Abstract
The protonmotive force, as well as the mitochondrial and cytosolic concentrations of malate, 2-oxoglutarate, glutamate and aspartate, were determined in livers from hypo-, eu- and hyper-thyroid rats, by density-gradient centrifugation of freeze-clamped livers in non-aqueous solvents [Soboll, Akerboom, Schwenke, Haase & Sies (1980) Biochem. J. 192, 951-954]. The mitochondrial/cytosolic pH difference and the membrane potential were significantly enhanced in hyperthyroid livers compared with the hypothyroid state, resulting in an increased protonmotive force in the presence of thyroid hormones [Soboll & Sies (1989) Methods Enzymol. 174, 118-130]. The mitochondrial concentrations of 2-oxoglutarate, glutamate and aspartate were significantly higher in the euthyroid than in the hypothyroid state, but only slightly higher in the hyperthyroid state. Mitochondrial malate, on the other hand, increased significantly from the hypothyroid to the hyperthyroid state. The mitochondrial/cytosolic concentration gradients were significantly increased in the presence of thyroid hormones only for malate. The changes in steady-state metabolite concentrations reflect a higher substrate supply and a stimulation of mitochondrial metabolism. However, a clear relationship between the increased protonmotive force, as the driving force for mitochondrial metabolite transport, and the subcellular metabolite concentrations is not observable in different thyroid states.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babior B. M., Creagan S., Ingbar S. H., Kipnes R. S. Stimulation of mitochondrial adenosine diphosphate uptake by thyroid hormones. Proc Natl Acad Sci U S A. 1973 Jan;70(1):98–102. doi: 10.1073/pnas.70.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brand M. D. The proton leak across the mitochondrial inner membrane. Biochim Biophys Acta. 1990 Jul 25;1018(2-3):128–133. doi: 10.1016/0005-2728(90)90232-s. [DOI] [PubMed] [Google Scholar]
- Elbers R., Heldt H. W., Schmucker P., Soboll S., Wiese H. Measurement of the ATP/ADP ratio in mitochondria and in the extramitochondrial compartment by fractionation of freeze-stopped liver tissue in non-aqueous media. Hoppe Seylers Z Physiol Chem. 1974 Mar;355(3):378–393. doi: 10.1515/bchm2.1974.355.1.378. [DOI] [PubMed] [Google Scholar]
- Faupel R. P., Seitz H. J., Tarnowski W., Thiemann V., Weiss C. The problem of tissue sampling from experimental animals with respect to freezing technique, anoxia, stress and narcosis. A new method for sampling rat liver tissue and the physiological values of glycolytic intermediates and related compounds. Arch Biochem Biophys. 1972 Feb;148(2):509–522. doi: 10.1016/0003-9861(72)90170-1. [DOI] [PubMed] [Google Scholar]
- Halestrap A. P., Armston A. E. A re-evaluation of the role of mitochondrial pyruvate transport in the hormonal control of rat liver mitochondrial pyruvate metabolism. Biochem J. 1984 Nov 1;223(3):677–685. doi: 10.1042/bj2230677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoch F. L. Adenine nucleotide translocation in liver mitochondria of hypothyroid rats. Arch Biochem Biophys. 1977 Jan 30;178(2):535–545. doi: 10.1016/0003-9861(77)90224-7. [DOI] [PubMed] [Google Scholar]
- Horrum M. A., Tobin R. B., Ecklund R. E. Thyroxine-induced changes in rat liver mitochondrial cytochromes. Mol Cell Endocrinol. 1985 Jul;41(2-3):163–169. doi: 10.1016/0303-7207(85)90019-x. [DOI] [PubMed] [Google Scholar]
- Höppner W., Rasmussen U. B., Abuerreish G., Wohlrab H., Seitz H. J. Thyroid hormone effect on gene expression of the adenine nucleotide translocase in different rat tissues. Mol Endocrinol. 1988 Nov;2(11):1127–1131. doi: 10.1210/mend-2-11-1127. [DOI] [PubMed] [Google Scholar]
- LEE Y. P., LARDY H. A. INFLUENCE OF THYROID HORMONES ON L-ALPHA-GLYCEROPHOSPHATE DEHYDROGENASES AND OTHER DEHYDROGENASES IN VARIOUS ORGANS OF THE RAT. J Biol Chem. 1965 Mar;240:1427–1436. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LaNoue K. F., Schoolwerth A. C. Metabolite transport in mitochondria. Annu Rev Biochem. 1979;48:871–922. doi: 10.1146/annurev.bi.48.070179.004255. [DOI] [PubMed] [Google Scholar]
- Landriscina C., Gnoni G. V., Quagliariello E. Effect of thyroid hormones on microsomal fatty acid chain elongation synthesis in rat liver. Eur J Biochem. 1976 Dec;71(1):135–143. doi: 10.1111/j.1432-1033.1976.tb11099.x. [DOI] [PubMed] [Google Scholar]
- Leverve X. M., Verhoeven A. J., Groen A. K., Meijer A. J., Tager J. M. The malate/aspartate shuttle and pyruvate kinase as targets involved in the stimulation of gluconeogenesis by phenylephrine. Eur J Biochem. 1986 Mar 17;155(3):551–556. doi: 10.1111/j.1432-1033.1986.tb09523.x. [DOI] [PubMed] [Google Scholar]
- Maddaiah V. T., Clejan S., Palekar A. G., Collipp P. J. Hormones and liver mitochondria: effects of growth hormone and thyroxine on respiration, fluorescence of 1-anilino-8-naphthalene sulfonate and enzyme activities of complex I and II of submitochondrial particles. Arch Biochem Biophys. 1981 Sep;210(2):666–677. doi: 10.1016/0003-9861(81)90234-4. [DOI] [PubMed] [Google Scholar]
- Müller M. J., Seitz H. J. Rapid and direct stimulation of hepatic gluconeogenesis by L-triiodothyronine (T3) in the isolated-perfused rat liver. Life Sci. 1980 Sep 8;27(10):827–835. doi: 10.1016/0024-3205(80)90076-4. [DOI] [PubMed] [Google Scholar]
- Müller M. J., Seitz H. J. Starvation-induced changes of hepatic glucose metabolism in hypo- and hyperthyroid rats in vivo. J Nutr. 1981 Aug;111(8):1370–1379. doi: 10.1093/jn/111.8.1370. [DOI] [PubMed] [Google Scholar]
- Palacios-Romero R., Mowbray J. Evidence for the rapid direct control both in vivo and in vitro of the efficiency of oxidative phosphorylation by 3,5,3'-tri-iodo-L-thyronine in rats. Biochem J. 1979 Dec 15;184(3):527–538. doi: 10.1042/bj1840527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paradies G., Ruggiero F. M. Enhanced activity of the tricarboxylate carrier and modification of lipids in hepatic mitochondria from hyperthyroid rats. Arch Biochem Biophys. 1990 May 1;278(2):425–430. doi: 10.1016/0003-9861(90)90280-c. [DOI] [PubMed] [Google Scholar]
- Seitz H. J., Müller M. J., Soboll S. Rapid thyroid-hormone effect on mitochondrial and cytosolic ATP/ADP ratios in the intact liver cell. Biochem J. 1985 Apr 1;227(1):149–153. doi: 10.1042/bj2270149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shears S. B., Bronk J. R. The influence of thyroxine administered in vivo on the transmembrane protonic electrochemical potential difference in rat liver mitochondria. Biochem J. 1979 Feb 15;178(2):505–507. doi: 10.1042/bj1780505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siess E. A., Brocks D. G., Lattke H. K., Wieland O. H. Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate. Biochem J. 1977 Aug 15;166(2):225–235. doi: 10.1042/bj1660225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soboll S., Akerboom T. P., Schwenke W. D., Haase R., Sies H. Mitochondrial and cytosolic ATP/ADP ratios in isolated hepatocytes. A comparison of the digitonin method and the non-aqueous fractionation procedure. Biochem J. 1980 Dec 15;192(3):951–954. doi: 10.1042/bj1920951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soboll S., Elbers R., Scholz R., Heldt H. W. Subcellular distribution of di- and tricarboxylates and pH gradients in perfused rat liver. Hoppe Seylers Z Physiol Chem. 1980 Jan;361(1):69–76. doi: 10.1515/bchm2.1980.361.1.69. [DOI] [PubMed] [Google Scholar]
- Soboll S., Scholz R. Control of energy metabolism by glucagon and adrenaline in perfused rat liver. FEBS Lett. 1986 Sep 1;205(1):109–112. doi: 10.1016/0014-5793(86)80875-4. [DOI] [PubMed] [Google Scholar]
- Soboll S., Sies H. Effects of hormones on mitochondrial processes. Methods Enzymol. 1989;174:118–130. doi: 10.1016/0076-6879(89)74014-3. [DOI] [PubMed] [Google Scholar]
- Strzelecki T., Strzelecka D., Koch C. D., LaNoue K. F. Sites of action of glucagon and other Ca2+ mobilizing hormones on the malate aspartate cycle. Arch Biochem Biophys. 1988 Jul;264(1):310–320. doi: 10.1016/0003-9861(88)90599-1. [DOI] [PubMed] [Google Scholar]
- Titheradge M. A., Coore H. G. Hormonal regulation of liver mitochondrial pyruvate carrier in relation to gluconeogenesis and lipogenesis. FEBS Lett. 1976 Nov 15;72(1):73–78. doi: 10.1016/0014-5793(76)80901-5. [DOI] [PubMed] [Google Scholar]