B., Visser T., Hennemann G. Characteristics of active transport of thyroid hormone into rat hepatocytes. Biochim Biophys Acta. 1981 Sep 4;676(3):314–320. doi: 10.1016/0304-4165(81)90165-3. [DOI] [PubMed] [Google Scholar]
  16. Krenning E., Docter R., Bernard B., Visser T., Hennemann G. Regulation of the active transport of 3,3',5-triiodothyronine (T3) into primary cultured rat hepatocytes by ATP. FEBS Lett. 1980 Oct 6;119(2):279–282. doi: 10.1016/0014-5793(80)80271-7. [DOI] [PubMed] [Google Scholar]
  17. Lakshmanan M., Goncalves E., Lessly G., Foti D., Robbins J. The transport of thyroxine into mouse neuroblastoma cells, NB41A3: the effect of L-system amino acids. Endocrinology. 1990 Jun;126(6):3245–3250. doi: 10.1210/endo-126-6-3245. [DOI] [PubMed] [Google Scholar]
  18. Lieb W. R., Stein W. D. Testing and characterizing the simple carrier. Biochim Biophys Acta. 1974 Dec 10;373(2):178–196. doi: 10.1016/0005-2736(74)90144-8. [DOI] [PubMed] [Google Scholar]
  19. Lieb W. R., Stein W. D. Testing and characterizing the simple pore. Biochim Biophys Acta. 1974 Dec 10;373(2):165–177. doi: 10.1016/0005-2736(74)90143-6. [DOI] [PubMed] [Google Scholar]
  20. López-Burillo S., García-Sancho J., Herreros B. Tryptophan transport through transport system T in the human erythrocyte, the Ehrlich cell and the rat intestine. Biochim Biophys Acta. 1985 Oct 24;820(1):85–94. doi: 10.1016/0005-2736(85)90218-4. [DOI] [PubMed] [Google Scholar]
  21. Mooradian A. D., Schwartz H. L., Mariash C. N., Oppenheimer J. H. Transcellular and transnuclear transport of 3,5,3'-triiodothyronine in isolated hepatocytes. Endocrinology. 1985 Dec;117(6):2449–2456. doi: 10.1210/endo-117-6-2449. [DOI] [PubMed] [Google Scholar]
  22. Oppenheimer J. H., Schwartz H. L. Stereospecific transport of triiodothyronine from plasma to cytosol and from cytosol to nucleus in rat liver, kidney, brain, and heart. J Clin Invest. 1985 Jan;75(1):147–154. doi: 10.1172/JCI111667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Osty J., Jego L., Francon J., Blondeau J. P. Characterization of triiodothyronine transport and accumulation in rat erythrocytes. Endocrinology. 1988 Nov;123(5):2303–2311. doi: 10.1210/endo-123-5-2303. [DOI] [PubMed] [Google Scholar]
  24. Osty J., Valensi P., Samson M., Francon J., Blondeau J. P. Transport of thyroid hormones by human erythrocytes: kinetic characterization in adults and newborns. J Clin Endocrinol Metab. 1990 Dec;71(6):1589–1595. doi: 10.1210/jcem-71-6-1589. [DOI] [PubMed] [Google Scholar]
  25. Osty J., Zhou Y., Chantoux F., Francon J., Blondeau J. P. The triiodothyronine carrier of rat erythrocytes: asymmetry and mechanisms of trans-inhibition. Biochim Biophys Acta. 1990 Jan 23;1051(1):46–51. doi: 10.1016/0167-4889(90)90172-a. [DOI] [PubMed] [Google Scholar]
  26. Pontecorvi A., Robbins J. Energy-dependent uptake of 3,5,3'-triiodo-L-thyronine in rat skeletal muscle. Endocrinology. 1986 Dec;119(6):2755–2761. doi: 10.1210/endo-119-6-2755. [DOI] [PubMed] [Google Scholar]
  27. Rosenberg R. A kinetic analysis of L-tryptophan transport in human red blood cells. Biochim Biophys Acta. 1981 Dec 7;649(2):262–268. doi: 10.1016/0005-2736(81)90414-4. [DOI] [PubMed] [Google Scholar]
  28. Salter M., Knowles R. G., Pogson C. I. Transport of the aromatic amino acids into isolated rat liver cells. Properties of uptake by two distinct systems. Biochem J. 1986 Jan 15;233(2):499–506. doi: 10.1042/bj2330499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stitzer L. K., Jacquez J. A. Neutral amino acid transport pathways in uptake of L-thyroxine by Ehrlich ascites cells. Am J Physiol. 1975 Jul;229(1):172–177. doi: 10.1152/ajplegacy.1975.229.1.172. [DOI] [PubMed] [Google Scholar]
  30. Topliss D. J., Kolliniatis E., Barlow J. W., Lim C. F., Stockigt J. R. Uptake of 3,5,3'-triiodothyronine by cultured rat hepatoma cells is inhibitable by nonbile acid cholephils, diphenylhydantoin, and nonsteroidal antiinflammatory drugs. Endocrinology. 1989 Feb;124(2):980–986. doi: 10.1210/endo-124-2-980. [DOI] [PubMed] [Google Scholar]
  31. Van Winkle L. J., Mann D. F., Campione A. L., Farrington B. H. Transport of benzenoid amino acids by system T and four broad scope systems in preimplantation mouse conceptuses. Biochim Biophys Acta. 1990 Sep 7;1027(3):268–277. doi: 10.1016/0005-2736(90)90318-i. [DOI] [PubMed] [Google Scholar]
  32. Wise W. C. Maturation of membrane function: transport of amino acid by rat erythroid cells. J Cell Physiol. 1975 Dec;87(2):199–201. doi: 10.1002/jcp.1040870208. [DOI] [PubMed] [Google Scholar]
  33. Zhou Y., Samson M., Osty J., Francon J., Blondeau J. P. Evidence for a close link between the thyroid hormone transport system and the aromatic amino acid transport system T in erythrocytes. J Biol Chem. 1990 Oct 5;265(28):17000–17004. [PubMed] [Google Scholar]
  34. van der Heyden J. T., Docter R., van Toor H., Wilson J. H., Hennemann G., Krenning E. P. Effects of caloric deprivation on thyroid hormone tissue uptake and generation of low-T3 syndrome. Am J Physiol. 1986 Aug;251(2 Pt 1):E156–E163. doi: 10.1152/ajpendo.1986.251.2.E156. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES